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Abstract

The idea of living in more than four spacetime dimensions stems from the quest for
unifying electromagnetism with gravity. Later, it has been realized that such a scenario could
account for the so-called hierarchy problem as well as the existence of a particle such as a dark
matter candidate, none of which has yet been addressed by the Standard Model of particle
physics. In this project, we will explore the Standard Model within a five-dimensional (5D)
spacetime framework by considering an additional compact space dimension. After briefly
reviewing the available alternatives, we concentrate on the minimal version of the so-called
universal extra dimensions. Taking the gauge invariant and renormalizable Lagrangian in
5D, we first obtain its 4D effective form, which brings about a tower of the so-called Kaluza-
Klein states for each Standard Model particle. Then the Feynman rules of the model are
partly extracted in the general Rξ gauge and are compared with the ones available in the
literature. Due to time constrictions, this project has merely served as an introductory tool
for a more profound work which we are willing to study in the future, and thus the effects of
the Kaluza-Klein states on the Higgs and top quark physics will be investigated accordingly.
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1 Introduction

On an evolutionary basis, in the presence of a gravitational field which simply makes objects fall
down near the surface of the Earth, we have been driven to come to the conclusion that we live
in a three (space) dimensional world. Gravity breaks the symmetry between the vertical and the
horizontal, and in order to differentiate left from right, we most probably used the fact that the
nature was not isotropically symmetric due to the existence of daily physical objects or due even
to the Sun rising from one direction and lowering in the opposite. We may not have experienced
a supernatural event that could alter our view of the world in terms of the number of spacetime
dimensions. However, the picture was to be modified at the beginning of the 20th century, just
before the World War 1.

The idea of living in more than three (space) dimensions is apparently 102 years old now.
It has its roots from a genuine attempt of unifying electromagnetism and gravity into a single
theory. The first to give it a try was Gunnar Nordstrom, a Finnish theoretical physicist, in
1914 [1]. Nordstrom failed in his attempts since he had a scalar gravitational potential in mind.
Starting with a presumably earlier version of a general-relativity-like theory, Nordstrom first
promoted the Poisson equation to the four spacetime dimensions as early as 1912 [2], and then
finally displayed a genuine attempt at unifying electromagnetism and gravity two years later. Not
clearly at his time, his works were bound to be doomed by the theory of general relativity (GR)
of Albert Einstein in 1916 [3]. When physicists realized that Einstein’s tensor theory of gravity
had more to offer without razing the Nordstrom theory to the ground, Theodor Kaluza [4] and
Oskar Klein [5, 6] extended GR to a five-dimensional (5D) framework, with the extra dimension
constrained on a circle of some small radius. Kaluza made use of Hermann Weyl’s ideas. In 1918,
Weyl discovered a new metric, besides the usual one gµν and, to his understanding, it was the
electromagnetic potential Aµ, and finally he showed that both of the known forces at the time
– electromagnetism and gravity – have a common origin. Although Kaluza took a path which
requires a working knowledge of GR, Klein presented somewhat better comprehensible approach.
He compactified the extra dimension (ED) on a circle of a small radius, the bigger picture of
which is directly applicable to the action of the Standard Model (SM) fields. The collaborative
works of Kaluza and Klein are referred to as Kaluza-Klein (KK) theories.

Later, physicists studying the original KK theories faced with some problems [7]: Firstly, as
stated above, a scalar field representing the gravity seems to couple to matter. Secondly, only if
radius of the circle of compactification, R, is of the order of the fundamental scale of quantum
gravity, M∗ (R ∼ M−1∗ ), is the gauge field strength is of order one. Thirdly and finally, when
the standard model is promoted to five dimensions, fermions lose their chirality, which yields a
doubling of fermions for the massless case. In order to overcome these problems and produce
a fruitful attempt at a unification, string theories thrived and dominated the world of extra
dimensions [1]. In 1960s, Bryce Seligman DeWitt managed to reduce 4D Yang-Mills theories
from more than five dimensions, and did a similar work regarding strings in 26 dimensions. In
1970s and 1980s, it was realized that the superstring theories necessitate the existence of 10
dimensions. The maximum number of dimensions in supergravity was determined to be 11. In
1990s, the number of dimensions for superstrings within the framework of the M theory were
promoted to 11.

An era of renaissance started in 1998 for the theory of ED’s. The models which were built in
this era are claimed to solve the hierarchy problem1 in the SM. The first one is referred to as the

1Let us explain the hierarchy problem by giving two examples. The fundamental Planck scale is enormously
larger than the electroweak scale. The Planck scale can be written in terms of the Newton constant GN , and
the electroweak scale in terms of the Fermi constant, GF . We observe that GN/GF ∼ 10−34. So far, we cannot
experimentally account for this mismatching scales [1]. Another example is the large differences in fermion masses,
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ADD model, after the authors Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali [9, 10].
In this model, the authors assert that the fundamental scale of quantum gravity can be lowered
to the TeV scale if the SM fields are localized to a real world ((3 + 1)D) surface (a brane) in a
world with higher dimensions. The main trait of this model is that the ED’s are compactified
and this compactification is not with a small radius or ED in general. That is, the ED’s occupy
a large (though compact) volume, and effectively the strength of gravity will be reduced from
the fundamental to Planck scale [7]. We like to imagine this worldview as in that there is a sheet
hanging from a laundry line – representing the real (3 + 1)D world – and there a chunk of ED’s
all compactified, forming a ball-shape object attached to the sheet. The size of the ball and the
floating-motion of the sheet are details irrelevant at the moment. What is most relevant to our
topic is that matter, Higgs, and gauge fields – all the SM fields – live in the sheet (the brane),
but only the gravity is allowed to survive in all dimensions (the bulk). The bulk spacetime is
assumed to be flat. This model is also referred to as the model of “large extra dimensions.”
ADD proposal is important since it promises to solve some old problems, such as the problem
of cosmological constant [1]. As a side note, we observe that the ADD model makes sense only
with greater than or equal to two ED’s, provided that the fundamental scale of quantum gravity
is taken to be 1 TeV. To illustrate, the size of the ED’s are about 1 mm with two ED’s, and it
goes down to 10−11 m with six ED’s [7].

The year after, Lisa Randall and Raman Sundrum published their ED model [11]. The
Randall-Sundrum (RS) model consists of two branes, just like two sheets hanging from two
different laundry lines facing each other. One brane has dimensionful parameters which are
scaled to TeV scale. This is where the SM is confined to live. The other brane is at the Planck
scale. Moreover, the branes are connected. This connection is provided by a warped ED. The
background metric has a warp factor in the form of e−k|y| (so the bulk spacetime is not flat), where
y is the fifth coordinate that is not specified on a circle this time. Instead, the ED coordinate
is defined on an interval. The Z2 symmetry is again imposed here, that is, the model-builders
make the identification y → −y. Similarly to the ADD model, it is only the gravitational field
that lives in the ED’s.

In 2001, there appeared a model named the universal extra dimensions (UED) in a paper by
Thomas Appelquist, Hsin-Chia Cheng, and Bogdan A. Dobrescu [12]. In the model, the very first
thing to note is that all the SM fields are allowed to live in all the dimensions (hence the adjective
universal). The spacetime of the ED’s is flat, and the ED’s are, again, compactified2. In UED
model, the ED’s have radius 1/R ∼ 300 GeV with one ED, and 1/R ∼ 500 GeV with two ED’s3.
The UED model has more to offer than only proposing a reformulation of the hierarchy problem
in the SM; the fifth component of the 5-gradient imposes a conservation law – the conservation
of the fifth component of 5-momentum. It turns out that the conservation of 5-momentum is
heavily related to the conservation of KK numbers. It was realized that in the interaction of

which is then called the fermion mass hierarchy [8].
2In theories with odd number of spacetime dimensions, there appears a chirality problem of fermions. One

way to overcome this issue is to do an orbifolding, that is, compactify the extra dimensions. In the ADD and
UED models alike, there is a compactification on the circle with a Z2 symmetry. This seems to be working so far
[7].

3The physicist in the field of high energy physics tend to express most, if not all, the measurements in units
of energy. Considering the beginners, we may need to feel how large, for example, some distance d = (1 GeV)−1

is. As for the length conversion in natural units, we have the equivalence [13]

(1 GeV)−1 ≡ 0.197× 10−15 m

and hence we may simply take, for approximation purposes,

(1 GeV)−1 ∼= 2× 10−16 m
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KK states, the KK number is conserved as an addition rule: the sum of the KK numbers of
the incident particles equals the sum of the KK numbers of the outgoing particles. After the
realization of this conservation law of KK numbers, one may ask the existence of some lightest
stable particle. Some argues that the lightest KK state of photon might be a candidate to be
classified as dark matter [7].

What do we mean by scaling down or up? For example, when we write an abelian gauge field
in more than four spacetime dimensions, the coupling turns out to be dimensionful (This will
be indeed observed when we write the action of a higher-dimensional gauge theory). In order to
somehow tame the presumably strange behavior of gauge couplings, we need to re-scale them.
The usual procedure for taming the unknown couplings is to match the theory when reduced
from ED’s to 4D as an effective field theory [7, 14, 15].

ADD and RS models promise to bring the cutoff scale of the SM down to the TeV scale.
In both models, it is the quantum gravity that defines the cutoff scale. However, the theories
of quantum gravity signal the violation of global symmetries. On the other hand, there are
certain global symmetries in the SM that prevents a great many awful phenomena, including
but not restricted to excessive CP violation and proton decay. Although there have appeared
modification on both models, ADD and RS models are incomplete in their original form. The
issue of non-violation of global symmetries seems plausible within the framework of UED model
[7].

Besides its relative less reliance on a working knowledge of GR in terms of tensor calculus
and its ease for better comprehension, in this project we concentrate our attention on the UED
model, specifically on its minimal extension, mUED. In mUED, all the SM fields live in the bulk
dimensions, whereas in a non-minimal UED theory (nmUED) fields experience localization at
the boundary branes via a Dirac delta tacked in to them.

2 Methodology

2.1 Conventions and definitions

In our analysis, we abide by the following:

1. As it has been standardized in the literature of high-energy physics, we set ~ = c = 1.

2. Our metric convention is mostly negative: gµν=̇diag(+−−−).

3. Our sign convention for the covariant derivative is as in Reference [16]4:

Dµ = ∂µ − igcT iCGiµ − igwT aWW a
µ + igyTYBµ

4. The various Lagrangians will be defined in 5D. Instead of explicitly showing the coordinate-
dependencies, we denote the effective Lagrangians by an arrow with the integration operator
above it:

L

∫ 2πR
0

dy
−−−−−→ · · ·

5. In 5D theory, we will denote the extra dimensions by be expanding the fields in a Fourier
series as in

K+(x, y) =
1√
2πR
K+

(0)(x) +
∑
n≥1

1√
πR
K+

(n)(x) cos
ny

R

4The author cited in [16] published a paper on the Feynman rules in 4D by parametrizing even the signs of
the gauge couplings in the covariant derivative; to wit, arXiv:1209.6213.
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K−(x, y) =
∑
n≥1

1√
πR
K−(n)(x) sin

ny

R

for some scalar, vector, or fermion field K, so as to be able to obtain an effective theory
for 4D theory. The fields are expanded in sines or cosines according to their parity under
Z2, which simply sends y → −y. We will refer to the infinite number of states as the
Kaluza-Klein (KK) tower. The summation index will be called the KK number.

2.2 A brief summary of the Standard Model: the U(1) group

This section will serve as an exercise to a simple analysis of the Standard Model in four dimen-
sions. Here, we will recall the basics of different types of Lagrangians, the extraction of the so-
called Feynman rules, and last but not least a clear application of the Higgs mechanism[16, 17, 18].
The generalization to the SU(N) group is straightforward, albeit more complicated mainly due
to the existence of N2 − 1 gauge bosons.

Let us consider an abelian 4D theory with a fermion and a Higgs scalar, mediated by an
abelian gauge boson. The Lagrangian for this theory reads

L = Lgauge + Lhiggs + Lfermion + Lyukawa + Lgf + Lghosts

In an abelian theory, the Fadeev-Popov ghosts induced by the gauge-fixing Lagrangian do not
interact with the matter fields and therefore the ghosts Lagrangian may be dropped. This is the
case when we refer to the generalized Rξ gauge class. In the unitary gauge, we have no ghosts;
however, the unitary gauge has its own issues.

We start the theory with massless fields. After spontaneous symmetry breaking of the Higgs
potential, the gauge boson and the fermion field will attain masses. The fermion field receives
a mass term via a Yukawa interaction with the Higgs field; the gauge boson will do so via the
kinetic term of the Higgs field. We may leave the gauge-fixing Lagrangian for later.

Let us begin our discussion by writing down the individual massless Lagrangians for the
above-mentioned fields. The Proca Lagrangian describes the gauge boson; the fermion will be
described by the Dirac Lagrangian:

Lgauge = −1

4
(Fµν)

2

Lfermion = ψ̄iγµDµψ

The Higgs field is described as usual:

Lhiggs = |DµH|2 + µ2 |H|2 − λ |H|4

The covariant derivative is given as

Dµ = ∂µ + ieAµ

where e is the electric charge in natural units.
In general, the Lagrangian is the difference between the kinetic term and the potential term:

L = T −U

Then we see that

Uhiggs = −µ2 |H|2 + λ |H|4

4



The Higgs field has two degrees of freedom here. If we write

H = H1 + iH2

for the real fields H1,2, then we see that the potential is minimum on a circle defined as

〈H1〉2 + 〈H2〉2 =
µ2

2λ

We may choose the vacuum expectation values (VEVs) as

〈H1〉 =
v√
2

〈H2〉 = 0

so v =
√
µ2/λ. As usual, we expand H1,2 around their VEVs:

H1 =
v + h√

2

H2 =
0 + χ√

2
=

χ√
2

and then

H =
v + h+ iχ√

2

Now let us rewrite the kinetic term for the Higgs field:

|DµH|2 =

[
(∂µ + ieAµ)

v + h+ iχ√
2

]∗ [
(∂µ + ieAµ)

v + h+ iχ√
2

]
=

(
1√
2
∂µh−

i√
2
∂µχ−

iev√
2
Aµ −

ie√
2
hAµ −

e√
2
Aµχ

)
×
(

1√
2
∂µh−

i√
2
∂µχ−

iev√
2
Aµ −

ie√
2
hAµ −

e√
2
Aµχ

)
=

(
1√
2
∂µh−

e√
2
Aµχ

)2

+

(
1√
2
∂µχ+

ev√
2
Aµ +

e√
2
hAµ

)2

=
1

2
(∂µh)

2
+

1

2
(∂µχ)

2
+ ehAµ∂

µχ+
e2

2
h2 (Aµ)

2
+ evAµ∂

µχ+ e2vh (Aµ)
2

+
e2v2

2
(Aµ)

2 − eχAµ∂µh+
e2

2
(Aµ)

2
χ2

The potential term for the Higgs field can also be expanded:

Uhiggs = −µ2 |H|2 + λ |H|4

= −µ2

∣∣∣∣v + h+ iχ√
2

∣∣∣∣2 + λ

∣∣∣∣v + h+ iχ√
2

∣∣∣∣4
= µ2h2 +

µ2

4v2
h4 +

µ2

v
h3 +

µ2

2v2
h2χ2 +

µ2

v
hχ2 +

µ2

4v2
χ4

5



Hence the Lagrangian for the Higgs field becomes

Lhiggs =

{
1

2
(∂µh)

2 − 1

2

(√
2µ
)2
h2
}

+

{
1

2
(∂µχ)

2

}
+

{
1

2
(ev)

2
(Aµ)

2

}
+

{
1

2
e2h2 (Aµ)

2
+ e2vh (Aµ)

2

}
+

{
µ2

4v2
h4 +

µ2

v
h3
}

+ {ehAµ∂µχ− eχAµ∂µh}+

{
evAµ∂

µχ+
1

2
e2 (Aµ)

2
χ2

}
+

{
µ2

2v2
h2χ2 +

µ2

v
hχ2

}
+

{
µ2

4v2
χ4

}
If we consider the massive Klein-Gordon Lagrangian for the Higgs field, we see that the mass of
the Higgs boson is

mh =
√

2µ

If we consider the massive Proca Lagrangian for the gauge field, we see that the mass of the
gauge boson is

mA = ev

In addition to the mass terms, we have the interactions hhγ, hhγγ, hhhh, hhh, and interaction
of h and γ with the Goldstone boson χ.

In closing up this section, we finally consider the Yukawa Lagrangian:

Lyukawa = −yψ̄ψH

In this toy model, we have only one fermion, and hence the Yukawa coupling is indeed a real
constant, and we do not have a Hermitian conjugate tail.

Lyukawa = −yψ̄ψH

= −yψ̄ψ v + h+ iχ√
2

= − yv√
2
ψ̄ψ − y√

2
hψ̄ψ − iy√

2
χψ̄ψ

The first term gives the fermion mass:

mψ =
yv√

2

The others give interaction of the fermion with the Higgs and the Goldstone bosons, respectively.
Clearly, in a more complicated theory such as one with an SU(N) symmetry, we expect things
to become complicated: when the multiplets of fermions begin emerging, the Yukawa coupling
will no longer be a simple scalar but a matrix of the size of the multiplet. In that case, the usual
procedure is to diagonalize the Yukawa matrices. In the real-world 4D theory of the Standard
Model, we have the quark mixing, as well, which requires paying even more attention.

2.3 Promoting SM to 5D

In 5D, our universe is depicted what Theodor Kaluza would define as a cylindrical one (Figure
1).
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R

y

xµ

Figure 1: The geometry of a 5D world with the extra dimensions compactified on a circle of some
small radius R.

In promoting the Standard Model to the five-dimensional (5D) case[8, 15, 16, 19, 20, 21, 22,
23, 24]5, we merely

1. let the Lorentz indices take on an additional value, 5, and denote the new spatial component
by y := x5, and

2. make a harmonic expansion of the fields in the new spatial component so as to be able to
integrate out the fifth component easily.

For the first item, we write

µ = 0, 1, 2, 3 −→ M = 0, 1, 2, 3, 5

xµ =
(
x0, ~x

)
−→ xM =

(
x0, ~x, y

)
∂µ =

(
∂

∂t
, ~∇
)

−→ ∂M =

(
∂

∂t
, ~∇, ∂

∂y

)
For the second item, care must be provided in assigning the parity of the fields under Z2 sym-
metry, which just says y → −y.

As for the usual constants of SM, we tack in a subscript 5:

gc −→ gc5

gw −→ gw5

gy −→ gy5

where gc, gw, and gy denote the coupling of the color charge, the weak charge, and the hyper-
charge, respectively, in 4D.

To simplify the notation, we suppress the coordinate dependencies of the field until a further
notice.

2.4 The complete SM Lagrangian

The complete Lagrangian for the Standard Model is given as usual:

L = Lgauge + Lhiggs + Lfermion + Lyukawa + Lgf + Lghost

5We borrow the complete Lagrangian for the Standard Model in 4D from Reference [16] with a consistent set
of signs, and apply the two-item procedure as described in the other references just cited but in our notation.
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All the fields (gauge, Higgs, and matter) start out massless, therefore only the kinetic term for
each expression should be kept. Thus, we are expected to collect only these terms in the usual
Lagrangians:

Lscalar =
1

2
(DMφ)

2
Klein-Gordon Lagrangian

Lfermion = ψ̄iΓMDMψ Dirac Lagrangian

Lgauge = −1

4
(V nMN )

2
Proca Lagrangian

where DM is the covariant derivative in 5D and n = 1, 2, . . . , (N2 − 1) for the symmetry groups
SU(N), and there will be only one n for the U(1) group.

When the mass terms are added, the Lagrangians will not be invariant under the symmetry
SU(3)C ⊗ SU(2)W ⊗ U(1)Y , since the combined theory is non-abelian.

2.5 The gauge sector

The usual Lagrangian for the gauge sector promoted to 5D can be given as

Lgauge = −1

4

(
GiMN

)2 − 1

4
(W a

MN )
2 − 1

4
(BMN )

2

2.5.1 Color charge

The first term in Lgauge refers to the field strength tensor of the gluons.

GiMN = ∂MG
i
N − ∂NGiM + gc5f

ijkGjMG
k
N

where i, j, k = 1, 2, . . . , 8. Here, the f ijk are the structure constants that appear in the Lie
algebra

[T iC , T
j
C ] = if ijkT kC

where T iC = λi/2 are the generators of the group SU(3)C and the λi are the Gell-Mann matrices.

2.5.2 Weak charge

The second term in Lgauge refers to the field strength tensor of the gauge bosons of the weak
charge.

W a
MN = ∂MW

a
N − ∂NW a

M + gw5ε
abcW b

MW
c
N

where a, b, c = 1, 2, 3. Here, εabc is the usual Levi-Civita pseudotensor, which is also the structure
constant that appear in the Lie algebra

[T aW , T
b
W ] = iεabcT cW

where T aW = τa/2 are the generators of the group SU(2)W and the τa are the Pauli matrices.

2.5.3 Hypercharge

The last term in Lgauge refers to the field strength tensor of the gauge boson of the hypercharge.

BMN = ∂MBN − ∂NBM

8



2.6 The Higgs sector

The usual Higgs Lagrangian promoted to 5D can be expressed as

Lhiggs = (DMH)
† (DMH

)
+ µ5H

†H − λ5
(
H†H

)2
2.6.1 The Higgs doublet

Here, H is the usual Higgs doublet:

H =

 φ+
h+ iφZ√

2


The vacuum expectation value (VEV) of the Higgs is hidden inside the field h = h(x, y), which
will become more apparent when we move on to make a harmonic expansion of the fields.

2.6.2 The covariant derivative

As in the 4D case, the covariant derive is defined in terms of gauge couplings, group generators
and gauge bosons as follows:

DM = ∂M − igc5T iCGiM − igw5T
a
WW

a
M + igy5TYBM

where, as earlier,

T iC =
λi

2
, T aW =

τa

2
TY =

Y

2

As we know from the 4D case, the weak and hypercharge forces mix. Therefore, the physical
gauge bosons are not W 1

M , W 2
M , W 3

M , and BM but W±M , ZM , and AM :

W±M =
W 1
M ∓ iW 2

M√
2

W 3
M = ZMcw +AMsw

BM = −ZMsw +AMcw

where cw (sw) is the cosine (sine) of the Weinberg angle, θw. In a more compact notation, this
could be written as

W+
M

W−M
ZM
AM

 =


1√
2
− i√

2
1√
2

i√
2

cw −sw
sw cw



W 1
M

W 2
M

W 3
M

BM

 (2.1)

In this basis, the photon will remain massless after spontaneous symmetry breaking.
Let us also define the ladder operators:

τ± =
τ1 ± iτ2

2
,

9



We know that the gauge couplings are related to each other via the equation6

e = gcsw = gycw

This should be generalized to 5D without loss of information.
Finally, we have the relation between electric charge, the third component of weak isospin,

and hypercharge:

Q = T 3
W + TY =

τ3

2
+
Y

2

By combining what we have said so far, we can rewrite the most general form of the covariant
derivative in terms of the physical gauge bosons as

DM = ∂M − igc5
λi

2
GiM − i

gw5√
2

(τ+W+
M + τ−W−M )− igw5

cw

(
τ3

2
−Qs2w

)
ZM + ie5QAM

The covariant derivative for the Higgs doublet

By using the relation

Q =
τ3

2
+
Y

2

we have removed the hypercharge out of discussion and now we may continue merely with the
electric charge.

The upper component of the Higgs doublet is a charged scalar, whilst the lower component
is neutral. Therefore, the electric charge matrix reads

Q =

(
1

0

)
Meantime, the Higgs field does not carry any color charge, therefore it will stay inert to the
gluons. Hence the covariant derivative for the Higgs doublet reads

DM = ∂M12 − i
gw5√

2

(
W+
M

W−M

)
− igw5

cw

(
1
2 − s

2
w

− 1
2

)
ZM + ie5

(
1

0

)
AM (2.2)

where 1D is the D-dimensional unit matrix.

The covariant derivative for the quark triplet

We separate out the color charge of the quark from the weak charge. Thus, the quark triplet,

q =
(
q(r) q(g) q(b)

)T
, will necessarily comprise pure quark-gluon interactions. As a result,

we simply have

Dq
M = ∂M13 − igc5

λi

2
GiM

6There is also a tacit assumption that the Weinberg angle also depends on the KK level. That is, the gauge
bosons will mix with each other only within the same KK level. Thus it would be wise to denote this dependence
as s(n)w and c(n)w, yet the notation might get easily out of hand.
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The covariant derivative for the quark doublet

Since the quark-gluon interaction has been taken care of, we now focus on the usual fermion
doublet. Their structure will be the same – the ordinary covariant derivative minus the gluons.
The only difference will be in the electric charge matrix. Accordingly, for the quark doublet7

Q =
(
u d

)T
L

, we have

Q =

(
2
3
− 1

3

)
and hence

DQM = ∂M12 − i
gw5√

2

(
W+
M

W−M

)
− igw5

cw

(
1
2 −

2
3s

2
w

− 1
2 + 1

3s
2
w

)
ZM + ie5

(
2
3
− 1

3

)
AM

The covariant derivative for the up-type quark singlet

Both lepton and quark singlets will not interact with the charged weak gauge boson, W±M .
This can be reflected mathematically by canceling out the Pauli matrices out of the covariant
derivative. For the up-type quark singlet, by also noting that Q = 2/3, we have

Du
M = ∂M + i

gw5

cw

2

3
s2wZM + ie5

2

3
AM

The covariant derivative for the down-type quark singlet

This differs from the covariant derivative for the up-type quark singlet merely in charge. With
Q = −1/3, we have

Dd
M = ∂M − i

gw5

cw

1

3
s2wZM − ie5

1

3
AM (2.3)

The covariant derivative for the lepton doublet

This is identical to the covariant derivative for the quark doublet, except for the charges. We now
have the charge matrix Q = diag(0,−1), and therefore the covariant derivative for the doublet

L =
(
νl l

)T
L

reads

DLM = ∂M12 − i
gw5√

2

(
W+
M

W−M

)
− igw5

cw

(
1
2
− 1

2 + s2w

)
ZM + ie5

(
0
−1

)
AM

The covariant derivative for the lepton singlet

This is almost identical to the covariant derivative for the quark singlet, with Q = −1:

D l
M = ∂M − i

gw5

cw
s2wZM − ie5AM (2.4)

7We denote a generic up-type quark by u and a down-type quark by d.
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2.7 The fermion sector

Our way of expressing the fermion Lagrangian is as follows:

Lfermion = q̄iΓMDq
Mq + Q̄iΓMDQMQ+ ūiΓMDu

Mu+ d̄iΓMDd
Md+ L̄iΓMDLML+ l̄iΓMDe

M l

where

q = quark triplet =
(
q(r) q(g) q(b)

)T
Q = quark doublet =

(
u d

)T
L

u = up-type quark singlet = uR

d = down-type quark singlet = dR

L = lepton doublet =
(
νl l

)T
L

l = electron-type lepton singlet = lR

and sum over generations is implicit. The 5D Dirac matrices meantime are modified as

ΓM =
(
γµ, iγ5

)
The Clifford algebra remains its form:

{ΓM ,ΓN} = 2gMN

where gMN is the mostly negative metric in 5D:

gMN =̇

(
gµν

−1

)

2.8 The Yukawa sector

The Yukawa Lagrangian, which not only describes the interaction of the fermions with the
charged and neutral scalars but also generates the fermion masses after spontaneous symmetry
breaking via a Yukawa interaction with the Higgs field, is written in terms of non-diagonalized
Yukawa matrices as

Lyukawa = −yd5Q̄dH − yu5Q̄uH̃ − yl5L̄lH + h.c.

where

H̃ = iτ2H∗ =

h− iφZ√
2

φ−


is the charge conjugate of the Higgs doublet, H, and the yj5 are the Yukawa interaction matrices.
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2.9 The gauge-fixing Lagrangian and the ghosts

To a researcher candidate in high-energy physics, the gauge-fixing Lagrangian is at the very heart
of an analysis of SM, whether in 4D or in 5D. So far in introductory particle physics courses, we
have become familiar with working in the unitary gauge (UG) [17]. UG has its traits. To begin
with, we witness that the Higgs doublet takes the simplest possible form

HUG =

(
0
h√
2

)
where the Higgs VEV is encoded in the expansion of the field h. Secondly, there will be no
unphysical particles, or ghosts. The scalars introduced in the gauge-fixing Lagrangian will be
redundant and the theory will partly become much simpler to study. Finally, the seemingly
interaction terms of the form

K1∂µK2

where, for instance, K2 may be one of those scalars introduced in the gauge-fixing Lagrangian
in the Rξ gauge class, will also be removed out. In a way, UG works just fine at the tree
level. From introductory courses, we know that there exist loop corrections to the masses and
gauge couplings. This is where the unitary gauge ceases being useful: the propagators will be
proportional to inverse mass squared, which is a dimensionful quantity, which in turn makes the
theory non-renormalizable. To raze off this effect, it is quite beneficial to switch to the Feynman-
’t Hooft gauge. Basically, it is just a special case of the more general Rξ gauge class, for which
the theory was shown to renormalizable by Gerardus ’t Hooft himself.

From a preliminary experience with the 4D theory in the Feynman-’t Hooft gauge, we know
the calculations may easily prove to be cumbersome. The first reason is the existence of the
terms as described above – a field times the 4-gradient of another field. If, for example, K1 is a
vector field and K2 is a scalar and if we were to depict this term with a Feynman diagram, we
would draw

K2 K1

What is even worse is that we somehow have to live with this: a scalar turns into a vector for
no apparent reason as it propagates. Thus we infer that the Rξ gauge class in general induces a
ghost Lagrangian that will cancel out such vertices.

2.10 The essentials

The extra dimension is compactified on a circle with an interchange symmetry, that is, the
compactification is S1/Z2, and this implies a parity. Since the fifth component is periodic,
we may perform a harmonic expansion of the fields along the fifth dimensions. By harmonic
expansion, we clearly mean the Fourier series. Let us revise the basics of the Fourier series
pertaining to our discussion.

Any nice enough function can be expanded in a Fourier series as usual:

f(x) =
a0
2

+
∑
n≥1

(an cosnx+ bn sinnx)

If there exists a symmetry under x→ −x, we should indicate this explicitly as

f(x) = ±f(−x) or f+(x) = +f+(−x), f−(x) = −f−(−x)
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For even parity, we should drop the sine term:

f+(x) =
a0
2

+
∑
n≥1

an cosnx

For odd parity, we consider only the sine term:

f−(x) =
∑
n≥1

bn sinnx

Long story short, we should assign parity to the fields correctly. To illustrate, the correct way
to do this for the photon field will be as

Aµ(x, y) = +Aµ(x,−y)

A5(x, y) = −A5(x,−y)

There is a physical reasoning behind this (as it will the case for all the other fields): we should
recover A(0)µ, that is, we should not give up on the original photon. Clearly, we do not have a
scalar A5 in 4D, so it should not emerge in the zeroth mode. Under this considerations, and by
defining

cn :=
1√
πR

cos
ny

R

sn :=
1√
πR

sin
ny

R

we have the following expansions8

Vµ =
1√
2πR

V(0)µ + V(n)µcn

V5 = V(n)5sn

Φ =
1√
2πR

Φ(0) + Φ(n)cn

F =
1√
2πR
F(0) + PLF(n)cn + PRF(n)sn

f =
1√
2πR

f(0) + PRf(n)cn + PLf(n)sn

where

VM = {GiM ,W±M , ZM , AM}
8To facilitate typing, let us suppress the coordinate dependencies: if a field does not have a KK index such

as (j), then it will be a function of both the usual 4-position and the extra dimension. Also, let us suppress
the summation symbols by employing the Einstein summation convention. For example, for the photon field, we
explicitly have

Aµ(x, y) =
1

√
2πR

A(0)µ(x) +
∑
n≥1

1
√
πR

A(n)µ(x) cos
ny

R

A5(x, y) =
∑
n≥1

1
√
πR

A(n)5(x) sin
ny

R
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Φ = {φ±, φZ , h}

F = {Q,L}

f = {u, d, l}

and

PR/L = projection operators =
1± γ5

2

Here, we note that

1. the coefficients 1/
√

2πR and 1/
√
πR are chosen so as to comply with the canonical nor-

malization.

2. all the scalars we do have in the 4D model should be recovered, therefore we should assign
the scalars a positive KK parity.

3. only for the Higgs scalar, the zeroth term will get a non-vanishing vacuum expectation
value:

h(0) −→ h(0) + v5

4. the fermion expansion may look strage at first, but what they represent makes perfect sense.
First of all, we see that the original left- (L-) and right-handed (RH) fermions are recovered
in the zeroth mode. Furthermore, in the extra dimension, we get additional chirality: for
a LH fermion, there appears both a LH (by applying PL) and a RH fermion in the extra
dimension, which might be thought of as LLH and LRH. The specific choice of the factor
PR/L is again due to the recovery of the original particles in the zeroth mode. As we can
see in the expansion, the LLH component survives in the zeroth mode if we put n = 0 in
the expansion. There is no LRH fermion in 4D, which could possibly be obtained solely by
the operation PRψL in the real world, but there might be one in the extra dimension.

2.10.1 Orthogonality of many sines and cosines

In 4D, the Higgs Lagrangian may be exploded to yield a zoo of interaction terms – interaction
of three or four fields. Furthermore, there always appear mass terms for the fields – interaction
of a field with itself. There may emerge also terms made up of a scalar times a field. If we
combine this observation with the exercise of expanding the fields with sines and cosines, it will
be inevitable to evaluate some orthogonality integrals of pure cosines, pure sines, and mixtures
of them. The ones that we could catch so far include the following:

∆n :=

∫ 2πR

0

dy cn =

∫ 2πR

0

dy sn

∆nm :=

∫ 2πR

0

dy cncm =

∫ 2πR

0

dy snsm

∆′nm :=

∫ 2πR

0

dy cnsm

∆nmk :=

∫ 2πR

0

dy cncmck
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∆nm,k :=

∫ 2πR

0

dy snsmck

∆n,mk :=

∫ 2πR

0

dy sncmck

∆′nmk :=

∫ 2πR

0

dy snsmsk

∆nmkl :=

∫ 2πR

0

dy cncmckcl

∆nm,kl :=

∫ 2πR

0

dy snsmckcl

with

cn =
1√
πR

cos
ny

R
, sn =

1√
πR

sin
ny

R

Let us first evaluate the integrals that yield a zero: Over its one period, any sine or cosine
function vanishes:

∆n = 0

Another trivial integral is the product of sine and cosine:

∆′nm = 0

The third one is the double cosines and a sine. By using Mathematica, we get

∆n,mk =
1

4π3/2
√
R

(
1

k −m− n
+

1

k +m− n
+

1

k −m+ n
+

1

k +m+ n

− cos 2π(k −m− n)

k −m− n
− cos 2π(k +m− n)

k +m− n
− cos 2π(k −m+ n)

k −m+ n

− cos 2π(k +m+ n)

k +m+ n

)

=
1

4π3/2
√
R

(
1

k −m− n
+

1

k +m− n
+

1

k −m+ n
+

1

k +m+ n

− 1

k −m− n
− 1

k +m− n
− 1

k −m+ n
− 1

k +m+ n

)
= 0
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Yet another one that gives zero is the triple sines. The Mathematica output of this integral is

∆′nmk =
1

4π3/2
√
R

(
1

k +m− n
+

1

k −m+ n
+

1

−k +m+ n
− 1

k +m+ n

+
cos 2π(k −m− n)

k −m− n
− cos 2π(k +m− n)

k +m− n
− cos 2π(k −m+ n)

k −m+ n

+
cos 2π(k +m+ n)

k +m+ n

)

=
1

4π3/2
√
R

(
1

k +m− n
+

1

k −m+ n
+

1

−k +m+ n
− 1

k +m+ n

+
1

k −m− n
− 1

k +m− n
− 1

k −m+ n
+

1

k +m+ n

)
= 0

For the rest of the terms, we continue exploiting the computational power of Mathematica:

∆nm =
1

2π

(
sin 2π(m− n)

m− n
+

sin 2π(m+ n)

m+ n

)
Since n,m ∈ Z+, the second term is always zero. In the limit m → n, the first term gives 2π,
which is otherwise zero. Thus we have9

∆nm =
1

2π
[2πδ(m− n)] = δ(m− n)

By the same token, the triple integration

∆nmk =
1

4π3/2R1/2

(
sin 2π(n−m− k)

n−m− k
+

sin 2π(n−m+ k)

n−m+ k
+

sin 2π(n+m− k)

n+m− k

+
sin 2π(n+m+ k)

n+m+ k

)

can be reduced to a collection of delta functions as

∆nmk =
1

4π3/2R1/2
[2πδ(n−m− k) + 2πδ(n−m+ k) + 2πδ(n+m− k)]

=
1

2
√
πR

[δ(n−m− k) + δ(n−m+ k) + δ(n+m− k)]

Let us recall that these integrals are involved in the vertex factors, so they will describe the
conservation of momentum. In the case of the double cosines, we only have the option n −→ n
or vice versa, that is, the particle with a KK index n should go to a particle with an index n.
The sine term we dropped would cause a vertex like n+m −→ 0, which is mere nonsense. Next,

9Instead of the Kronecker delta, we make use of the Dirac delta function on the integer domain. This way,
we recover a notation which is employed in describing the vertex factors in the usual set of Feynman rules in
4D, for which we also observe the rule each δ gets a 2π. After all, the integers n,m, k, l, . . . are nothing but the
eigenvalues of the momentum in the fifth dimension, up to factor of R. Thus, it is purely a choice for us to use
the good old Dirac delta notation to denote the conservation of momentum at each vertex.
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in the case of triple cosines, we have more options of combining three indices: n −→ m + k or
vice versa (since the Dirac delta is an even function of its argument), in cyclic. Therefore, we
may have the ansatz for the quadruple cosines: it will describe the vertices in the form

n −→ m+ k + l (cyclic)

n+m −→ k + l (cyclic)

There will be 23 − 1 Dirac delta functions, accordingly (2 for two options, + or −; 3 for three
‘white spaces’ between the KK indices, n m k l; −1 for eliminating the combination n+m+k+l);
the overall factor can again be found by using Mathematica:

∆nmkl =
1

8π2R
[2πδ(n+m+ k − l) + 2πδ(n+m− k + l)

+ 2πδ(n+m− k − l) + 2πδ(n−m+ k + l)

+ 2πδ(n−m+ k − l) + 2πδ(n−m− k + l)

+ 2πδ(n−m− k − l)]

The vertex factors that will arise due to these Dirac deltas may be summarized as follows:

1. ∆n: n −→ ? – particle goes in but does not come out, so it is nonsense.

•n

2. ∆nm: n −→ n – particles goes in and the same particle comes out, so it is probably a mass
term if there appears no field with a KK index 0.

•n n

3. ∆nmk: n −→ m+ k, or vice versa, in cyclic – if there is not a field with a zero KK index,
this is a vertex of three KK fields.

•n

m

k

(cyclic)

4. ∆nmkl: n −→ m+ k + l or n+m −→ k + l or vice versa, in cyclic – these depict vertices
with four fields (since the highest power in any field in all of the Lagrangians is 4, this is
the largest vertex we will ever see).

The integrals with sines are no different, except for the sign of certain Dirac deltas. We may
summarize the results as follows:

∆n = 0

∆nm = δ(n−m)
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∆′nm = 0

∆nmk =
1

2
√
πR

[δ(n−m− k) + δ(n−m+ k) + δ(n+m− k)]

∆nm,k =
1

2
√
πR

[δ(m− n− k)− δ(m+ n− r) + δ(m− n+ k)]

∆n,mk = 0

∆nmkl =
1

4πR
[δ(n+m+ k − l) + δ(n−m+ k + l) + δ(n+m− k − l)

+ δ(n−m+ k + l) + δ(n−m+ k − l) + δ(n−m− k + l)

+ δ(n−m− k − l)]

∆nm,k =
1

2
√
πR

[δ(m− n− k)− δ(m+ n− r) + δ(m− n+ k)]

∆′nmk = 0

∆nm,kl =
1

4πR
[δ(m− n− k − l)− δ(m+ n− k − l) + δ(m− n+ k − l)

− δ(m+ n+ k − l) + δ(m− n− k + l)− δ(m+ n− k + l)

+ δ(m− n+ k + l)]

The most fundamental implication of these integrals rests in the conservation of KK number.

2.10.2 The KK parity

There is one final issue to mention about when it comes to the extra dimension. Although the
integrals in the previous section offer a nice set of selection rules, this is not the whole story.
We have imposed a parity, Z2, on the circle. Accordingly, consider a translation in the fifth
dimension by an amount πR [7, 8, 25]:

cos
ny

R
−→ cos

n

R
(y + πR) = cos

ny

R
cosnπ − sin

ny

R
sinnπ

= (−)n cos
ny

R

sin
ny

R
−→ sin

n

R
(y + πR) = sin

ny

R
cosnπ + cos

ny

R
sinnπ

= (−)n sin
ny

R

Therefore, we have just discovered a new symmetry, and each KK state has now attained a
parity – the KK parity, (−)n. To see its implications, consider the vertex n −→ m+ k. The KK
parity in the initial state is (−)n. In the final state, the KK parities are (−)m and (−)k. By
conservation of KK numbers, we have n = m+ k; thus, the KK parity is also conserved if it is a
multiplicative quantum number:

(−)n = (−)m+k

The conservation of KK parity has implications (Kribs): First of all, the lightest KK state (n = 1)
will not exhibit any decay mode. Thus, the first KK state of all the fields are stable. If the field
is also electrically neutral, that field may prove to be a candidate for dark matter. One such field
that comes to mind is the photon. Secondly, the KK states with odd parity will be produced in
pairs. This is a heavy constraint on the lighter one imposed by the Dirac deltas, for instance,
n −→ m+ k.

19



3 Sample calculations

Once we have promoted the fields and accordingly the related Lagrangians to 5D, the rest
is a cute exercise of expanding the terms and integrating over the fifth component, y, on its
domain [0, 2πR]. In the literature, there are some results of some vertex factors and examples of
implementations of the whole theory on Mathematica. Therefore, what we plan to do is simply
try to reproduce some parts to see whether there are differences with the literature results.

In expanding the fields, calculating the products, and performing the integrals, we will heavily
rely on a working knowledge of Mathematica, that is, we will be implementing part of our
model, whether it means in a way rediscovering the America or not.

3.1 The gauge sector

The masses of the gauge bosons are partly encoded within their kinetic terms and partly within
the Higgs Lagrangian. Usually in 4D, we would need the kinetic terms only for the gauge
propagators and gauge interactions; however, when we promote the theory to 5D and integrate
out the extra dimension, we will recover the 4D in the zeroth mode in addition to some mass
terms for the KK towers of the gauge fields.

For the sake of simplicity, let us ignore the gluons for the moment. The gauge Lagrangian
for the electroweak interaction is given as

L EW
gauge = −1

4
(W a

MN )
2 − 1

4
(BMN )

2

However, we cannot directly work with W a
MN and BMN ; we have to switch to the physical basis.

There are two options at this point: either we explicitly perform the summation over a, add the
hypercharge boson to it, and convert the fields into the physical fields according to (2.1), or we
can be smart to begin with and collect the certain terms to form nice-looking combinations. We
proceed with the latter.

To begin with, let us define

W±MN :=
1√
2

(
W 1
MN ∓ iW 2

MN

)
inspired by the definition of the W± bosons out of W 1,2:

W+
MN =

1√
2

[∂MW
1
N − ∂NW 1

M + gw5ε
1bcW b

MW
c
N

− i(∂MW 2
N − ∂NW 2

M + gw5ε
1deW d

MW
e
N )]

=
1√
2

[∂MW
1
N − ∂NW 1

M + gw5(W 2
MW

3
N −W 3

MW
2
N )

− i(∂MW 2
N − ∂NW 2

M + gw5(W 3
MW

1
N −W 1

MW
3
N ))]

= ∂M
W 1
N − iW 2

N√
2

− ∂N
W 1
M − iW 2

N√
2

+
gw5√

2

[
−W 3

M

(
W 2
N + iW 1

N

)
+W 3

N

(
W 2
M + iW 1

M

)]
= ∂MW

+
N − ∂NW

+
M +

gw5√
2

[
−iW 3

M

(
W 1
N − iW 2

N

)
+ iW 3

N

(
W 1
M − iW 2

M

)]
= ∂MW

+
N − ∂NW

+
M + gw5

(
−iW 3

MW
+
N iW

3
NW

+
M

)
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=
(
∂M − igw5W

3
M

)
W+
N −

(
∂N − igw5W

3
N

)
W+
M

= ∇MW+
N −∇NW

+
M

where ∇M := ∂M − igw5W
3
M . Similarly,

W−MN = ∇†MW
−
N −∇

†
NW

−
M

We need a term proportional to
(
W 1
MN

)2
+
(
W 2
MN

)2
:

W+
MNW

−MN =
1

2

[(
W 1
MN

)2
+
(
W 2
MN

)2]
or (

W 1
MN

)2
+
(
W 2
MN

)2
= 2W+

MNW
−MN

= 2
(
∇MW+

N −∇NW
+
M

) (
∇†MW−N −∇†NW−M

)
= 2(∇MW+

N∇
†MW−N −∇MW+

N∇
†NW−M

−∇NW+
M∇

†MW−N︸ ︷︷ ︸
M↔N

+∇NW+
M∇

†NW−M︸ ︷︷ ︸
M↔N

)

= 2(∇MW+
N∇

†MW−N +∇MW+
N∇

†MW−N

−∇MW+
N∇

†NW−M −∇MW †N∇
†NW−M )

= 4
(
∇MW+

N∇
†MW−N −∇MW+

N∇
†NW−M

)
Now let us take care of the bosons W 3

M and BM . In 4D, the basis is rotated by the weak mixing
angle, or the so-called Weinberg angle, to produce the physical bosons, ZM and AM :

W 3
M = ZMcw +AMsw

BM = −ZMsw +AMcw

We proceed to evaluate W 3
MN and BMN and see what we get:

W 3
MN = ∂MW

3
N − ∂NW 3

M + gw5ε
3bcW b

MW
c
N

= ∂MW
3
N − ∂NW 3

M + gw5

(
W 1
MW

2
N −W 2

MW
1
N

)
= ∂M (ZNcw +ANsw)− ∂N (ZMcw +AMsw)

+ gw5

(
W+
M +W−M√

2

−W+
N +W−N√

2i
−
−W+

M +W−M√
2i

W+
N +W−N√

2

)
= cwZMN + swFMN +

gw5

2i
[−W+

MW
+
N +W+

MW
−
N −W

−
MW

+
N +W−MW

−
N

− (−W+
MW

+
N −W

+
MW

−
N +W−MW

+
N +W−MW

−
M )]

= cwZMN + swFMN +
gw5

i

(
W+
MW

−
N −W

−
MW

+
N

)
= cwZMN + swFMN − igw5

(
W+
MW

−
N −W

−
MW

+
N

)
where we have defined

ZMN := ∂MZN − ∂NZM
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and the good old field strength tensor for the electromagnetic interaction

FMN := ∂MAN − ∂NAM

Similarly, for the hypercharge boson, we have

BMN = ∂MBN − ∂NBM
= ∂M (−ZNsw +ANcw)− ∂N (−ZMsw +AMcw)

= −swZMN + cwFMN

Finally we evaluate the missing components of the kinetic part:(
W 3
MN

)2
+ (BMN )

2
=
[
cwZMN + swFMN − igw5

(
W+
MW

−
N −W

−
MW

+
N

)]2
+ (−swZMN + cwFMN )

2

= (cwZMN + swFMN )
2

+ (−swZMN + cwFMN )
2

− g2w5

(
W+
MW

−
N −W

−
MW

+
N

)2
− 2igw5 (cwZMN + swFMN )

(
W+
MW

−
N −W

−
MW

+
N

)
= (ZMN )

2
+ (FMN )

2 − 2g2w5

[(
W+
M

)2 (
W−N

)2 − (W+
MW

−
N

)2]
− 2igw5 (cwZMN + swFMN )

(
W+MW−N −W−MW+N

)
Here is a simplification:

(cwZMN + swFMN )
(
W+MW−N −W−MW+N

)
= (cwZMN + swFMN )W+MW−N − (cwZMN + swFMN )W+NW−M︸ ︷︷ ︸

M↔N

= (cwZMN + swFMN )W+MW−N − (cwZNM + swFNM )W+MW−N

= (cwZMN + swFMN )W+MW−N

− [− (cwZMN + swFMN )

= 2 (cwZMN + swFMN )W+MW−N

At the end of the day, we get

L EW
gauge = −1

4
(W a

MN )
2 − 1

4
(BMN )

2

= −1

4

[(
W 1
MN

)2
+
(
W 2
MN

)2
+
(
W 3
MN

)2
+ (BMN )

2
]

= −1

4
{4(∇MW+

N∇
†MW−N −∇MW+

N∇
†NW−M ) + (ZMN )

2
+ (FMN )

2

− 2g2w5[
(
W+
M

)2 (
W−N

)2 − (W+
MW

−
N

)2
]

− 2igw5 (cwZMN + swFMN )
(
W+
MW

−
N −W

−
MW

+
N

)
}

= ∇MW+
N∇

†MW−N +∇MW+
N∇

†NW−M

− 1

4
(ZMN )

2 − 1

4
(FMN )

2
+

1

2
g2w5

[(
W+
M

)2 (
W−N

)2 − (W+
MW

−
N

)2]
+ igw5 (cwZMN + swFMN )W+MW−N
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Let us Fourier-expand the fields10:

Vµ =
1√
2πR

V(0)µ + V(n)µcn

V5 = V(n)5sn

where V = {W±, Z,A}. Let us investigate some of the terms that have the potential to produce
a mass term in L EW

gauge:

−∇MW+
N∇

†MW−N +∇MW+
N∇

†NW−M

= −∇µW+
ν ∇+µW−ν −∇µW+

5 ∇†µW−5

−∇5W
+
µ ∇+5W−µ −∇5W

+
5 ∇†5W−5

+∇µW+
ν ∇†νW−µ +∇µW+

5 ∇†5W−5

+∇5W
+
µ ∇†µW−5 +∇5W

+
5 ∇†5W−5

= −∇µW+
ν ∇†µW−ν +∇µW+

ν ∇†νW−µ

−∇µW+
5

(
∇†µW−5 −∇+5W−µ

)
+∇5W

+
µ

(
∇†µW−5 −∇†5W−µ

)
= −∇µW+

ν ∇†µW−ν +∇µW+
ν ∇†νW−µ

+
(
∇†µW−5 −∇+5W−µ

) (
∇5W

+
µ −∇µW+

5

)
= − [∂µ − igw5 (cwZµ + swAµ)]W+

ν [∂µ + igw5 (cwZ
µ + swA

µ)]W−ν

+ [∂µ − igw5 [cwZµ + swAµ]]W+
ν [∂ν + igw5 (cwZ

ν + swA
ν)]W−ν

+ {− [∂µ + igw5 (cwZµ + swAµ)]W−5 + [∂5 + igw5 (cwZ5 + swA5)]W−µ}
× {[∂5 − igw5 (cwZ5 + swA5)]W+

µ − [∂µ − igw5 (cwZµ + swAµ)]W+
5 }

⊃ (∂5W
−
µ )(∂5W

+µ)− (∂µW
−
5 )(∂5W

+µ)− (∂5W
−
µ )(∂µW+

5 ) + (∂µW
−
5 )(∂µW+

5 )

− (∂µW
−
ν )(∂µW+ν) + (∂νW

−
µ )(∂µW+µ)

+ (interaction with A and Z)

Here, by noting that

∂5cn = − n
R
sn

we have

∂5W
±
µ = ∂5

(
1√
2πR

W±(0)µ +W±(n)µcn

)
= −W±(n)µ

n

R
sn

∂µW
±
5 = ∂µ

(
W±(n)5sn

)
= sn∂µW

±
(n)5

∂µW
±
ν = ∂µ

(
1√
2πR

W±(0)ν +W±(n)νcn

)
=

1√
2πR

∂µW
±
(0)ν + cn∂µW

±
(n)ν

10Again, we employ the Einstein summation convention for the KK tower, and we suppress the coordinate
dependencies. The fields that carries a KK index are functions of the 4-position only.
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so

−∇MW+
N∇

†MW−N +∇MW+
N∇

†NW−M

⊃
(
− n
R
W−(n)µsn

)(
−m
R
W+µ

(m)sm

)
−
(
sn∂µW

−
(n)5

)(
−m
R
W+µ

(n) sn

)
−
(
− n
R
W−(n)µsn

)(
sm∂

µW+
(n)5

)
+
(
sn∂µW

−
(n)5

)(
sm∂

µW+
(m)5

)
−
(

1√
2πR

∂µW
−
(0)ν + cn∂µW

−
(n)ν

)(
1√
2πR

∂µW+ν
(0) + cm∂

µW+ν
(m)

)
+

(
1√
2πR

∂νW
−
(0)µ + cn∂νW

−
(n)µ

)(
1√
2πR

∂µW+ν
(0) + cm∂

µW+ν
(m)

)
⊃ nm

R2
W−(n)µW

+µ
(m)snsm +

(
∂µW

−
(n)5

)(
∂µW+

(m)5

)
snsm

−
[

1

2πR

(
∂µW

−
(0)ν

)(
∂µW+ν

(0)

)
+
(
∂µW

−
(n)ν

)(
∂µW+ν

(m)

)
cncm

]
+

[
1

2πR

(
∂νW

−
(0)µ

)(
∂µW+ν

(0)

)
+
(
∂νW

−
(n)ν

)(
∂µW+ν

(m)

)
cncm

]
∫ 2πR
0

dy
−−−−−→ n2

R2
W−(n)µW

+µ
(n) +

(
∂µW

−
(n)5

)(
∂µW+

(n)5

)
−
(
∂W−(0)ν

)(
∂µW+ν

(0)

)
−
(
∂µW

−
(n)ν

)(
∂µW+ν

(n)

)
+
(
∂νW

−
(0)ν

)(
∂µW+ν

(0)

)
+
(
∂νW

−
(n)µ

)(
∂µW+ν

(m)

)
where we have used the orthogonality integrals of double cosines. The first thing to notice is
that we have recovered parts of the kinetic terms for W±(0)µ W

±
(n)µ, and W±(n)5, and a mass term

for W±(n)µ:

mW,n =
n

R

and W±5 seems massless, which we cover again in the Higgs sector. Next, we study a more
familiar term in L EW

gauge:

(FMN )
2

= (Fµν)
2

+ (Fµ5)
2

+ (F5µ)
2

+ (F55)
2

= (Fµν)
2

+ 2 (Fµ5)
2

where we have F55 = 0 since the field strength tensor is by construction completely antisymmet-
ric, and F5µ = −Fµ5. Here,

(Fµν)
2

= (∂µAν − ∂νAµ)
2

= 2
[
(∂µAν)

2 − (∂µAν) (∂νAµ)
]

and

(Fµ5)
2

= (∂µA5 − ∂5Aµ)
2

= (∂µA5 − ∂5Aµ)
(
∂µA5 − ∂5Aµ

)
= (∂µA5 − ∂5Aµ) (−∂µA5 + ∂5A

µ)

= − (∂µA5)
2 − (∂5Aµ)

2
+ 2 (∂µA5) (∂5A

µ)
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where

∂µAν = ∂µ

(
1√
2πR

A(0)ν +A(n)νcn

)
=

1√
2πR

∂µA(0)ν + cn∂µA(n)ν

∂5Aµ = ∂5

(
1√
2πR

A(0)µ +A(n)µcn

)
= − n

R
A(n)µsn

∂µA5 = ∂µ
(
A(n)5sn

)
= sn∂µA(n)5

so

(Fµν)
2

= 2

[(
1√
2πR

∂µA(0)ν + cn∂µA(n)ν

)(
1√
2πR

∂µAν(0) + cm∂
µAν(m)

)

−
(

1√
2πR

∂µA(0)ν + cn∂µA(n)ν

)(
1√
2πR

∂νAν(0) + cm∂
νAµ(m)

)]

= 2

[
1

2πR

(
∂µA(0)ν

)2
+
(
∂µA(n)ν

) (
∂µAν(m)

)
cncm

− 1

2πR

(
∂µA(0)ν

) (
∂νAµ(0)

)
−
(
∂µA(n)ν

) (
∂νAµ(m)

)
cncm

(· · · )ncn

]
∫ 2πR
0

dy
−−−−−→ 2

[ (
∂µA(0)ν

)2
+
(
∂µA(n)ν

)2 − (∂µA(0)ν

) (
∂νAµ(0)

)
−
(
∂µA(n)ν

) (
∂νAµ(n)

)]
=
(
F(0)µν

)2
+
(
F(n)µν

)2
and similarly

(Fµ5)
2

= −
(
sn∂µA(n)5

) (
sm∂

µA(m)5

)
−
(
− n
R
A(n)µsn

)(
−m
R
Aµ(m)sm

)
+ 2

(
sn∂µA(n)5

) (
−m
R
Aµ(m)sn

)
= −

(
∂µA(n)5

) (
∂µA(m)5

)
snsm −

nm

R2
A(n)µA

µ
(m)snsm

− 2
m

R
Aµ(m)

(
∂µA(n)5

)
snsm∫ 2πR

0
dy

−−−−−→ −
(
∂µA(n)5

)2 − n2

R2

(
A(n)µ

)2 − 2n

R
Aµ(n)∂µA(n)5

and totally, we obtain

(FMN )
2

∫ 2πR
0

dy
−−−−−→

(
F(0)µν

)2
+
(
F(n)µν

)2 − 2
(
∂µA(n)5

)2 − 2
n2

R2

(
A(n)µ

)2
− 4n

R
Aµ(n)∂µA(n)5
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where a summation is implied over n. The kinetic term for the photon then becomes

LA ⊃ −
1

4
(FMN )

2
∫ 2πR
0

dy
−−−−−→− 1

4

(
F(0)µν

)2
+
∑
n≥1

{
−1

4

(
F(n)µν

)2
+

1

2

n2

R2

(
A(n)µ

)2}
+
∑
n≥1

1

2

(
∂µA(n)5

)2
+
∑
n≥1

n

R
Aµ(n)∂µA(n)5

Here, we recovered the massless photon in the zeroth mode11, and obtained a tower of massive
KK photons with

mA,n =
n

R

There appears a kinetic term for the scalar A(n)5 but it is massless, thus we infer that it is
the Goldstone boson for the KK photon. The last term will be canceled out by a gauge-fixing
Lagrangian that contains a term like

Lgf ⊃ −
1

2ξ

(
∂µA

µ + ξ∂5A
5
)2

⊃ − 1

2ξ
(∂µA

µ − ξ∂5A5)
2

⊃ − 1

2ξ

[
(∂µA

µ)
2

+ ξ2 (∂5A5)
2 − 2ξ (∂µA

µ) (∂5A5)
]

⊃ − 1

2ξ
(∂µA

µ)
2 − ξ

2
(∂5A5)

2
+ (∂µA

µ) (∂5A5)

Here, ξ is the gauge-fixing parameter of the Rξ gauge class12, and

∂µA
µ =

1√
2πR

∂µA
µ
(0) + cn∂µA

µ
(n)

∂5A5 =
n

R
A(n)5cn

so

Lgf ⊃ −
1

2ξ

(
1√
2πR

∂µA
µ
(0) + cn∂µA

µ
(n)

)(
1√
2πR

∂νA
ν
(n) + cm∂νA

ν
(m)

)
− ξ

2

( n
R
A(n)5cn

)(m
R
A(m)5cm

)
+

(
1√
2πR

∂µA
µ
(0) + cn∂µA

µ
(n)

)( n
R
A(m)5cm

)
⊃ − 1

2ξ

[
1

2πR

(
∂µA

µ
(0)

)2
+
(
∂µA

µ
(n)

)(
∂νA

ν
(m)

)
cncm + (. . .)n cn

]
− ξ

2

nm

R2
A(n)5A(m)5cncm +

n

R
A(m)5

(
∂µA

µ
(n)

)
cncm∫ 2πR

0
dy

−−−−−→ − 1

2ξ

(
∂µA

µ
(0)

)2
− 1

2ξ

(
∂µA

µ
(n)

)2
− ξ

2

n2

R2

(
A(n)5

)2
+
n

R
A(n)5∂µA

µ
(n)

11Clearly, this is an illusion. We know from the 4D theory that the actual mass of any gauge boson comes
from the Higgs Lagrangian. What we mean above is that there are no new mass terms in the zeroth order, which
is not surprising.

12At the end, we wish to take ξ = 1 to get the Feynman-’t Hooft gauge as desired. Since we can do so virtually
at any point in the calculations, we may as well keep it as a parameter.
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If we combine the last term here with the one in LA, we get a total derivative:∑
n≥1

( n
R
Aµ(n)∂µA(n)5 +

n

R
A(N)5∂µA

µ
(n)

)
=
∑
n≥1

n

R
∂µ

(
Aµ(n)A(n)5

)

= ∂µ

∑
n≥1

n

R
Aµ(n)A(n)5


Since the physics do not change when we add a total derivative of a function that depends on
the field variables, we may as well drop this term.

It is beneficial to note that

1. an analysis similar to the one we did to evaluate (FMN )
2

can be performed on the term

(ZMN )
2
, and

2. the rest of the terms in L EW
gauge yields interactions and some mixing of fields with 4-gradient

of another field, which may be shown to vanish with a suitable gauge fixing in the Rξ class,
such as [Petriolli]

LZ,gf = − 1

2ξ

(
∂µZ

µ + ξ∂5Z
5 − ξmZφZ

)2
LW,gf = −1

ξ

(
∂µW

+µ + ξ∂5W
+5 − ξimWφ+

) (
∂µW

−µ + ξ∂5W
−5 + ξimWφ−

)
where mZ (mW ) is the 4D mass of the Z (W±) boson(s) that comes from the kinetic term
for the Higgs field.

3.2 The Higgs sector

In the original 4D theory, the masses of the gauge bosons are encoded within the Higgs La-
grangian. The gluons do not interact with the Higgs particle since it does not possess any color
charge, so they remain massless. After the spontaneous symmetry breaking, the gauge bosons of
the electroweak force, W±M and ZM will obtain masses both in the zeroth mode and in the KK
levels; the photon will receive a mass only at the KK level. We proceed by evaluating the kinetic
term of the Higgs Lagrangian, |DMH|2. Later, the potential term will be examined, which turns
out to be of less interest.

3.2.1 The kinetic term

The Higgs doublet is given as

H =

(
φ+

h+iφZ√
2

)

By referring to (2.2), we write

Dµ/5H =

(
∂µ/5φ+ − igw5

cw

(
1
2 − s

2
w

)
Zµ/5φ+ + ie5Aµ/5φ+ − igw5√

2
W+
µ/5

h+iφZ√
2

− igw5√
2
W−µ/5φ+ +

∂µ/5h+i∂µ/5φZ√
2

+ igw5

cw
1
2Zµ/5

h+iφZ√
2

)
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with

(Dµ/5H)∗ =

(
∂µ/5φ− + igw5

cw

(
1
2 − s

2
w

)
Zµ/5φ− − ie5Aµ/5φ− + igw5√

2
W−µ/5

h−iφZ√
2

igw5√
2
W+
µ/5φ− +

∂µ/5h−i∂µ/5φZ√
2

− igw5

cw
1
2Zµ/5

h−iφZ√
2

)

Thus the kinetic part of the Higgs Lagrangian is calculated as

Lhiggs = (DµH)
†

(DµH)− (D5H)
†

(D5H)

⊃ −1

2
(∂5h)

2
+

1

2
(∂µh)

2
+

1

8

g2w5

c2w
h2 (Zµ)

2 − 1

8

g2w5

c2w
h2 (Z5)

2

+
1

4
g2w5h

2W−µ W
+µ − 1

4
g2w5h

2W−5 W
+
5

Let us Fourier-expand the fields:

h =
1√
2πR

(h(0) + v5) + h(n)cn

Zµ =
1√
2πR

Z(0)µ + Z(n)µcn

Z5 = Z(n)5sn

and similarly for W±. The kinetic term for h is read off as

1

2
(∂µh)

2
=

1

2

(
1√
2πR

∂µh(0) + cn∂µh(n)

)(
1√
2πR

∂µh(0) + cn∂
µh(m)

)
=

1

2

[
1

2πR

(
∂µh(0)

)2
+
(
∂µh(n)

) (
∂µh(m)

)
cncm + (· · ·)n cn

]
∫ 2πR
0

dy
−−−−−→ 1

2

[(
∂µh(0)

)2
+
(
∂µh(n)

)2]
Now let us investigate the gauge boson masses. The first thing to notice that the photon remains
massless, as expected by construction. For the Z boson, we have

Lhiggs ⊃
1

8

g2w5

c2w
h2 (Zµ)

2

⊃ 1

8

g2w5

c2w

[
1√
2πR

(
h(0) + v5

)
+ h(n)cn

] [
1√
2πR

(
h(0) + v5

)
+ h(m)cm

]
×
[

1√
2πR

Z(0)µ + Z(k)µck

] [
1√
2πR

Zµ(0) + Zµ(l)cl

]
⊃ 1

8

g2w5

c2w

[
v25

4π2R2

(
Z(0)µ

)2
+

v5
2π2R2

h(0)
(
Z(0)µ

)2
+

1

4π2R2
h2(0)

(
Z(0)µ

)2
+

1

2πR
h(m)h(n)

(
Z(0)µ

)2
cncm +

2v5
πR

h(m)Z(0)µZ
µ
(k)cmck

+
2

πR
h(0)h(m)Z(0)µZ

µ
(k)cmck +

√
2

πR
h(n)h(m)Z(0)µZ

µ
(k)cncmck

+
v25

2πR
Z(k)µZ

µ
(l)ckcl +

v5
πR

h(0)Z(k)µZ
µ
(l)ckcl +

1

2πR
h2(0)Z(k)µZ

µ
(l)ckcl
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v5

√
2

πR
h(m)Z(k)µZ

µ
(l)cmckcl +

√
2

πR
h(0)h(m)Z(k)µZ

µ
(l)cmckcl

+ h(m)h(n)Z(k)µZ
µ
(l)cncmckcl + (· · ·)n cn

]
∫ 2πR
0

dy
−−−−−→ 1

8

g2w5

c2w

[
v25

2πR

(
Z(0)µ

)2
+

v5
πR

h(0)
(
Z(0)µ

)2
+

1

2πR
h2(0)

(
Z(0)µ

)2
+

1

2πR
h(n)h(n)

(
Z(0)µ

)2
+

2v5
πR

h(n)Z(0)µZ
µ
(n)

+
2

πR
h(0)h(n)Z(0)µZ

µ
(n) +

√
2

πR
h(n)h(m)Z(0)µZ

µ
(k)∆nmk

+
v25

2πR
Z(n)µZ

µ
(n) +

v5
πR

h(0)Z(n)µZ
µ
(n) +

1

2πR
h2(0)Z(n)µZ

µ
(n)

v5

√
2

πR
h(m)Z(k)µZ

µ
(l)∆mkl +

√
2

πR
h(0)h(m)Z(k)µZ

µ
(l)∆mkl

+ h(m)h(n)Z(k)µZ
µ
(l)∆nmkl

]

The mass of the Z boson at the zero level – in the real world – is found via the comparison

1

2
m2
Z

(
Z(0)µ

)2
=

1

8

g2w5

c2w

v25
2πR

(
Z(0)µ

)2
so

m2
Z =

gw5v5

2
√

2πRcw

This relation alone signals that the Higgs VEV in 5D is related to its counterpart in 4D13 through

v =
v5√
2πR

By expanding and reducing (integrating out) the gauge Lagrangian, we have found that

m2
Z(n) =

n2

R2

These add up to produce the effective mass

MZ :=
√
m2
Z(n) +m2

Z

The analysis for the W± bosons are the same, provided that we send one of the Z’s in the
products to W− and the other to W+, and that the overall coefficient now becomes 1

4g
2
w5 instead

of 1
8
g2w5

c2w
.

13We will observe this also in the next section when we find that µ = µ5 and λ = λ5
2πR

. Since v =
√
µ2/λ, and

similarly in 5D, we recover the mentioned relation.
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Let us examine one more term:

−1

2
(∂5h)

2
= −1

2

[
∂5

(
1√
2πR

h(0) + h(n)cn

)][
∂5

(
1√
2πR

h(0) + h(m)cm

)]
= −1

2

(
h(n)∂5cn

) (
h(m)∂5cm

)
= −1

2
h(n)h(m)

nm

R2
snsm∫ 2πR

0
dy

−−−−−→ −1

2

n2

R2

(
h(n)

)2
We also have a kinetic term for h(n) from the expansion of (∂µh)

2
, so we combine them:

Lhiggs

∫ 2πR
0

dy
−−−−−→ · · · ⊃

∑
n≥1

1

2

(
∂µh(n)

)2 − 1

2

n2

R2
h2(n)

Hence we get a 5D Higgs here with mass n/R.
There remains the charged and neutral scalars, φ± and φZ . The best practice is to combine

them with W±5 and Z5 to form new scalar. At this point, we should take into consideration the
full expansion of the kinetic term of the Higgs field, which we produce using Mathematica14

(Figure 2).

14As model-builders, we want to implement our model piece by piece on Mathematica. Of course, expanding
a product is not a big deal unless we also expand the fields in Fourier series. This will be done once we are able
to talk to the software that, for instance, the index summations K1(n)K2(m)cncm and K1(k)K2(l)ckcl refer to the
same quantity.
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Figure 2: Mathematica output of the kinetic term of the Higgs doublet, |DMH|2. In this
notation, for example, dh and d5h refer to ∂µh and ∂5h, respectively. The usual Lorentz indices
of the vector fields have been omitted. The subscript m and p denote − and + sign, respectively.
The notation for the fifth components of the vector fields is a 5 tacked in to the field name.

But let us take one step ahead. Unless we take the derivative of a Z2-odd field – the fifth
component of all the vector fields and some left (right) component of a right- (left-)chiral fermion
– we see that

∂5K = − n
R
K(n)sn

and if this term is squared, it will necessarily give a mass term for the KK field of interest.
Meantime, we define these new scalars as [21]

χ0
(n) :=

(n/R)φZ(n) −mZZ(n)5√
m2
Z + n2

R2
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χ±(n) :=
(n/R)φ±(n) ± imWW

±
(n)5√

m2
W + n2

R2

where mZ (mW ) is the mass of Z(0) (W±(0)). In the literature, χ0
(n) is an electrically neutral,

physical, CP -odd scalar, whereas the χ±(n) are the charged Higgs scalars. Other notations involve

{H0
(n), H

±
(n)} and {a0(n), a

±
(n)}.

Without getting lost in the jungle of these expansions, it is notoriously difficult to pick out
the χ scalars. We regret to save this exercise for a later work.

3.2.2 The potential term

The potential term in the Higgs Lagrangian reads

Uhiggs = µ2
5H
†H − λ5

(
H†H

)2
= µ2

5

(
φ−

h−iφZ√
2

)( φ+
h+iφZ√

2

)
− λ5

[(
φ−

h−iφZ√
2

)( φ+
h+iφZ√

2

)]2
Here,

H†H =

(
1√
2πR

H†(0) +H†(n)cn

)(
1√
2πR

H(0) +H(m)cm

)
=

1

2πR
H†(0)H(0) +H†(n)H(m)cncm + (· · ·)n cn∫ 2πR

0
dy

−−−−−→ H†(0)H(0) +H†(n)H(n)

and (
H†H

)2
=

[(
1√
2πR

H†(0) +H†(n)cn

)(
1√
2πR

H†(0) +H†(m)cm

)]
×
[(

1√
2πR

H†(0) +H†(k)ck

)(
1√
2πR

H†(0) +H†(l)cl

)]
=

(
1√
2πR

H†(0)H(0) +H†(n)H(m)cncm +
1√
2πR

H†(0)H(n)cn +
1√
2πR

H†(n)H(0)cn

)
×
(

1√
2πR

H†(0)H(0) +H†(k)H(l)ckcl +
1√
2πR

H†(0)H(k)ck +
1√
2πR

H†(k)H(0)ck

)
=

1

4π2R2

(
H†(0)H(0)

)(
H†(0)H(0)

)
+

1

πR

(
H†(0)H(0)

)(
H†(n)H(m)

)
cncm

+
(
H†(n)H(m)

)(
H†(k)H(l)

)
cncmckcl

+

√
2

πR

(
H†(n)H(m)

)(
H†(0)H(k)

)
cncmck

+

√
2

πR

(
H†(n)H(m)

)(
H†(k)H(0)

)
cncmck

+
1

2πR

(
H†(0)H(n)

)(
H†(0)H(m)

)
cncm

+
1

πR

(
H†(0)H(n)

)(
H†(m)H(0)

)
cncm
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+
1

2πR

(
H†(n)H(0)

)(
H†(m)H(0)

)
cncm∫ 2πR

0
dy

−−−−−→ 1

2πR

(
H†(0)H(0)

)2
+

1

πR

(
H†(0)H(0)

)(
H†(n)H(n)

)
+
(
H†(n)H(m)

)(
H†(k)H(l)

)
∆nmkl

+

√
2

πR

(
H†(n)H(m)

)(
H†(0)H(k)

)
∆nmk

+

√
2

πR

(
H†(n)H(m)

)(
H†(k)H(0)

)
∆nmk

+
1

2πR

(
H†(0)H(n)

)(
H†(0)H(n)

)
+

1

πR

(
H†(0)H(n)

)(
H†(n)H(0)

)
+

1

2πR

(
H†(n)H(0)

)(
H†(n)H(0)

)
When we tack in the factors µ5 and λ5 to H†H and to

(
H†H

)2
, respectively, we see that

µ = µ5

λ =
λ5

2πR

The Higgs self-interactions can be read here directly – we just omit the daggers and let H(j) →
h(j)/

√
2. The interactions with and among φ± and φZ would be more interesting if we could

find a short cut to replace the parameters on the expansions with the new scalars χ0 and χ±.

3.3 The fermion sector

Let us recall the fermion Lagrangian:

Lfermion = q̄iΓMDq
Mq + Q̄iΓMDQMQ+ ūiΓMDu

Mu+ d̄iΓMDd
M + L̄iΓMDL

ML+ l̄iΓMD l
M l

In this section, we will examine the singlets and doublets, leaving the pure quark-gluon interaction
to its fate. But first, we will summarize some identities that involves the Dirac matrices.

3.3.1 A summary of useful identities

The projection operators have been formed by using the fifth Dirac matrix:

PR/L :=
1± γ5

2

First of all, by definition, we have

PR + PL = 1

Since {γµ, γ5} = 0 where the curly brackets define the anti-commutator, we infer that

PLγ
µ = γµPR
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Furthermore, we have
(
γ5
)2

= 1 and
(
γ5
)†

. The former implies

P 2
R = PR, P 2

L = PL, PRγ
5 = PR, PLγ

5 = −PL

and the latter helps give

P †R/L = PR/L

Finally, in a Dirac current, there will always appear an adjoint field, ψ̄, and if it carries a chirality,
then we will have to save it from the bar:

PR/Lψ =
(
PR/Lψ

)†
γ0 = ψ†P †R/Lγ

0 = ψ†PR/Lγ
0 = ψ†γ0PL/R = ψ̄PL/R

by using {γ0, γ5} = 0.

3.3.2 The lepton singlet

Here, we will analyze the lepton singlet. The results for the quark singlet can be obtained by
letting ZM → 1

3ZM and AM → 1
3AM , which is clear when we compare (2.3) and (2.4). We

proceed with evaluating the operator, ΓMD l
M :

ΓMD l
M = ΓµD l

µ + Γ5D l
5

= γµD l
µ + iγ5D l

5

= γµ
(
∂µ − i

gw5

cw
s2wZµ − ie5Aµ

)
+ iγ5

(
∂5 − i

gw5

cw
s2wZ5 − ie5A5

)
= γµ∂µ − igw5

cw
s2wγ

µZµ − ie5γµAµ + iγ5∂5 +
gw5

cw
s2wγ

5Z5 + e5γ
5A5

= γµ∂µ − i
gw5

cw
s2wγ

µ

(
1√
2πR

Z(0)µ + Z(k)µck

)
− ie5γµ

(
1√
2πR

A(0)µ +A(k)µck

)
+ iγ5∂5 +

gw5

cw
s2wγ

5Z(k)5sk + e5γ
5A(k)5sk

Let us hit this on the singlet field:

ΓMD l
M l =

[
γµ∂µ − i

gw5

cw
s2wγ

µ

(
1√
2πR

Z(0)µ + Z(k)µck

)
− ie5γµ

(
1√
2πR

A(0)µ +A(k)µck

)

+ iγ5∂5 +
gw5

cw
s2wγ

5Z(k)5sk + e5γ
5A(k)5sk

](
1√
2πR

l(0) + PRl(n)cn + PLl(n)sn

)
=

1√
2πR

γµ∂µl(0) + γµPRcn∂µl(n) + γµPLsn∂µl(n)

− 1

2πR
i
gw5

cw
s2wZ(0)µl(0) − i

gw5/
√

2πR

cw
s2wγ

µZ(k)µckl(0)

− igw5/
√

2πR

cw
s2wγ

µPRZ(0)µcnl(n) − i
gw5

cw
s2wγ

µPRZ(k)µckcnl(n)

− igw5/
√

2πR

cw
s2wγ

µPLZ(0)µsnl(n) − i
gw5

cw
s2wγ

µPLZ(k)µcksnl(n)

− 1

2πR
ie5γ

µA(0)µl(0) − i
e5√
2πR

γµA(k)µckl(0)
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− i e5√
2πR

γµPRA(0)µcnl(n) − ie5γµPRA(k)µckcnl(n)

− i e5√
2πR

γµPLA(0)µsnl(n) − ie5γµPLA(k)µcksnl(n)

− iγ5PR
n

R
snl(n) + iγ5PL

n

R
cnl(n)

+
gw5/

√
2πR

cw
s2wγ

5Z(k)5skl(0) +
gw5

cw
s2wγ

5PRZ(k)5cnl(n)

+
gw5

cw
s2wγ

5PLZ(k)5sksnl(n) +
e5√
2πR

γ5A(k)5skl(0)

+ e5γ
5PRA(k)5skcnl(n) + e5γ

5PLA(k)5sksnl(n)

Finally, let us hit the adjoint singlet on these terms:

l̄iΓMD l
M l =

(
1√
2πR

l̄(0) + PRl(m)cm + PLl(m)sm

)
iΓMD l

M l

=

(
1√
2πR

l̄(0) + l̄(m)PLcm + l̄(m)PRsm

)
iΓMD l

M l

⊃ 1

2πR
l̄(0)iγ

µ∂µl(0) +
1

2πR
l̄(0)

gw5/
√

2πR

cw
s2wγ

µZ(0)µl(0)

+ l̄(0)
gw5/

√
2πR

cw
s2wγ

µPRZ(k)µckcnl(n) +
1

2πR
l̄(0)

e5√
2πR

γµA(0)µl(0)

+ l̄(0)
e5√
2πR

γµPRA(k)µckcnl(n) + l̄(0)i
gw5/

√
2πR

cw
s2wγ

5PLZ(k)5sksnl(n)

+ l̄(0)i
e5√
2πR

γ5PLA(k)5sksnl(n) + l̄(m)iγ
µPRcmcn∂µl(n)

+ l̄(m)
gw5/

√
2πR

cw
s2wγ

µPRZ(0)µcmcnl(n) + l̄(m)
e5√
2πR

γµPRA(k)µcmckl(0)

+ l̄(m)
e5√
2πR

γµPRA(0)µcmcnl(n) + l̄(m)e5γ
µPRA(k)µcmckcnl(n)

+ l̄(m)PL
n

R
cncml(n) − l̄(m)i

gw5

cw
s2wPLZ(k)5sksncml(n)

− l̄(m)ie5PLA(k)5sksncml(n) + l̄(m)iγ
µPLsmsn∂µl(n)

+ l̄(m)
gw5/

√
2πR

cw
s2wPLZ(0)µsmsnl(n) + l̄(m)

gw5

cw
s2wγ

µPLZ(k)µsmsnckl(n)

+ l̄(m)
e5√
2πR

γµPLA(0)µsmsnl(n) + l̄(m)e5γ
µPLA(k)µsnsmckl(n)

+ l̄(m)PR
n

R
snsml(n) + l̄(m)i

gw5/
√

2πR

cw
s2wPRZ(k)5smskl(0)

+ l̄(m)i
gw5

cw
s2wPRZ(k)5smskcnl(n) + l̄(m)i

e5√
2πR

PRA(k)5smskl(0)

+ l̄(m)ie5PRA(k)5smskcnl(n) + terms that give zero when integrated∫ 2πR
0

dy
−−−−−→ l̄(0)iγ

µ∂µl(0) + l̄(0)
gw5/

√
2πR

cw
s2wγ

µZ(0)µl(0)

+ l̄(0)
gw5/

√
2πR

cw
s2wγ

µPRZ(n)µl(n) + l̄(0)
e5√
2πR

γµA(0)µl(0)
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+ l̄(0)
e5√
2πR

γµPRA(n)µl(n) + l̄(0)i
gw5/

√
2πR

cw
s2wγ

5PLZ(n)5l(n)

+ l̄(0)i
e5√
2πR

γ5PLA(n)5l(n) + l̄(n)iγ
µPR∂µl(n)

+ l̄(n)
gw5/

√
2πR

cw
s2wγ

µPRZ(0)µl(n) + l̄(n)
e5√
2πR

γµPRA(n)µl(0)

+ l̄(n)
e5√
2πR

γµPRA(0)µl(n) + l̄(m)e5γ
µPRA(k)µ∆nmkl(n)

+ l̄(n)PL
n

R
l(n) − l̄(m)i

gw5

cw
s2wPLZ(k)5∆nk,ml(n)

− l̄(m)ie5PLA(k)5∆nk,ml(n) + l̄(n)iγ
µPL∂µl(n)

+ l̄(n)
gw5/

√
2πR

cw
s2wγ

µPLZ(0)µl(n) + l̄(m)
gw5

cw
s2wγ

µPLZ(k)µ∆nm,kl(n)

+ l̄(n)
e5√
2πR

γµPLA(0)µl(n) + l̄(m)e5γ
µPLA(k)µ∆nm,kl(n)

+ l̄(n)PR
n

R
l(n) + l̄(n)i

gw5/
√

2πR

cw
s2wPRZ(n)5l(0)

+ l̄(m)i
gw5

cw
s2wPRZ(k)5∆mk,nl(n) + l̄(n)i

e5√
2πR

PRA(n)5l(0)

+ l̄(m)ie5PRA(k)5∆mk,nl(n)

We recover the massless singlet field15:

Ll

∫ 2πR
0

dy
−−−−−→ · · · ⊃ l̄(0)

(
iγµ∂µ +

gw5/
√

2πR

cw
s2wγ

µZ(0)µ +
e5√
2πR

γµA(0)µ

)
l(0)

⊃ l̄(0)iγµ
(
∂µ − i

gw
cw
s2wZ(0)µ − ieA(0)µ

)
l(0)

By matching the gauge couplings with those in the 4D theory, we make the identification

e =
e5√
2πR

gw =
gw5√
2πR

so the gauge couplings in a theory with extra dimensions depend on the radius of compactification.
As for the extra-dimensional singlet, the mass term does not come out with the correct sign:

Ll

∫ 2πR
0

dy
−−−−−→ · · · ⊃ l̄(n)

( n
R
PR +

n

R
PL

)
l(n)

⊃ l̄(n)
n

R
l(n)

Fortunately, this is not as wild as it seems: this is a bug that pops up in extra-dimensional
theories [23]. The problem arises because of the mismatch of some quantum numbers between
the 4- and the 5D theory. However, it can be overcome, and we may safely treat it as a mass
term.

15Again, the fermion masses derive from the Yukawa Lagrangian once the symmetry is spontaneously broken.
By not obtaining a mass term at the zero order as expected, we are on the right track.
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Meantime, we obtain some precious Feynman rules for the fermion singlet16. Those which
are of immediate interest to us – the fermion-fermion-vector vertices with indices f(0)f(n)V(n) –
are summarized at Section 4.

3.3.3 The lepton doublet

In this section, an analysis for extracting the vertex factors for fermion-fermion-vector interac-
tions will be performed by using the lepton doublet. We keep the charge matrix implicit so that
we will be able to study the quark doublet if desired.

The fermion Lagrangian contains the kinetic term for the lepton doublet as

Lfermion ⊃ L̄iΓMDLML
⊃ L̄i

(
ΓµDLµ + Γ5DL5

)
L

⊃ L̄i
(
γµDLµ + iγ5DL5

)( 1√
2πR

L(0) + PLL(n)cn + PRL(n)sn

)
⊃ L̄

(
1√
2πR

iγµDLµ L(0) + iγµPLDLµ L(n)cn + iγµPRDLµ L(n)sn

− 1√
2πR

γ5DL5 L(0) + PLDL5 L(n)cn − PRDL5 L(n)sn

)

⊃
(

1√
2πR
L̄(0) + PLL(m)cm + PRL(m)sm

)(
1√
2πR

iγµDLµ L(0)

+ iγµPLDLµ L(n)cn + iγµPRDLµ L(n)sn −
1√
2πR

γ5DL5 L(0)

+ PLDL5 L(n)cn − PRDL5 L(n)sn

)

⊃
(

1√
2πR
L̄(0) + L̄(m)PRcm + L̄(m)PLsm

)(
1√
2πR

iγµDLµ L(0)

+ iγµPLDLµ L(n)cn + iγµPRDLµ L(n)sn −
1√
2πR

γ5DL5 L(0)

+ PLDL5 L(n)cn − PRDL5 L(n)sn

)

⊃ 1√
2πR
L̄(0)iγ

µPLDLµ L(n)cn +
1√
2πR
L̄(0)iγ

µPRDµL(n)sn

+
1√
2πR
L̄(0)PLDL5 L(n)cn −

1√
2πR
L̄(0)PRDL5 L(n)sn

+
1√
2πR
L̄(m)iγ

µPLDLµ L(0)cm −
1√
2πR
L̄(m)PRcmDL5 L(0)

+
1√
2πR
L̄(m)iγ

µPRDLµ L(0)sm +
1√
2πR
L̄(m)PLsmDL5 L(0)

⊃ 1√
2πR
L̄(0)iγ

µPL

[
− igw5√

2

(
τ+W+

(k)µ + τ−W−(k)µ

)
16If we let ZM → −QZM and AM → −QAM , then the above analysis will also cover the quark singlet.
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− igw5

cw

(
τ3

2
−Qs2w

)
Z(k)µ + ie5QA(k)µ

]
ckL(n)cn

− 1√
2πR
L̄(0)PR

[
− igw5√

2

(
τ+W+

(k)5 + τ−W−(k)5

)
− igw5

cw

(
τ3

2
−Qs2w

)
Z(k)5 + ie5QA(k)5

]
skL(n)sn

+
1√
2πR
L̄(m)iγ

µPL

[
− igw5√

2

(
τ+W+

(k)µ + τ−W−(k)µ

)
− igw5

cw

(
τ3

2
−Qs2w

)
Z(k)µ + ie5QA(k)µ

]
ckL(0)cm

+
1√
2πR
L̄(m)PLsm

[
− igw5√

2

(
τ+W+

(k)5 + τ−W−(k)5

)
− igw5

cw

(
τ3

2
−Qs2w

)
Z(k)5 + ie5QA(k)5

]
skL(0)

∫ 2πR
0

dy
−−−−−→ L̄(0)iγ

µPL

[
− igw√

2

(
τ+W+

(n)µ + τ−W−(n)µ

)
− igw

cw

(
τ3

2
−Qs2w

)
Z(n)µ + ieQA(n)µ

]
L(n)

− L̄(0)PR

[
− igw√

2

(
τ+W+

(n)5 + τ−W−(n)5

)
− igw

cw

(
τ3

2
−Qs2w

)
Z(n)5

+ ieQA(n)5

]
L(n)

+ L̄(n)iγ
µPL

[
− igw√

2

(
τ+W+

(n)µ + τ−W−(n)µ

)
− igw

cw

(
τ3

2
−Qs2w

)
Z(n)µ

+ ieQA(n)µ

]
L(0)

+ L̄(n)PL

[
− igw√

2

(
τ+W+

(n)5 + τ−W−(n)5

)
− igw

cw

(
τ3

2
−Qs2w

)
Z(n)5

+ ieQA(n)5

]
L(0)

For the lepton doublet, we have

L =

(
νl
l

)
L

and

Q =

(
0
−1

)
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and hence

Lfermion

∫ 2πR
0

dy
−−−−−→ · · · ⊃

(
ν̄l(0) l̄(0)

)
L
iγµPL

·

(
− igw

2cw
Z(n)µ − igw√

2
W+

(n)µ

− igw√
2
W−(n)µ −ieA(n)µ − igw

cw

(
− 1

2 + s2w
)
Z(n)µ

)(
νl(n)
l(n)

)
L

−
(
ν̄l(0) l̄(0)

)
L
PR

·

(
− igw

2cw
Z(n)5 − igw√

2
W+

(n)5

− igw√
2
W−(n)5 −ieA(n)5 − igw

cw

(
− 1

2 + s2w
)
Z(n)5

)(
νl(n)
l(n)

)
L

+
(
ν̄l(n) l̄(n)

)
L
iγµPL

·

(
− igw

2cw
Z(n)µ − igw√

2
W+

(n)µ

− igw√
2
W−(n)µ −ieA(n)µ − igw

cw

(
− 1

2 + s2w
)
Z(n)µ

)(
νl(0)
l(0)

)
L

+
(
ν̄l(n) l̄(n)

)
L
PL

·

(
− igw

2cw
Z(n)5 − igw√

2
W+

(n)5

− igw√
2
W−(n)5 −ieA(n)5 − igw

cw

(
− 1

2 + s2w
)
Z(n)5

)(
νl(0)
l(0)

)
L

After these expansions, it is easy to read off the vertex factors for the interactions F(0)F(n)V(n).
Parts of the results are summarized in Section 4.

3.4 The Yukawa sector

The Yukawa sector proves to be the most cumbersome one of all the fields17 This is primarily
because the leptons and quarks mix among each other. We need to diagonalize the Yukawa
interaction matrices appropriately so that the diagonalized matrices will directly give the mass
terms, and as a by product we read off the fermion-fermion-Higgs interactions [26]. Still, the
work done speaks more than the words, and we proceed by recalling the Yukawa Lagrangian.

Lyukawa = −yl5L̄lH − yd5Q̄dH − yu5Q̄uH̃ + h.c.

As an example, we expand the leptonic part.

Lyukawa ⊃ −yl5L̄lH + h.c.

⊃ −yl5L̄
(

1√
2πR

l(0) + PRl(n)cn + PLl(n)sn

)(
1√
2πR

+H(m)cm

)
+ h.c.

⊃ −yl5
(

1√
2πR
L̄(0) + L̄(k)PRck + L̄(k)PLsk

)
×

(
1

2πR
l(0)H(0) +

1√
2πR

l(0)H(m)cm +
1√
2πR

PRl(n)H(0)cn

+ PRl(n)H(m)cncm +
1√
2πR

PLl(n)H(0)sn + PLl(n)H(m)sncm

)
+ h.c.

⊃ −yl5

(
1

(2πR)
3/2
L̄(0)l(0)H(0) +

1√
2πR
L̄(0)PRl(n)H(m)cncm

17Well, not actually. We have not mentioned a single word about the ghosts since they are not of primary
interest to us at the moment. In order to extract the Feynman rules for the ghosts, we need the transform rules
of the gauge-fixing terms, which is lengthy even in the 4D theory [16].
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+
1√
2πR
L̄(k)PRl(0)H(m)ckcm +

1√
2πR
L̄(k)l(n)H(0)ckcn

+ L̄(k)PRl(n)H(m)ckcncm +
1√
2πR
L̄(k)PLl(n)H(0)sksn

+ L̄(k)PLl(n)H(m)sksncm

)
+ h.c.

∫ 2πR
0

dy
−−−−−→ −yl5

(
1√
2πR
L̄(0)l(0)H(0) +

1√
2πR
L̄(0)PRl(n)H(n)

+
1√
2πR
L̄(n)PRl(0)H(n) +

1√
2πR
L̄(n)PRl(n)H(0)

+ L̄(k)PRl(n)H(m)∆nmk +
1√
2πR
L̄(n)PLl(n)H(0)

+ L̄(k)PLl(n)H(m)∆nm,k

)
+ h.c.

From the first term, we see that the Yukawa constants are also scaled by the factor 1/
√

2πR
when we reduce the theory to 4D:

yj =
yj5√
2πR

, j = l, d, u

4 Results

In this section, we present the results covering the gauge couplings and masses obtained by
coefficient-matching between the 4- and the 5D theory, and some Feynman rules that we could
catch due to time constrictions. Our results match with our primary resources in the literature[21,
22, 23].

4.1 Gauge coupling, masses, and other constants

Seemingly, the gauge couplings in 5D are matched with their counterparts in 4D, up to a factor
1/
√

2πR18:

gc =
gc5√
2πR

gw =
gw5√
2πR

e =
e5√
2πR

18The gauge couplings are dimensionless in 4D, which can be seen by comparing the Lagrangians for the
photon and the fermion fields. First, let us state a relation of the basic units of measurement: Since c = 1,
we have [x] = [t] and [E] = [m], and since ~ = 1, we write [E] = 1/[t]. Therefore, the integral measure in 4D
has mass dimension −4, so the Lagrangians has mass dimensions 4. The kinetic term for the photon have mass
dimension [∂2A2] = m2[A]2 = m4 so [A] = m. From the fermion-photon interaction and the fermion mass term,
respectively, we write [ψgAψ] = [ψmψ] and therefore [g] = 1. However, we see that the gauge couplings receive
mass dimension [x]1/2 = 1/[m]1/2, which is the source of the non-renormalizability of the 5D theory.
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The Yukawa constants also receive the same factor:

yj =
yj5√
2πR

What we may call the Higgs coefficients are adjusted a bit differently,

µ = µ5

λ =
λ5

2πR

so is the 1/
√

2πR-factor for the Higgs VEV:

v = v5
√

2πR

where v =
√
µ2/λ.

The fields that appear in the KK tower emerge with a common mass term, mn = n/R,
therefore the overall mass for a field K can be written as

MK =

√
m2
K +

n2

R2

where mK is the 4D-mass of the field K that arise due to spontaneous symmetry breaking as
usual.

4.2 Conservation of KK number

The KK number is conserved solely because all the SM fields live in the bulk. The two laws for
the conservation of KK number can be summarized as follows:

1. At each vertex, the sum of KK numbers towards the vertex equals the sum of those outwards
the vertex.

2. The states with odd KK numbers exist in pair; that is, for each KK field with odd KK
number at a vertex, there should appear another KK field with odd KK number.

4.3 Feynman rules

4.3.1 ffV vertex

In this section, we present parts of the Feynman rules for the singlet fermions and gauge bosons.

Z(n)µ

f(n) f(0)

− igw
cw

s2wγ
µPRQf
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A(n)µ

f(n) f(0)

−ieγµPRQf

Z(n)5

f(n) f(0)

gw
cw
s2wγ

5PLQf

A(n)5

f(n) f(0)

eγ5Qf

Z(0)µ

f(n) f(n)

− igw
cw

s2wγ
µQf

A(0)µ

f(n) f(n)

−ieγµQf
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Z(k)µ

f(n) f(m)

− igw5

cw
s2wγ

µPL∆nm,k

A(n)5

f(n) f(0)

−ie5γµPL∆nm,k

4.3.2 FFV vertex

In this section, we present fragments of the Feynman rules for the doublet fermion and gauge
bosons. Of our immediate interest are the vertices of the form F(n)F0V(n).

A(n)µ

l(n) l(0)

ieγµPL

Z(n)µ

l(n) l(0)

igw
cw

γµ
(
−1

2
+ s2w

)
PL

W(n)µ

ν(n) l(0)

igw√
2
γµPL
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Z(n)µ

ν(n) ν(0)

igw
2cw

γµPL

A(n)5

l(n) l(0)

−ePR

Z(n)5

l(n) l(0)

gw
cw

(
1

2
− s2w

)
PR

W(n)5

ν(n) l(0)

− gw√
2
PR

Z(n)5

ν(n) ν(0)

− gw
2cw

PR

5 Conclusion and acknowledgement

In this project work, I tried to explain the necessity to study the Standard Model of particle
physics in higher than four spacetime dimensions, and introduced the models developed outside
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the realm of superstring and supergravity theories. The reasons why we need to study may be
summarized as follows:

1. The so-called grand unification scheme or the grand unification theory (GUT) seems to be
achievable only in theories with extra dimensions. To quote a result from the string theory,
an extra dimension of length R ∼ (1012 GeV)−1 has been realized to bring down the string
scale to the GUT scale, MGUT ∼ 1016 GeV, which will carry us to a unification of all the
forces in the nature at the same scale [27, 28].

2. The hierarchy problem in the Standard Model appears to have a resolution, provided we
promote the theory to higher dimensions.

3. Within the framework of the Standard Model, none has yet to show the existence of a
particle such as dark matter. This may be possible in higher-dimensional scenarios.

Between 1998 and 2001, there appeared three models piquing the curiosity of phenomenological
high-energy physics:

1. The ADD model (1998), named after Arkani-Hamed, Dimopoulos, and Dvali, also known as
the model of large extra dimensions: It was originally proposed to provide an explanation
for the large order of difference between the electroweak and Planck scales by introducing
extra dimensions in which only the gravity lives. It does so because specifically in large
extra dimensions, the strength of gravity is somewhat reduced [14].

2. The RS model (1999), named after Randall and Sundrum, also known as the model of
warped extra dimensions: It heavily involves a modification of flat extra dimensions into
warped ones, by introducing a warp factor. It was originally proposed to account for the
hierarchy problem in the SM in new approaches.

3. The UED model (2001), advocated by Appelquist, Cheng, and Dobrescu, the model in
which all the SM fields live in the bulk of spacetime; that is, unlike the previous two
models where only gravity survives in the extra dimensions, this model allows all the
matter, gauge, and Higgs fields live in all the dimensions out there. Again, unlike the
two previous proposals, this model promises not to bring about a violation of the global
symmetries of the SM since these symmetries constitute its backbone.

What is important here is, unlike superstring and supergravity theories, the extra-dimensional
theories summarized here yields measurable outcomes, starting from the next generation colliders.

The methodology involved in promoting the Standard Model to five dimensions is quite
comprehensible to follow. The usual Lorentz indices are allowed to take on an extra value, 5.
Since the universe is a cylindrical one, that is to say, the extra dimension is defined on a circle,
we may Fourier-expand the fields along this new spatial component. This will permit us to
easily integrate out the fifth dimension and obtain an effective theory. We should note that
the five-dimensional theory is non-renormalizable, which is simply because the couplings have
a dependence on the radius of circle on which the fifth dimension is compactified. Since we
have a dimensionful quantity that will determine the fate of the theory, there should appear a
cut-off scale, Λ. Currently, physicists of the field who have studied the vacuum stability infer
that ΛR ∼ 6 [25], which in turn determines the maximum number of the Kaluza-Klein states to
be used in the calculation of the physical quantities as n = 6.

Despite the fact that the analysis of the Standard Model in five dimensions is quite straight-
forward in terms of extracting the Feynman rules – at least the vertices – it clearly takes more
than it is planned to. Having promoted the theory to five dimensions, I quickly realized that I
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needed a superior computational power to merely perform the expansion of the products of the
fields. For instance, I studied the complete four-dimensional theory over a weekend, and observed
that the Higgs Lagrangian alone produces around 150 terms, which I collected and evaluated
by using Mathematica. Accordingly, when we make a harmonic expansion of the fields, this
number goes up to 1400. Clearly, this is an illusion. My beginner knowledge of the mentioned
software was hardly sufficient to even collect the summations with similar dummy indices; hence,
the computer could not realize for example that K1(n)K2(m)cncm and K1(k)K2(l)ckcl refer to the
same mathematical object. As an acknowledgement, I regret having had to give up to build a
complete model of the five-dimensional Standard Model after struggling with becoming adept at
Mathematica and settle for what seems to be completed within the time domain.

Care must be provided when we expand the field in Fourier series. The very first objective is
to recover the actual fields at the zero mode. This drives us to assign an odd parity to the fifth
components of the vector fields under Z2. Intriguingly, we also obtain what we leftleft-, leftright-,
rightleft-, and rightright-chiral fermions within the Kaluza-Klein states. This seems to be the
only working way to obtain chiral fermions in a theory with odd number of spacetime dimensions.
Another aspect of the theory that deserves additional attention is the fermion masses: it comes
out in the Kaluza-Klein tower with the wrong sign. At this point, we are lead to calculate the
loop corrections to the masses and obtain a correct expression for the mass terms.

Towards the end of the semester, my objective has become extracting the Feynman rules for
the interactions of the top quark with the charge and neutral scalars in the theory. After all,
this was supposed to be one of my two motivations to study the extra dimensions, the other
being the investigation of the Higgs physics in extra dimensions. There are rare top decays,
which is almost non-permitted in the four-dimensional Standard Model. The theories with extra
dimensions provides new aspects to relax these suppressions. I could not make it on time for
that.

Working on this project has inspired me to conduct a more profound research on the subject
of perhaps a generalized extra-dimensional theory – such as the ADD or RS models – for my
graduate thesis. I focused on the universal extra dimensions purely because the physics was
quite comprehensible.

I sincerely thank my advisor Assoc. Prof. İsmail Turan for his introducing the field of extra-
dimensional theories in the context of particle physics to me and giving me a direction in my
future career as a researcher in theoretical particle physics. As always, I believe I genuinely
attempted to overperform the expectations of me, yet this might not have yielded the desired
results as anticipated within the framework of this course.
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A Finding the Goldstone bosons

Finding the Goldstone bosons may be quite challenging. In the 4D theory, it is rather straight-
forward: we expand the Higgs Lagrangian and collect the unphysical terms – terms that are
the product of a gauge boson and the 4-gradient of a scalar introduced in the Higgs doublet.
However, in theories beyond Standard Model, things may get complicated, which is the case for
the 5D extension of the Standard Model. Thus, we seek for a general method to aid us to find
the Goldstone bosons, simply the Goldstones. Logan offers three most general ways to obtain
these Goldstones [26], which at least works for the usual 4D theory and the 2-Higgs doublet
model (2HDM). Logan favors one method more, in which she advises us to

1. write down the kinetic term for the Higgs doublet.

2. isolate the terms of the form gvV ∂φ (Lorentz indices suppressed) where g is the gauge
coupling, v is the Higgs VEV (or VEVs if we study for example 2HDM), V is the gauge
boson that couples with g, and φ is a scalar that appears in the Higgs doublet.

3. observe the unphysical vertices such as

p

φ V

and infer that φ is – must be – the Goldstone: it is massless, and it interacts with the
gauge boson in a quite unusual way.

We would like to extend this argument: in completing the picture depicted by Logan, we

4. find a term that will cancel gvV ∂φ: clearly, gvφ∂V will do by forming a total derivative,

gvV ∂φ+ gvφ∂V = ∂ (gvφV )

to the existence of which the physics is inert at the action level.

5. find a gauge-fixing Lagrangian that may produce the this term,

Lgf ⊃ gvφ∂V

⊃ −1

2
(∂V − gvφ)

2

meantime associating gv most probably with the 4D – real-world – mass, mV , of the gauge
boson.

6. read the Goldstone as this additional term, φ, up to a sign.

(a) If the term gvV ∂φ has a plus sign in the Higgs Lagrangian, then take G = φ.

(b) If it has a minus sign, then take G = −φ.

Logan’s method works like a charm in the 4D theory and in the 5D theory, as well.
Since the literature is abundant in the derivations of the Goldstones in 4D, we proceed to

directly study the 5D case. We start with the Higgs doublet:

H =

(
φ+

h̃+iφZ√
2

)
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Different from our earlier notation, here h̃ is the 5D Higgs field that contains the 4D Higgs VEV.
As stated earlier, if R−1 � v, then only the zeroth mode of h will receive a non-vanishing VEV:

h̃ =
1√
2πR

h̃(0) + h̃(n)cn

=
1√
2πR

(
h(0) + v

)
+ h(n)cn

= h+
v√
2πR

But v = v5
√

2πR as shown earlier, so we may write

H =

(
φ+

h+v5+iφZ√
2

)

(Unlike the earlier analysis, we explicitly need a VEV to begin with.) The kinetic term for the
Higgs doublet is

Lhiggs ⊃ |DMH|2

where, as earlier,

DM = ∂M12 −
igw5√

2

(
W+
M

W−M

)
− igw5

cw

(
1
2 − s

2
w

− 1
2

)
ZM + ie5

(
1

0

)
AM

=

(
∂M − igw5

cw

(
1
2 − s

2
w

)
ZM + ie5AM − igw5√

2
W+
M

− igw5√
2
W−M ∂M + igw5

cw
1
2ZM

)
so

DMH =

(
∂Mφ+ − igw5

cw

(
1
2 − s

2
w

)
ZMφ+ + ie5AMφ+ − igw5√

2
W+
M
h+v5+iφZ√

2

− igw5√
2
W−Mφ+ + ∂Mh+i∂MφZ√

2
+ igw5

cw
1
2ZM

h+v5+iφZ√
2

)

with

(DMH)∗ =

(
∂Mφ− + igw5

cw

(
1
2 − s

2
w

)
ZMφ− − ie5AMφ− + igw5√

2
W−M

h+v5−iφZ√
2

igw5√
2
W+
Mφ− + ∂Mh−i∂MφZ√

2
− igw5

cw
1
2ZM

h+v5−iφZ√
2

)

First of all, let us determine the 4D gauge-boson masses: The mass of the W± bosons is the
square root of the coefficient of the term W+

µ W
−
µ , for which we have

gw5v5
4

W+
MW

−
M ⊃

gw5v5
4

W+
µ W

−
µ =

gwv

4
W+
µ W

−
µ

since gw5 = gw
√

2πR. Thus we have

mW =
gwv

2

Similarly, by considering the mass terms 1
2m

2
Z (Zµ)

2
for the Z boson, we see that

mZ =
gwv

2cw
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We would like to preserve the letter M for the 5D effective masses. Now we continue our analysis:
let us read off the terms of the form gvV ∂φ:

Lhiggs ⊃
igw5v5

2
W−M∂Mφ+ −

igw5v5
2

W+M∂Mφ− +mZZ
M∂MφZ

⊃
[
−imWW

+M∂Mφ− + h.c.
]

+mZZ
M∂MφZ

The suitable gauge-fixing terms are

Lgf ⊃
[
−imWφ−∂MW

+M + h.c.
]

+mZφZ∂MZ
M

which mas possibly derive from

Lgf ⊃ −
∣∣∂MW+M − imWφ+

∣∣2 − 1

2

(
∂MZ

M −mZφZ
)2

But this is the usual gauge-fixing Lagrangian in the Feynman-’t Hooft gauge. Now let us read
the Goldstones. We have actually a few steps to take: first of all, we need to extract the fifth
components of the vectors since they constitute new scalars in the theory:

Lgf ⊃ −
∣∣∂µW+µ + ∂5W

+5 − imWφ+
∣∣2 − 1

2

(
∂µZ

µ + ∂5Z
5 −mZφZ

)2
⊃ −

∣∣∂µW+µ − ∂5W+
5 − imWφ

+
∣∣2 − 1

2
(∂µZ

µ − ∂5Z5 −mZφZ)
2

The Goldstone for the Z boson

According to our prescription based on Logan’s, ∂5Z5 +mZφZ is a fine candidate:

MZGZ = ∂5Z5 +mZφZ

⊃ ∂5
(
Z(n)5sn

)
+mZφZ(n)cn

⊃
( n
R
Z(n)5 +mZφZ(n)

)
cn

Thus we have

GZ(n) =
n
RZ(n)5 +mZφZ(n)

MZ

Now, what might MZ be? If we perceive Z(n)5 and φZ(n) as normalized basis vectors, then MZ

is the apparent normalization factor

MZ =

√
n2

R2
+m2

Z

Let us elaborate on this basis issue:

φZ(n)

Z(n)5

GZ(n)

?

ζ(n)
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So, where is the state orthogonal to GZ(n)? Let us define

cos ζ(n) :=
n/R

MZ
, sin ζ(n) :=

mZ

MZ

Accordingly,

GZ(n) = Z(n)5 cos ζ(n) + φZ(n) sin ζ(n)

Then the orthogonal state may directly be written as

χZ(n) = −Z(n)5 sin ζ(n) + φZ(n) cos ζ(n)

=
−mZZ(n)5 + n

RφZ(n)

MZ

The χZ(n) are the physical, CP -odd scalars.

The Goldstone for the W+ boson

According to our prescription based on Logan’s, −∂5W+
5 − imWφ+ is an appropriate candidate.

MWG+ = −∂5W+
5 − imWφ+

⊃ −∂5
(
W+

(n)5sn

)
− imWφ+(n)cn

⊃
(
− n
R
W+

(n)5 − imWφ+(n)

)
cn

Hence we obtain

G+(n) =
− n
RW

+
(n)5 − imWφ+(n)

MW

Similarly to the Z-case, we have

MW =

√
n2

R2
+m2

W

Since the basis transformation is complex, this time the rotation will be unitary:(
G+(n)

H+(n)

)
= R

(
W+

(n)5

φ+(n)

)
where

R :=
1

MW

(
− n
R −imW

α β

)
for α, β ∈ C. To satisfy unitarity, we have

R†R = 12

1

M2
W

(
− n
R α∗

imW β∗

)(
− n
R −imW

α β

)
=

(
1 0
0 1

)
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1

M2
W

(
n2

R2 + |α|2 imWn
R + α∗β

− imWnR + β∗α m2
W + |β|2

)
=

(
1 0
0 1

)
Hence, one set of solutions contains

α = ±imW , β = ± n
R

We may choose the plus signs and learn to live with it19:

H+(n) =
imWW

+
(n)5 + n

Rφ+(n)

MW

The Goldstone for the W− boson

This is just the complex conjugate of G+:

G−(n) =
− n
RW

−
(n)5 + imWφ−(n)

MW

and accordingly

H−(n) =
−imWW

−
(n)5 + n

Rφ−(n)

MW

Summary

The Goldstone bosons that live in the KK tower of the 5D theory have been found to be

GZ(n) =
n
RZ(n)5 +mZφZ(n)√

n2

R2 +m2
Z

=
mnZ(n)5 +mZφZ(n)

MZ

G±(n) =
− n
RW

±
(n)5 ∓ imWφ±(n)√
n2

R2 +m2
W

=
−mnW

±
(n)5 ∓ imWφ±(n)

MW

The physical, CP -odd scalars are

χZ(n) =
−mZZ(n)5 + n

RφZ(n)√
n2

R2 +m2
Z

=
−mZZ(n)5 +mnφZ(n)

MZ

The physical, charged Higgs bosons are

H±(n) =
±imWW

±
(n)5 + n

Rφ±(n)√
n2

R2 +m2
W

=
±imWW

±
(n)5 +mnφ±(n)

MW

19If we had taken the minus signs, the only difference we foresee would be in the sign of the vertex factors.

52



B Fermion-scalar interaction

B.1 Sample calculations for the top quark interactions

In this section, we revisit the Yukawa sector to extract the Feynman rules for the vertices of the
form F(0)F(n)S(n) where the F(0) is a real-world fermion – without any explicit chirality – and
S(n) is a KK scalar. Our primary objective was to investigate the effects of the KK states on
top physics, therefore we focus our utmost attention on the vertices that contain interactions of
the real-world top quark, t. However, due to possible ambiguities in the notation, we would like
to denote the SM top quark by t(0) since T(0) denotes the left-chiral 4D top quark and t(0) the
right-chiral one.

We proceed by recalling the Yukawa Lagrangian:

Lyukawa ⊃ −yu5Q̄uH̃ − yd5Q̄dH + h.c. (sum over generations)

Let us directly start with the diagonalized Yukawa matrices, which implies that the down-type
quarks will be Cabibbo-rotated:

Qi → Q′i = VijQj , di → d′i = Vijdj , i, j = 1, 2, 3

where V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Clearly, it is only the bottom
element of the quark doublet that is affected by this rotation:

Q′i =

(
Ui
D′i

)
In this mass basis (as opposed to the generation basis), the Yukawa matrices read

yu5 =

Yu5 Yc5
Yt5

 , yd5 =

Yd5 Ys5
Yb5


Hence we have

Lyukawa ⊃ −
(
Q̄′u Q̄′c Q̄′t

)Yu5 Yc5
Yt5

uc
t

 H̃

−
(
Q̄′d Q̄′s Q̄′b

)Yd5 Ys5
Yb5

d′s′
b′

H + h.c.

⊃ −Yt5Q̄′ttH̃ − Yb5Q̄′bb′H + h.c.

⊃ −
(
Yt5T̄ t Yt5B̄′t

)(h+v5−iφZ√
2

φ−

)
−
(
Yb5T̄ b′ Yb5B̄′b′

)( φ+
h+v5+iφZ√

2

)
+ h.c.

⊃ −Yt5v5√
2
T̄ t− Yt5B̄′tφ− −

Yb5v5√
2
B̄′b′ − Yb5T̄ b′φ+ + h.c.

⊃
[
−Yt5v5√

2
T̄ t− Yt5v5√

2
t̄T
]

+

[
−Yb5v5√

2
B̄′b′ − Yb5v5√

2
b̄′B′

]
+
[
−Yt5B̄′tφ− − Yt5t̄B′φ+

]
+
[
−Yb5T̄ b′φ+ − Yb5b̄′T φ−

]
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where we have used (āb)
†

=
(
a†γ0b

)†
= b†γ0a = b̄a. Now, the first two brackets are the mass

terms for the top and bottom quarks, respectively. Since we have shown that

yj =
yj5√
2πR

, v = v5
√

2πR

we may directly write Yt5v5 = Ytv and Yb5v5 = Ybv. Meantime, the capital-letter quarks are LH,
and the lowercase-letter quarks are RH; they combine to give

q̄LqR + q̄RqL = PLqPRq + PRqPLq = q̄PRq + q̄PLq = q̄q

if this were the 4D theory. Fortunately, once we expand the fields in Fourier series, we recover
the 4D theory in the zeroth mode hence our discussion makes sense. Therefore we determine the
quark masses to be

mq =
Yqv√

2

where q denotes a SM quark. Now let us focus on the interaction terms:

Lyukawa ⊃
[
−Yt5B̄′tφ− − Yt5t̄B′φ+

]
+
[
−Yb5T̄ b′φ+ − Yb5b̄′T φ−

]
⊃
[
−Yt5V ∗3jB̄jtφ− − Yt5V3j t̄Bjφ+

]
+
[
−Yb5V3j T̄ bjφ+ − Yb5V ∗3j b̄jT φ−

]
Now we expand the fields, by keeping only the zeroth term of the top field, and the KK states
of the bottom field:

Lyukawa ⊃ −Yt5V ∗3j
(
PLB(n)jcn + PRB(n)jsn

)( 1√
2πR

t(0)

)(
φ−(m)cm

)
− Yt5V3j

(
1√
2πR

t̄(0)

)(
PLB(n)jcn + PRB(n)jsn

) (
φ+(m)cm

)
− Yb5V3j

(
1√
2πR
T̄(0)

)[
PRb(n)jcn + PLb(n)j

] (
φ+(m)cm

)
− Yb5V ∗3j

(
PRb(n)jcn + PRb(n)jsn

)( 1√
2πR
T(0)

)(
φ−(m)cm

)
⊃ −YtV ∗3jB̄(n)jPRt(0)φ−(m)cncm − YtV3j t̄(0)PLB(n)jφ+(m)cncm

− YbV3j T̄(0)PRb(n)jφ+(m)cncm − YbV ∗3j b̄(n)jPLT(0)φ−(m)cncm∫ 2πR
0

dy
−−−−−→ −YtV ∗3jB̄(n)jPRt(0)φ−(n) − YtV3j t̄(0)PLB(n)jφ+(n)

− YbV3j T̄(0)PRb(n)jφ+(n) − YbV ∗3j b̄(n)jPLT(0)φ−(n)

There remains one final rotation to perform20: even though the Yukawa matrices seem to be
diagonalized, when we expand the fields and perform the necessary integrations, we see that the
down-type quarks mix with each other. The real KK down-type quarks then become

B(n)j,L/R = ∓B′(n)j,L/R cosα(n) + b′(n)j,L/R sinα(n)

b(n)j,L/R = ±B′(n)j,L/R sinα(n) + b′(n)j,L/R cosα(n)

where

α(n) :=
1

2
tan−1

mj

mn

20I promise to derive this in no time, but not quite sure now.
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The chiral indices refer to the KK states PL/RB(n)j and PL/Rb(n)j . It is crucial to notice that
we have eliminated B(n)j,R and b(n)j,L out of our discussion just because their coefficient is sn,
which cancels out cm, the coefficient of the scalar, upon integration over y. Thus, by performing
this rotation, the interaction part of the Yukawa Lagrangian becomes

Lyukawa

∫ 2πR
0

dy
−−−−−→ · · · ⊃ −YtV ∗3j

(
−B̄′(n)j cosα(n) + b′(n)j sinα(n)

)
PRt(0)φ−(n)

− YtV3j t̄(0)PL
(
−B̄′(n)j cosα(n) + b′(n)j sinα(n)

)
φ+(n)

− YbV3j T̄(0)PR
(
−B′(n)j sinα(n) + b′(n)j cosα(n)

)
φ+(n)

− YbV ∗3j
(
−B̄′(n)j sinα(n) + b̄′(n)j cosα(n)

)
PLT(0)φ−(n)

Next, let us explicitly convert the chiral top quarks into the real one:

t(0) = PRt(0), T(0) = PLt(0)

Since P 2
R = PR, P 2

L = PL and PL/Ra = āPR/L, we get

Lyukawa

∫ 2πR
0

dy
−−−−−→ · · · ⊃ −YtV ∗3j

(
−B̄′(n)j cosα(n) + b′(n)j sinα(n)

)
PRt(0)φ−(n)

− YbV ∗3j
(
−B̄′(n)j sinα(n) + b̄′(n)j cosα(n)

)
PLt(0)φ−(n)

− YtV3j t̄(0)PL
(
−B̄′(n)j cosα(n) + b′(n)j sinα(n)

)
φ+(n)

− YbV3j t̄(0)PR
(
−B′(n)j sinα(n) + b′(n)j cosα(n)

)
φ+(n)

Ultimately, we write the scalars φ±(n) in terms of the Goldstones and charged Higgs bosons: The
unitary rotation(

G±(n)
H±(n)

)
=

1

MW

(
−mn ∓imW

±imW mn

)(
W±(n)5
φ±(n)

)
can be inverted to yield(

W±(n)5
φ±(n)

)
=

1

MW

(
−mn ∓imW

±imW mn

)(
G±(n)
H±(n)

)
and hence

φ±(n) =
±imWG±(n) +mnH±(n)

MW

Thus, by writing the Yukawa couplings in terms of the 4D masses

Yt/d =
mt/d

√
2

v

and the gauge boson masses in terms of the gauge coupling and the Higgs VEV

mW =
gwv

2
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we obtain

Lyukawa

∫ 2πR
0

dy
−−−−−→ · · · ⊃ −mt

√
2

v
V ∗3j

(
−B̄′(n)j cosα(n) + b̄′(n)j sinα(n)

)
PRt(0)

−i gwv2 G−(n) +mnH−(n)

MW

− mb

√
2

v
V ∗3j

(
−B̄′(n)j sinα(n) + b̄′(n)j cosα(n)

)
PLt(0)

−i gwv2 G−(n) +mnH−(n)

MW

− mt

√
2

v
V3j t̄(0)PL

(
−B′(n)j cosα(n) + b′(n)j sinα(n)

) i gwv2 G+(n) +mnH+(n)

MW

− mb

√
2

v
V3j t̄(0)PR

(
−B′(n)j sinα(n) + b′(n)j cosα(n)

) i gwv2 G+(n) +mnH+(n)

MW

B.2 Feynman rules

First of all, let us realize that the quarks b′(n)j are simply d′(n), s
′
(n), and b′(n), therefore we may

use the generic notation, d, for this term. Similarly, let us switch to the notation Q for what is
represented by B. This is all thanks to a summation over the above-mentioned quarks with the
CKM matrix. As for the vertices that involve H±(n), to eliminate the Higgs VEV v we multiply
and divide by mW = gwv/2. At the end of the day, we produce the following diagrams:

G−(n)

t(0) Q′(n)j

gw√
2MW

(
mt cosα(n)PR +mj sinα(n)PL

)
V ∗3j

G−(n)

t(0) d′(n)j

− gw√
2MW

(
mt sinα(n)PR +mj cosα(n)PL

)
V ∗3j

H−(n)

t(0) Q′(n)j

igw√
2MW

mn

mw

(
mt cosα(n)PR +mj sinα(n)PL

)
V ∗3j
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H−(n)

t(0) d′(n)j

igw√
2MW

mn

mw

(
mt sinα(n)PR +mj cosα(n)PL

)
V ∗3j

If we note that

1. the complex conjugate of these expressions give the vertices for t̄(0){G±(n), H±(n)}{Q′(n)j , d
′
(n)j},

2. if we release the subscript 3 into a generalized index, i, then our diagrams hold true also
for the SM quarks u(0) and d(0),

hence we do not repeat the diagrams.

B.3 Comparison with the results in the literature

Our primary source for the fermion-scalar vertices is Reference [25]. Their results, adjusted to
our notation, are as follows:

G−(n)

t(0) Q′(n)j

gw√
2MW

[
−mt cosα(n)PR +

(
mj sinα(n)+mn cosα(n)

)
PL
]
V ∗3j

G−(n)

t(0) d′(n)j

− gw√
2MW

[
mt sinα(n)PR−

(
mj cosα(n)−mn sinα(n)

)
PL
]
V ∗3j

H−(n)

t(0) Q′(n)j

igw√
2MW

[
−mtmn

mw
cosα(n)PR +

(
mjmn

mw
sinα(n)−mw cosα(n)

)
PL

]
V ∗3j
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C Fermion mixing in the KK tower

Let us work with the leptons in the mass basis. When we have to do a similar analysis for the
quarks in the mass basis, we simply tack in a factor Vij , where V is the CKM matrix.

C.1 Fermion sector revisited

We proceed by writing down the fermion Lagrangian and extracting only the mass terms, since
the particles will mix in terms of their masses.

Lfermion ⊃ L̄iΓMDML+ l̄iΓMDM l, ΓM =
(
γµ, iγ5

)
⊃ −L̄γ5∂5L − l̄γ5∂5l
⊃ −

(
L̄(n)Lcn + L̄(n)Rsn

)
γ5∂5

(
L(m)Lcm + L(m)Rsm

)
−
(
l̄(n)Rcn + l̄(n)Lsn

)
γ5∂5

(
l(m)Rcm + l(m)Lsm

)
,

{
L
l

}
(n)R/L

:= PR/L

{
L
l

}
(n)

⊃ −
(
L̄(n)Lcn + L̄(n)Rsn

)
γ5
(
−m
R
L(m)Lsm +

m

R
L(m)Rcm

)
−
(
l̄(n)Rcn + l̄(n)Lsn

)
γ5
(
−m
R
l(m)Rsm +

m

R
l(m)Lcm

)
⊃ −

(
L̄(n)Lcnγ

5m

R
L(m)Rcm − L̄(n)Rsnγ

5m

R
L(m)Lsm

)
−
(
l̄(n)Rcnγ

5m

R
l(m)Lcm − l̄(n)Lsnγ5

m

R
l(m)Rsm

)
∫ 2πR
0

dy
−−−−−→ · · · ⊃ −

(
mnL̄(n)Lγ

5L(n)R −mnL̄(n)Rγ
5L(n)L

)
−
(
mn l̄(n)Rγ

5l(n)L −mn l̄(n)Lγ
5l(n)R

)
⊃
(
L̄(n)L l̄(n)L

)(−mn 0
0 mn

)
γ5
(
L(n)R

l(n)R

)
+
(
L̄(n)R l̄(n)R

)(mn 0
0 −mn

)
γ5
(
L(n)L

l(n)L

)
We have to eliminate the gamma matrix in between. The cleanest way to do so is to refer to the
projection operators:

PR =
1 + γ5

2

PL =
1− γ5

2

 γ5 = PR − PL

Fortunately, one of the two operators in the gamma matrix drops and the other gives 1; to
illustrate,

γ5
(
L(n)R

l(n)R

)
= (PR − PL)

(
L(n)R

l(n)R

)
= (1− 0)

(
L(n)R

l(n)R

)
=

(
L(n)R

l(n)R

)
Thus we have

Lfermion

∫ 2πR
0

dy
−−−−−→ · · · ⊃ −

(
L̄(n)L l̄(n)L

)(mn 0
0 −mn

)(
L(n)R

l(n)R

)
+ h.c.

since the mass matrix will receive a minus sign when the doublet
(
L(n)L l(n)L

)T
is acted on by

the gamma matrix. After this point, we may directly read off the mixing of the bottom element
of the lepton doublet, to with the left-chiral electron-type leptons, with the lepton singlet. This
is necessary since it is in this format that the Yukawa sector produces the mixing terms.
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C.2 Yukawa sector revisited

Again, we proceed by writing down the Yukawa Lagrangian and extract only the terms that
contain mass.

Lyukawa ⊃ −yl5L̄lH + h.c.

⊃ −yl5
(
L̄(n)Lcn + L̄(n)Rsn

) (
l(m)Rcm + l(m)Lsm

)( 1√
2πR

H(0)

)
+ h.c.

⊃ −yl
(
L̄(n)Lcnl(m)Rcm + L̄(n)Rsnl(m)Lsm

)
H(0) + h.c.∫ 2πR

0
dy

−−−−−→ · · · ⊃ −yl
(
L̄(n)Ll(n)R + L̄(n)Rl(n)L

)
H(0) + h.c.

⊃ −
(
L̄(n)Lyll(n)R + L̄(n)Ryll(n)L

)
H(0) + h.c.

⊃ −

[(
L̄1
(n)L L̄2

(n)L L̄3
(n)L

)Y 1
l

Y 2
l

Y 3
l


l

1
(n)R

l2(n)R
l3(n)R


+
(
L̄1
(n)R L̄2

(n)R L̄3
(n)R

)Y 1
l

Y 2
l

Y 3
l

(l1(n)L l2(n)L l3(n)L

)]
H(0) + h.c.

⊃ −
(
Y αl L̄α(n)Ll

α
(n)R + Y αl L̄α(n)Rl

α
(n)L

)
H(0) + h.c.

⊃ −Y αl
(
N̄α

(n)L Ēα(n)L
)
lα(n)R

 φ+(0)
h(0) + v + iφZ(0)√

2


− Y αl

(
N̄α

(n)R Ēα(n)R
)
lα(n)L

 φ+(0)
h(0) + v + iφZ(0)√

2

+ h.c.

⊃ −Y
α
l v√
2
Ēα(n)Ll

α
(n)R −

Y αl v√
2
Ēα(n)Rl

α
(n) −

Y αl v√
2
l̄α(n)RE

α
(n)L −

Y αl v√
2
l̄α(n)LE

α
(n)R

⊃ −mα
l Ēα(n)Ll

α
(n)R −m

α
l Ēα(n)Rl

α
(n) −m

α
l l̄
α
(n)RE

α
(n)L −m

α
l l̄
α
(n)LE

α
(n)R

⊃
(
Ēα(n)L l̄α(n)L

)( 0 −mi
l

−mi
l 0

)(Eα(n)R
lα(n)R

)
+
(
Ēα(n)R l̄α(n)R

)( 0 −mi
l

−mi
l 0

)(Eα(n)L
lα(n)L

)

where

α = 1, 2, 3 = generation index

N , E = neutrino- and electron-type lepton in the doublet, respectively

and there is a summation implied over the generation index.

C.3 The combined term

Totally, after we extract the bottom elements of the doublets, we obtain

Lfermion + Lyukawa

∫ 2πR
0

dy
−−−−−→ · · · ⊃ −

(
Ēα(n)L l̄α(n)L

)(mn mα
l

mα
l −mn

)(Eα(n)R
lα(n)R

)
+ h.c. (C.1)
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and this is the fermion mixing in the KK tower. The mass matrix

Λ :=

(
mn mα

l

mα
l −mn

)
can be diagonalized by using the similarity transformation

Λ∗ = DΛD†

where

Λ∗ =

(
Mα
l

−Mα
l

)

D =

(
cos

δ(n)

2 sin
δ(n)

2

sin
δ(n)

2 − cos
δ(n)

2

)
with

Mα
l :=

√
m2
n + (mα

l )
2

cos δ(n) =
mn

Mα
l

, sin δ(n) =
mα
l

Mα
l

The mass eigenstates are then given by(
Ẽα(n)L/R
l̃α(n)L/R

)
= D

(
Eα(n)L/R
lα(n)L/R

)
=

(
cos

δ(n)

2 sin
δ(n)

2

sin
δ(n)

2 − cos
δ(n)

2

)(
Eα(n)L/R
lα(n)L/R

)

We can see this if we rewrite (C.1) in perhaps a lousy notation as

〈L | Λ | R〉 = 〈L | D†Λ∗D | R〉 = 〈DL | Λ∗ | DR〉

where L (R) refers to the doublet with left- (right-) chiral leptons.

C.4 Bi-unitary transform

Even though the mass matrix Λ in the previous section is one of the simplest to obtain, and the
unitary matrix D that diagonalizes it is indeed idempotent (D† = D−1 = D so D2 = 1), this
should not be the case simply because we have different types of fermions on each side. The
correct way to diagonalize Λ is then by a bi-unitary transform,

Λ∗ = DLΛD†R

so that DL diagonalizes ΛΛ† and DR diagonalizes Λ†Λ. Then we have new matrices to unitarily
transform now:

Λ2
L := ΛΛ†, Λ2

R := Λ†Λ

The former is21

Λ2
L =

(
M2
l

M2
l

)
21Let us suppress the generation index until the next notice.
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Since the mass matrix is symmetric, the latter definition is identical to the former:

Λ2
R =

(
M2
l

M2
l

)
Here, the freshly defined Λ-matrices are just equal to the diagonalized mass matrix, Λ∗, squared.
This implies, at least, that

detDR/L = ±1

Meantime, there is a counting of degree of freedom (DOF)22. First of all, let us start with a general
2× 2 complex matrix, Ω. The number of DOF is 8. By the condition of unit determinant, this
number goes down to 5. If we collect the phases in Ω, then we will be able to assign unique
phases to the particles on each side, hence the DOF is counted as 1, which is a real parameter.
Most probably the simplest form is then, inspired by the original form of the D matrix,

DR/L =

(
± cos

δ(n)

2 ± sin
δ(n)

2

± sin
δ(n)

2 ± cos
δ(n)

2

)

for which the signs should be arranged to give the required determinants. One way to do is as
follows:

DL =

(
cos

δ(n)

2 sin
δ(n)

2

sin
δ(n)

2 − cos
δ(n)

2

)
, DR =

(
cos

δ(n)

2 sin
δ(n)

2

− sin
δ(n)

2 cos
δ(n)

2

)

with

detDR = +1, detDL = −1

as done in [21]. However, in [25] adjusted to our notation, the signs are a bit different:

DR =

(
cos

δ(n)

2 sin
δ(n)

2

− sin
δ(n)

2 cos
δ(n)

2

)
, DL =

(
− cos

δ(n)

2 sin
δ(n)

2

sin
δ(n)

2 cos
δ(n)

2

)

This is not a problem since they have changed the order of the eigenvalues in the diagonalized
matrix Λ∗.

22I have solved this problem for another course, I recall. Thus I borrow the idea but not sure for the rest.
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