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ABSTRACT

PRECISION PHENOMENOLOGY AND NEW PHYSICS PROBES AT FUTURE

COLLIDERS

KAAN ŞİMŞEK

This thesis explores how future colliders can be used to study physics beyond the Standard

Model through precision observables. Most of the work is set within the Standard Model

Effective Field Theory (SMEFT), but the broader focus is on collider-specific questions:

what can realistically be measured, how far current designs can reach, and which theoret-

ical parameters are actually testable in controlled environments. Four main directions are

developed. First, we study neutral-current parity-violating observables at the Electron-

Ion Collider and show that they can lift degeneracies introduced by Drell-Yan processes at

the LHC in the semi-leptonic four-fermion operator subspace of the SMEFT framework.

Second, we extend the analysis to include the complete set of SMEFT operators that

modify the neutral-current deep inelastic scattering amplitude at leading order, next-to-

leading order QCD corrections, and two additional machines, the Large Hadron-electron

Collider and the Future Circular Collider. The results demonstrate how these colliders,

with their complementary energy ranges, can resolve parameter degeneracies in global
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fits and impose tighter bounds on new physics effects. Third, we shift focus to electron-

positron collisions and introduce a novel observable at the Future Circular Collider that

improves sensitivity to the electron Yukawa coupling, the smallest in the Standard Model,

by a factor of five to six. Finally, we return to the SMEFT and examine Drell-Yan pro-

duction with an associated jet, identifying observables that are sensitive to CP -violating

gluonic operators at dimension eight. We focus on Collins-Soper angular moments that

vanish in the Standard Model at leading order but become nonzero in the presence of

the SMEFT operators of interest due to their CP -odd structure. All analyses are tied

to realistic experimental conditions, including polarization effects, luminosity estimates,

and systematic uncertainties. The methods developed here prioritize reproducibility, com-

putational transparency, and applicability to actual collider programs. Together, these

results show how precision and collider phenomenology can be used not only to refine the

Standard Model but also to push its limits.
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It is a collection of studies in precision phenomenology at future colliders, mostly
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result of months well spent calculating, coding, debugging, analyzing, and occasionally

questioning every decision that led me here. It is simply what I managed to produce in

collaboration with some of the most brilliant particle physicists.
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lines the theoretical framework and methodological tools used throughout the thesis, in-
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der quantum chromodynamics corrections and performing multidimensional SMEFT pa-

rameter fits. Chapter 5 explores transverse spin asymmetries in electron-positron collisions

at the Future Circular Collider as a probe of the electron Yukawa coupling, requiring the

development of more advanced amplitude and phase-space tools to extract subtle interfer-

ence effects. Chapter 6 investigates dimension-8 operators in Drell-Yan plus jet production

at the High-Luminosity Large Hardon Collider, with a focus on angular observables sen-

sitive to CP -odd structures. The backbone of the analysis is complete, yet the work is

still in progress because we consider ambitious future directions to pursue, regarding UV

matching, as well as the involvement of a spin-2 mediator.

This thesis is a log of work done under normal conditions, namely limited time, limited

energy, the persistent noise of unanswered questions, and the stubborn passion that kept

me wake at night for all the right reasons. I chose this path for a reason, and there is

nothing else I would rather be doing. I enjoy the work—the physics, the coding, the

thinking—especially when it gets dark in here.
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CHAPTER 1

Introduction

It was the best of times, it was the worst of times, it was the age of wisdom, it was the

age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the

season of Light, it was the season of Darkness, it was the spring of hope, it was the

winter of despair, we had everything before us, we had nothing before us, we were all

going direct to Heaven, we were all going direct the other way—in short, the period was

so far like the present period, that some of its noisiest authorities insisted on its being

received, for good or for evil, in the superlative degree of comparison only.

Charles Dickens, A Tale of Two Cities

1.1. Position at the time

Particle physics stands at a crossroads in the quest to uncover physics beyond the

Standard Model (BSM). The Standard Model (SM) has been enormously successful in

describing known particles and their interactions, crescendoing with the discovery of the

Higgs boson in 2012 [5, 65]. As is the tragic fate of all that possess transcendent beauty,

it suffers from certain shortcomings. It does not explain dark matter, neutrino masses, or

the baryon asymmetry, and it leaves many theoretical questions open. No new particles

have been conclusively observed at the Large Hadron Collider (LHC) beyond the Higgs

particle, despite the LHC’s impressive energy reach. A canonical depiction of resonant
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particle production across collider energies is shown in Figure 1.1, highlighting both the

discoveries of the past and the unknown terrain ahead.
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Figure 1.1. An illustrative sketch of the event count corresponding to the

total e+e− → hadrons cross section as a function of the center-of-mass en-

ergy. Resonances corresponding to known particles, such as the ρ, J/ψ,

Υ, Z, and Higgs bosons, appear as Breit-Wigner peaks due to poles in

the scattering amplitude. While these are visible in clean initial states like

e+e− collisions, not all particles necessarily appear as bumps. Broad widths,

suppressed couplings, or incompatible quantum numbers may obscure reso-

nances, motivating complementary search strategies beyond bump hunting.

The dashed curve suggests potential future resonances at higher energy

scales, such as those accessible at future colliders.
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The absence of clear new signals suggests that any new physics may either be very

heavy, and we are talking about energy scales beyond the LHC’s direct reach, or very

weakly coupled, which means it must be hiding subtly within precise measurements. In

either case, precision phenomenology, namely making extremely accurate predictions and

measurements of SM processes, becomes a powerful approach to indirectly probe new

physics. By comparing high-precision experimental results with equally precise theoreti-

cal predictions, we can detect tiny deviations caused by heavy new particles, even if these

particles cannot be produced on-shell. This strategy of indirect discovery through preci-

sion measurements has a long and successful history. For example, precision electroweak

(EW) data predicted the top quark mass before its discovery and indicated a light Higgs

boson. Today, with the energy frontier pushing against practical limits, the precision

frontier is more important than ever for exploring BSM effects.

A robust theoretical framework supports this precision program. The Standard Model

Effective Field Theory (SMEFT) has emerged as a universal language to describe poten-

tial new physics in a model-independent way. In the SMEFT, one upgrades the SM

Lagrangian with higher-dimensional operators that might reflect the effects of heavy new

particles as subtle shifts in SM interactions. Each operator comes with a Wilson coeffi-

cient capturing the strength of the new physics contribution. If new physics lies at an

ultraviolet (UV) scale Λ well above observed particle masses, as well as current collider

reaches, its low-energy effects can be organized on powers of 1/Λ. The leading deviations

appear as dimension-6 operators, which are suppressed by 1/Λ2, which can modify cross

sections, decay rates, and asymmetry observables at colliders. Crucially, the SMEFT pro-

vides a systematic way to globally fit many different measurements for evidence of new
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physics within a consistent theoretical framework, rather than invoking new particles.

This has motivated a global effort to reanalyze collider data through the SMEFT lens. So

far, global fits to precision observables, including LEP/SLD EW measurements and LHC

Run 1/2 data, have found no significant deviations, but they have highlighted specific

directions in the multidimensional parameter space that are weakly constrained due to

overlapping effects of different operators. These flat directions, or degeneracies, in current

data leave room for new physics at the TeV scale. Resolving them is a key motivation

for both theoretical work and future experiments. Improvements in precision and vari-

ety of measurements, especially using new collider facilities, are hoped to tighten these

constraints and provide clues of BSM physics. In this context, future colliders are being

designed not only to extend the energy frontier, but also to deliver huge data samples and

cleaner environments needed for ultraprecise tests of the SM.

Over the next decades, an array of new collider projects are planned or proposed to

push the precision frontier. Each comes with unique strengths for exploring different as-

pects of high-energy physics. In this chapter, we survey the landscape of relevant future

colliders and their physics goals, focusing on those facilities that play a role in later chap-

ters of this thesis, namely the Electron-Ion Collider (EIC), the Large Hadron-electron Col-

lider (LHeC), the Future Circular Collider (FCC) running in the electron-hadron mode or

the electron-positron mode, and the high-luminosity LHC (HL-LHC) upgrade. We outline

the motivations and design parameters of each of these machines, namely their intended

physics outcomes, collision types, energies, luminosities, and timelines. We then review

how precision measurements at these colliders can be used in SMEFT studies to probe

new physics. In doing so, we summarize existing studies in the literature that project
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the sensitivity of these experiments to BSM effects via SMEFT fits. This sets the stage

for the detailed investigations presented in subsequent chapters. In short, this chapter

aims to explain why precision collider phenomenology matters, what future facilities are

on the horizon and what features they bring, and how these features and capabilities can

be utilized, often in complementary ways, to search for new physics with unprecedented

sensitivity.

1.2. Future collider facilities for precision physics

1.2.1. Electron-Ion Collider

The EIC will be a new facility at Brookhaven National Lab (BNL) in the United States

(U.S.), designed primarily to explore the quark and gluon structure of nucleons and nuclei

with unprecedented detail [154, 12, 10]. It will collide electron beams with beams of

protons or heavier ions, such as nuclei of helium, gold, or uranium. A key motivation

for the EIC is to create three-dimensional “snapshots” of nucleons, mapping how quarks

and gluons carry momentum and spin inside the proton, thereby addressing fundamental

questions of quantum chromodynamics (QCD), such as the origin of the proton spin

and mass. In 2020, the U.S. Department of Energy approved the EIC project, with the

constructed beginning at the end of 2025, just when the Relativistic Heavy Ion Collider

(RHIC) completes its scientific program, and operations starting in the early 2030s. This

will be the first new high-energy collider built in the U.S. in decades, and it represents a

cornerstone of the nuclear physics community’s long-term plan [1].

From an accelerator standpoint, the EIC involves a polarized electron beam, poten-

tially 85% polarized at source and with nearly 70% polarization in the storage ring on
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average, colliding with polarized proton or ion beams. For protons, a similar polariza-

tion reach of about 70% is planned. The electron beam energy will be tunable up to 18

GeV, and proton beam energies up to 275 GeV, allowing for a range of center-of-mass

(c.m.) energies from roughly 20 to 140 GeV. These energies sit between fixed-target deep

inelastic scattering (DIS) experiments of the past and the Hadron-Elektron-Ringanlage

(HERA), which reached approximately 320 GeV with 27.6 GeV electrons and 920 GeV

protons [127]. The EIC’s design luminosity is extremely high for an electron-hadron col-

lider, up to 1034 cm−2 · s−1 (or about 300 fb−1 per year), which is orders of magnitude

beyond HERA’s typical range of 1031 to 1032 cm−2 · s−1. Such luminosity, combined with

polarization of both beams, will enable precision EW measurements in addition to its

QCD program. The collider will utilize the existing RHIC tunnel, with a circumference

of 3.9 km (Figure 1.2), for the hadron ring and add a new electron storaging of the same

size, implementing advanced techniques like energy recovery, spin rotators, and strong

focusing to achieve the desired performance.

While the EIC’s primary mission is to study QCD phenomenology, such as parton dis-

tribution functions (PDFs) at small Bjorken-x, the gluon saturation regime, and the spin

structure of nucleons, it also provides an opportunity for BSM searches via precision EW

observables. Because it will collide electrons with protons or ions at moderate energies,

the EIC is ideal for measuring parity-violating (PV) asymmetries in DIS cross section. In

neutral-current (NC) DIS, the photon-Z boson interference causes a small difference in

cross section when the electron’s helicity is flipped. The EIC can measure this asymmetry,

which in the SM is directly related to the running weak mixing angle, sin2(θW ), and to

the electron and quark NC couplings. A high-precision measurement of the weak mixing
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Figure 1.2. The Electron-Ion Collider (EIC) will be constructed at

Brookhaven National Laboratory, utilizing the existing Relativistic Heavy

Ion Collider (RHIC) infrastructure. The schematic shows the integration

of the new EIC ring with the existing RHIC tunnel.

Image credit Tiffany Bowman/Brookhaven National Laboratory, from

https://www.bnl.gov/newsroom/news.php?a=121805.

angle at low momentum transfer is a goal of the EIC’s EW program. Moreover, these PV

DIS measurements are sensitive to certain SMEFT operators, specifically semi-leptonic

four-fermion operators that describe the contact interaction of lepton and quark currents.

https://www.bnl.gov/newsroom/news.php?a=121805
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The EIC’s true power, namely high luminosity, polarized beams, and a clean event en-

vironment with no color contamination and well-defined initial states, allows it to probe

these effects ruthlessly. In addition, the EIC will measure electron-nucleus scattering, pro-

viding new tests of EW nuclear effects and potentially probing novel physics in nuclear

matter. Overall, although the EIC is a machine designed to study hadron structure first

and foremost, its high precision makes it a versatile facility where precision SM tests can

reveal BSM signals. The knowledge of proton structure gained, for example in the form

of improved PDFs, will also be invaluable for interpreting searches at the LHC and future

colliders [56].

1.2.2. Large Hadron-electron Collider

The LHeC is a proposed upgrade to the LHC that will add a high-energy electron beam

to enable electron-proton and electron-ion collisions using one of the LHC’s proton beams

[56, 11]. The core idea is to maximize the reuse of existing infrastructure, namely the 27-

km LHC tunnel and beams (Figure 1.3), by augmenting it with a new electron accelerator.

The LHeC would open up to a TeV-scale DIS program. With a 60-GeV electron beam

colliding with a 7-TeV proton beam, the c.m. energy would reach about 1.3 TeV [57],

which is substentially higher than HERA’s 320 GeV. In addition, the LHeC aims for

a luminosity around 1033 cm−2 · s−1 in its baseline design, which is about 100 times

HERA’s. This is expected to lead to enormous DIS data samples. The combined power

of the LHeC’s energy and luminosity would push the kinematic region in Bjorken-x and

momentum transfer to new extremes, allowing exploration of proton’s structure down to

x ∼ 10−6 and up to momentum transfers Q ∼ 103 GeV, an order of magnitude beyond
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what LHC measurements currently constrain. From a physics standpoint, the LHeC is

motivated both as a precision adjunct to the LHC, providing better PDFs, especially at

high x and high Q, and novel ways to study the Higgs, top quark, and EW bosons, and

as a discovery machine in its own right, able to observe phenomena such as heavy flavor

excitation in the proton, rare QCD parton dynamics, or even new particles produced in

e−p collisions.

The LHeC design has evolved to favor a linac-ring configuration, in which a new

linear accelerator supplies an electron beam to collide with one of the proton beams

circulating in the LHC. The baseline setup features an energy-recovery linac (ERL), which

is essentually two superconducting linacs, each about 1 km long, arranged in a racetrack

shape tangential to the LHC ring. Electrons would make three passes through each linac

to reach 60 GeV before colliding with protons at one of the LHC interaction points [56].

After the collision, the electrons would be decelerated in the same linacs to recover energy.

This ERL approach allows for a large number of electrons to be delivered steadily over

time, achieving both high beam current and continuous operation without excessive power

demands. The same electron accelerator could later be repurposed for other projects such

as the Future Circular Collider running in the electron-hadron mode, as discussed below.

The electron beam could be polarized, up to nearly 80% at source, although the baseline

LHeC design does not require polarization for its core program. The 7-TeV protons in

the LHC are not polarized, so LHeC would mainly measure unpolarized e−p and rely on

electron polarization for any asymmetry measurements. One nice feature of the linac-

ring scheme is that it could operate simultaneously with the nominal LHC pp program

by using one of the LHC’s beam interaction points without disrupting the others. In
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Figure 1.3. Proposed layout of the Large Hadron-electron Collider (LHeC)

in the Geneva basin, overlaid on the existing LHC (light blue) and SPS (dark

blue) tunnels [56]. The yellow racetrack indicates the baseline design for the

LHeC, with two alternative configurations shown in orange. Also indicated

is the location of the high-luminosity LHC (HL-LHC), which would share

the LHC ring with the LHeC.
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principle, the LHeC could quietly slip into the HL-LHC’s schedule, offering e−p collisions

without interrupting pp operations. After the HL-LHC program is complete, the LHeC

could even continue as a dedicated facility on its own. This staging flexibility is a selling

point of the project.

From a physics perspective, the LHeC would serve multiple roles. First, it would

dramatically improve the knowledge of proton structures. With its high reach in momen-

tum transfer and wide x range, it would pin down PDFs, especially the gluon and quark

distributions at small x, with high precision. This has direct benefits for interpreting

LHC results, for instance, reducing PDF uncertainties in precision measurements of the

W mass and Higgs production. Second, the LHeC offers a unique environment to study

the Higgs boson. Higgs production in ep primarily occurs via vector-boson fusion, e.g. W

exchange from the electron scattering on the proton, and can produce a Higgs boson plus

a final-state neutron or proton leftovers. Studies indicate that the LHeC could accumu-

late on the order of 104 to 105 Higgs events, enabling measurements of the h→ bb decay

in a cleaner environment than pp due to the absence of huge QCD multijet background.

In fact, with sufficient luminosity (> 1034 cm−2 · s−1), the LHeC could act as a Higgs

factory in its own right, measuring couplings like the b quark Yukawa with percent-level

precision complementary to LHC or future e−e+ colliders. Third, the LHeC can probe

the top quark via single top production, e.g. e−p→ νetb, and even top pair production at

the highest energies. This provides an independent way of measuring the Vtb element of

the Cabibbo-Kobayashi-Maskawa matrix and the top EW couplings. Finally, and most

importantly for this thesis, the LHeC would enable new physics searches through preci-

sion EW measurements. By studying processes like NC DIS at high momentum transfer,
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the LHeC would be sensitive to contact interactions of exchange of new heavy particles,

such as leptoquarks or Z ′ bosons, that would manifest as deviations from SM predictions.

Semi-leptonic four-fermion SMEFT operators would also yield distinctive effects in e−p

scattering observables. Thanks to its high energy, the LHeC could improve upon existing

bounds from the LEP and even the LHC in many cases. For example, it could cleanly

measure Z boson couplings to quarks by observing the interference pattern of photon

and Z exchange in DIS, which helps break degeneracies that are difficult to resolve with

Z-pole data alone. In conclusion, although the LHeC has not yet been approved and

faces technical challenges, its potential impact on both SM measurements and indirect

new physics searches is extensive. It stands as a natural next step in the evolution of DIS

experiments, bringing the electron-proton probe to the energy scale of the TeV era.

1.2.3. Future Circular Collider in electron-hadron mode

The Future Circular Collider in the electron-hadron mode (FCC-eh) refers to an electron-

hadron collider utilizing the planned Future Circular Collider infrastructure. In the long-

term plan at CERN, the FCC would begin with an e−e+ collider (FCC-ee) and later

be followed by a 100-TeV proton-proton collider (FCC-hh) in the same 91-km tunnel

[56, 2] (Figure 1.4). Once the 100-TeV hadron machine is running, one can imagine

adding an electron beam similar to the LHeC’s to collide with the 50-TeV proton beam of

the Future Circular Collider in the hadron-hadron mode (FCC-hh). This is the FCC-eh

concept, essentially the big brother of the LHeC, which would extend e−p collisions to

unprecedented energies. With a 60-GeV electron beam on a 50-TeV proton beam, the c.m.

energy would reach about 3.5 TeV. This is almost three times higher than the LHeC and
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Figure 1.4. A schematic map showing a possible location for the Future

Circular Collider (FCC) in the Geneva region, illustrating its relation to

the existing LHC ring.

Image credit CERN, from https://home.cern/science/accelerators/future-

circular-collider.

an order of magnitude beyond HERA. The kinematic reach in DIS would correspondingly

extend to probes of quark structure with a resolution of 10−5 fm. Such collisions could

explore extremely small x values down to 10−7 or lower, and momentum transfers near

104 GeV.

https://home.cern/science/accelerators/future-circular-collider
https://home.cern/science/accelerators/future-circular-collider
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The design of FCC-eh would likely deploy the same ERL used for the LHeC. Indeed,

one proposal is a staged approach: Build the LHeC ERL during LHC operations, use it

as a full-energy injector for FCC-ee in the 2040s so as to avoid requiring a 100-km booster

ring, and then configure it as the e−p collider for FCC-hh in the 2070s. In this scenario,

the hardware from the LHeC basically gets recycled, namely the racetrack linacs would

first help FCC-ee and later serve FCC-eh. The conceptual similarity means that FCC-eh

would inherit the same general features as LHeC, namely a polarized electron beam (80%

or higher) in an ERL, multipass acceleration, and the possibility of concurrent running

with the pp program, so FCC-hh and FCC-eh data could be collected simultaneously. The

luminosity goal for FCC-eh is of order 1033 to 1034 cm−2 · s−1. Achieving high luminosity

with a 50-TeV proton beam would require significant technical innovation but studies

indicate that a few 1034 cm−2 · s−1 is feasible in a dedicated e−p mode.

In terms of physics reach, FCC-eh would combine the virtues of LHeC, namely high

precision and a clean e−p environment, with an extended energy range that even exceed

the HL-LHC’s Drell-Yan (DY) reach for certain interactions. It would further sharpen

our picture of the proton’s inner structure. When FCC-hh starts running, proton PDFs

will be a limiting systematic for many measurements and FCC-eh data would be crucial

to push those uncertainties well below the percent level. For Higgs physics, FCC-eh could

produce Higgs bosons via vector-boson fusion at several times the rate of LHeC, enabling

precision measurements of Higgs properties complementary to FCC-ee and FCC-hh. For

BSM searches, the FCC-eh could indirectly sense new physics scales of a few 10 TeV.

The FCC-eh would be particularly great at probing any lepton-quark contact interactions

or new resonance in the lepton-quark channel, since it extends the search for effects in
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e−q → e−q scattering well beyond the LHC’s kinematic range. It is important to note

that FCC-eh is a very forward-looking project. In the current timeline, it would likely

operate in the latter half of the 21st century, possibly after 2070, during FCC-hh’s run.

By then, the chance of seeing the first data may depend less on luminosity and more

on cardio, clean lungs, dietary discipline, good genetics, a bit of luck, and will to live.

Nonetheless, the electron-hadron mode features in strategic plans as part of the complete

physics program of the FCC.

1.2.4. Future Circular Collider in e−e+ mode

The Future Circular Collider running in the electron-positron mode (FCC-ee) is a pro-

posed electron-positron collider that would serve as the first phase of CERN’s Future

Circular Collider project. It is conceived as a Higgs factory and a precision EW machine,

exploiting the relatively low mass of the Higgs, which makes an e−e+ collider viable at

those energies. The FCC-ee would be placed in a new circular tunnel about 91 km in

circumference, and it would operate at several c.m. energy values spanning the Z-boson

peak up to the tt threshold [116]. Specifically, the baseline includes runs at 91.2 GeV (the

Z pole), to produce an enormous sample of Z bosons, which is often called the Tera-Z

run for aiming at more than 1012 Z decays, 160 GeV (the WW threshold) to measure the

W mass and width precisely with threshold scans and to collect 108 W pairs, 240 to 250

GeV (around the Higgsstrahlung maximum) to produce Higgs bosons in association with

Z bosons, maximizing the rate of Higgs production, and 340 to 365 GeV (around the tt

threshold) to study top quark pairs and measure the top mass and its EW couplings. In

practice, the machine could run at intermediate to extended energies up to around 365
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GeV; however, the four aforementioned ones are in focus. Due to the virtue of a circular

collider, having many bunches and contiunous collisions, the luminosity goal is extremely

high, at a level 0.5 to 1 × 1036 cm−2 · s−1 at the Z pole. We expect roughly 5 × 1012 Z

bosons, 108 WW pairs, 106 Higgs bosons, and about 106 top quark pairs to be collected

in total. These numbers are many orders of magnitude beyond what was achieved at

LEP, and even beyond what the HL-LHC will produce for some of these particles. To

illustrate, 106 Higgs events is about 30 times the Higgs yield of the HL-LHC (and even

in a much cleaner environment), and 1012 Z bosons is six orders of magnitude beyond

LEP’s Z samples. This statistical power alone renders FCC-ee so appealing because we

are talking about statistical uncertainties at the per-mille to 10−5 level in some cases.

While the FCC-ee offers an exceptionally clean collision environment ideal for pre-

cision measurements, achieving longitudinal polarization of the incident beams remains

a challenge. Unlike linear colliders, the FCC-ee cannot sustain longitudinally polarized

beams in collisions due to depolarizing effects like beamstrahlung. Instead, polarization

is primarily used at lower energies for precise energy calibration, particularly near the

Z pole, via techniques developed at LEP. However, for most runs, the beams are effec-

tively unpolarized, limiting direct access to observables such as left-right asymmetries.

Nonetheless, indirect probes remain viable through final-state polarization and angular

distributions across various fermionic channels.

The physics program of FCC-ee is rich and directly targets precision tests of the SM at

the loop level, making it a potent tool to search for virtual effects of new physics. At the Z

pole, by analyzing the shapes of angular distributions and asymmetries of e+e− → ff for

a fermion f , FCC-ee will measure the weak mixing angle sin2(θW ) to 10−5 precision, the Z



46

boson width and couplings to quarks and leptons with improvements of one to two orders

of magnitude over LEP. These measurements constrain EW SMEFT operators, such as

ones modifying Z couplings, at the per-mille level, corresponding to probing new physics

up to multi-TeV scales. Running at the W threshold, FCC-ee can determine the W mass

to an accuracy within 1 to 2 MeV, an order of magnitude better than today’s uncertainty,

by analyzing the threshold cross section shape. At 240 GeV, the Higgs factory run will

nail down the Higgs boson’s couplings to gauge bosons and fermions with sub-percent

uncertainties in many cases. For example, the hZZ coupling strength can be measured

to 0.2%, hWW to 0.5%, the Higgs total width to a few percent, and rare decays like

h → µ−µ+ observed with meaningful statistics. These Higgs measurements are of great

interest for SMEFT since any deviation from SM coupling values signals new physics.

One example is the κ-framework or a global effective field theory (EFT) fit, which allows

coupling shifts to be translated into bounds on higher-dimensional operators. Finally, at

near 350 GeV, FCC-ee will study the top quark with great precision. By performing a

threshold scan of e−e+ → tt, it can extract the top quark mass to about 10 MeV and

measure the top’s NC couplings much more cleanly than hadron colliders can. All these

high-precision observables provide indirect sensitivity to heavy new physics. In fact, it’s

estimated that FCC-ee data could detect the effects of new particles up to masses of order

Λ ∼ 10 TeV or even higher, depending on the couplings [108]. For instance, deviations in

Higgs couplings at the 0.1% level would point to BSM states in the 1 to 10 TeV range in

many scenarios, and FCC-ee is exactly aimed at that level of precision. In summary, FCC-

ee would set a new benchmark for precision tests of the SM. If new physics is hiding just

beyond current reach, the FCC-ee’s ultra-high statistics and clean environment offer one
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of the best bets to find its footprints. Its operation, which is planned for about 15 years

starting in the late 2040s if approved, would also lay the groundwork for its successor,

namely the 100-TeV FCC-hh, by providing essential measurements and perhaps clues for

what that higher-energy machine should target.

1.2.5. High-luminosity upgrade of the Large Hadron Collider

The HL-LHC is the nearest-term major project and will be an integral part of the precision

frontier. The HL-LHC is not a new collider but an upgrade of the existing LHC at

CERN to significantly increase its luminosity. After around 2025, the LHC will undergo

its Long Shutdown 3, during which new high-field focusing magnets, crab cavities, and

other upgrades will be installed. The goal is to reach a peak luminosity about 5 to

7 × 1034 cm−2 · s−1, which is roughly an order of magnitude beyond the LHC’s initial

design of 1 × 1034 cm−2 · s−1. By operating through the 2030s, the HL-LHC aims to

deliver an integrated luminosity of about 3 to 4 ab−1 to each of the major experiments

[3, 129]. This is a factor of 10 more data than the entire first 14 years, namely Runs 1

to 3, of the LHC running will ever have produced; for comparison, by the end of Run 3

in 2025, the LHC expects 300 to 400 fb−1 per experiment. We expect HL-LHC collisions

to begin around 2029 and extending to 2040 [4].

The HL-LHC’s primary physics motivation is to significantly improve measurements

of processes that were either discovery channels or loosely measured in the first LHC runs.

For example, with 3 ab−1 of data, the properties of the Higgs boson can be determined

much more precisely. The ATLAS and CMS experiments project uncertainties of order

2 to 5% on most Higgs couplings, to W , Z, b, and τ to name a few, and around 10%
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for the top coupling and the Higgs self-coupling. These precision levels, though still an

order of magnitude above FCC-ee’s targets, will test the SM Higgs sector at the loop

level. In the top quark sector, rare processes like htt and Ztt will be accessible in large

numbers, allowing detailed tests of the Yukawa and EW couplings of the top quark.

EW gauge-boson processes, such as diboson production and vector-boson scattering, with

high statistics will probe the self-interactions of W and Z bosons, looking for deviations

that signal the beginning of new dynamics, such as the effects of a heavy resonance or

a nonlinear Higgs sector. The HL-LHC will also push further the direct search reach for

new particles, as well. Because cross sections fall steeply with mass, a tenfold increase in

luminosity typically improves the sensitivity to heavy resonances by up to 30% in mass

reach. Equally importantly, it enables searches for extremely rare processes, like flavor-

changing NC decays of top quarks or boosted Higgs decays into invisible particles, which

may have tiny branching fractions if induced by new physics.

One critical aspect of the HL-LHC is its challenging experimental environment. Higher

luminosity comes at the cost of much higher pile-up. On average, about 140 to 200 over-

lapping pp interactions will occur every beam crossing at design luminosity. This means

each recorded event is buried in debris from dozens of other proton collisions happening

simultaneously. The detectors are being upgraded with new trackers, high-granularity

calorimeters, and fast timing layers to cope with this by improving vertex separation

and timing to distinguish pile-up tracks. From a theoretical standpoint, predictions must

also be improved both in accuracy by means of higher-order QCD or EW calculations,

as well as in incorporating effects like multi-parton interactions, to match the reduced
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experimental uncertainties. The HL-LHC data will demand percent-level theoretical pre-

dictions for many key processes, which in turn justifies the use of frameworks like SMEFT

to consistently include potential new physics effects in those predictions.

In summary, the HL-LHC will extend the LHC’s precision reach in measuring the

familiar observables within the SM and searching for deviations. By the end of its run,

if the SM still holds with no significant deviations, we will have substantially tightened

the limits on many possible BSM scenarios. For instance, fits to the Higgs and EW data

from HL-LHC are expected to constrain certain dimension-6 SMEFT operator scales to

several TeV. However, there will remain blind spots and flat directions that only different

collision systems, like e−e+ or e−p colliders, can address, due to the HL-LHC’s inherent

hadronic initial state and limited energy for some observables. This is why the previously

mentioned future colliders are seen as complementary. The HL-LHC sets the stage in

the 2020s and 30s with huge data on the Higgs, top, and EW bosons and its results will

inform and tighten the designs of those future machines.

1.3. SMEFT literature review

The SMEFT extends the SM Lagrangian with higher-dimensional operators built using

the existing SM fields without introducing any new particles, suppressed by powers of a

new-physics scale, Λ, which is assumed to be heavier than all SM particles and beyond

accessible collider energy. Coupling strength of these new interactions are referred to as

Wilson coefficients. In this section, we present an overview of the foundations and the

current state of the SMEFT.
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1.3.1. Early effective field theory foundations

The idea of parametrizing new heavy physics through an EFT dates back decades, having

its foundation in the principle that heavy degrees of freedom can be integrated out of the

low-energy theory [71, 26, 152]. The first systematic enumeration of higher-dimensional

operators was given by Buchmüller and Wyler, who catalogued all dimension-6 terms

allowed by SM gauge symmetries [58]. This pioneering list contained redundancies due to

relations like equations of motion. Subsequent work clarified these issues and established

more convenient operator bases [27]. Prior to the LHC era, EFT techniques were already

employed to describe potential new physics in precision measurements. For instance, four-

fermion contact interactions and anomalous couplings were constrained in LEP, HERA,

and Tevatron data using effective operator frameworks [42, 41, 61]. These earlier works

laid the groundwork for the modern SMEFT program.

1.3.2. SMEFT operator bases and theoretical advances

With the advent of the LHC, the SMEFT has been developed into a systematic frame-

work. A complete, nonredundant operator basis up to dimension-6, the so-called Warsaw

basis, was established in 2010 [110], building upon the earlier classifications. Alterna-

tive formulations or basis choices, for example the Higgs-centric “Higgs basis” and the

Strongly Interacting Light Higgs basis, have also been proposed, which are physically

equivalent to the Warsaw basis under proper field redefinitions [143, 99]. In recent years,

the operator catalog has been extended to even higher orders. Independent groups have

constructed the full set of dimension-8 SMEFT operators [140, 134], and efforts have

progressed toward enumerating operators at dimension 12 and beyond [113]. Systematic
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methods, such as Hilbert-series techniques, have been introduced to ensure all invariants

are accounted for at a given order [117, 118, 104, 105]. Together, these works provide

a structured foundation for the SMEFT as a general extension of the Standard Model.

Alongside the operator bases, significant work has gone into developing the theoreti-

cal toolkit for SMEFT. Complete Feynman rules for the SMEFT have been derived and

implemented in public codes [85, 86, 87, 54, 52], enabling automated calculations of pro-

cesses with dimension-6 effects. The consistency of the SMEFT framework has also been

investigated extensively. This includes studies of renormalization and operator mixing,

as well as constraints on the EFT parameter space coming from fundamental principles.

For example, theoretical bounds such as positivity constraints have been derived, which

restrict certain Wilson coefficients based on the requirement of a unitary, causal UV com-

pletion [31, 156, 84]. These constraints provide an important complementary guide to

the allowed SMEFT parameter space, beyond direct experimental limits. For a compre-

hensive review of the SMEFT formalism and its theoretical underpinnings, see [55].

1.3.3. Phenomenology with SMEFT

The SMEFT framework has been extensively used to interpret and constrain new physics

from experimental data. In the early applications, which took place around the LEP

and Tevatron era and the start of the LHC program, studies typically focused on one

sector or a limited set of processes at a time. For example, four-fermion interactions

and EW precision observables were studied with dimension-6 operators to set bounds

on contact interactions and anomalous couplings [112, 68]. Similarly, Higgs and gauge-

boson processes have been analyzed in an EFT context. The effects of higher-dimensional
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operators on Higgs boson decays, EW boson pair production, and triple gauge couplings

were examined by many groups [66, 94, 153, 115]. Low-energy measurements and flavor

physics provided additional complementary constraints on SMEFT coefficients in semi-

leptonic and meson decay processes [67, 100]. These targeted studies yielded the first

bounds on various Wilson coefficients, often under simplifying assumptions, such as one

operator switched on at a time, and demonstrated the feasibility of probing heavy new

physics indirectly.

As more data accumulated, especially after the Higgs discovery, the emphasis shifted to

global fits that combine information from multiple channels. By the end of LHC Run 1, the

first global SMEFT analyses appeared, incorporating Higgs, EW precision, and top-quark

measurements into a simultaneous fit [79, 114]. This effort intensified with Run 2. Several

comprehensive fits were performed, progressively including tens of independent Wilson

coefficients in the analysis [37, 109, 29]. Such studies account for correlations between

observables and provide a consistent overall interpretation of new physics scales. In recent

years, global fits have reached even greater scope and sophistication [47, 44, 97, 62].

Some analyses incorporate heavy flavor and low-energy data under combined frameworks

or impose flavor symmetry assumptions to manage the large operator set [93, 77]. Others

have integrated PDF uncertainties into the EFT fit, reflecting the interplay between new

physics and proton structure. These up-to-date fits constrain many dimension-6 operator

coefficients at the percent level or better, corresponding to new physics scales on the order

of multi-TeV, and represent a milestone in the SMEFT program’s maturity.

Recently, attention has also turned to effects beyond the leading dimension-6 order

in the SMEFT. In particular, studies have begun exploring the phenomenological impact
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of dimension-8 operators and higher-order 1/Λ4 contributions. Several works investigate

how dimension-8 terms, or equivalently, quadratic combinations of dimension-6 terms,

could affect LHC observables such as diboson productions, DY distributions, and Higgs

processes [15, 46, 70, 135, 75]. These analyses aim to discern whether subtle deviations

could arise from neglected higher-dimensional effects, and to what extent current and

future experiments might be sensitive to them. While so far no significant deviations

attributable to dimension-8 operators have been detected, the inclusion of such terms

is crucial for consistent interpretation as experimental precision increases. The SMEFT

approach has now been adopted by the experimental community as well. To illustrate,

the CMS collaboration has released results of fits interpreted in the SMEFT framework

[149].

1.3.4. Projections for future colliders

Boughezal, Petriello, and Wiegand showed that the planned EIC can play an important

role in constraining SMEFT operators. In [47], they studied NC DIS at the EIC with po-

larized beams. They found that certain four-fermion operator combinations are accessible

at the EIC but practically invisible in LHC Drell-Yan measurements. Thanks to polar-

ization asymmetries and the clean leptonic initial state, the EIC can break degeneracies

among SMEFT Wilson coefficients that persist even after LEP and LHC data are com-

bined. Indeed, their fit projections showed the EIC probing new contact interactions at

scales comparable to or beyond the reach of high-invariant-mass LHC dilepton searches,

without suffering flat directions in parameter space. This demonstrates that precision
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DIS measurements, even at relatively low energy scales of just a few TeV, complement

high-energy colliders in constraining EFT parameters.

A Snowmass 2021 whitepaper by de Blas et al. (2022) performed global fits for future

collider scenarios [80]. They considered several run plans: combinations of future e+e−

Higgs factories (FCC-ee and the proposed Circular Electron-Positron Collider (CEPC) in

China), a high-energy muon collider, and the HL-LHC. For each scenario, they included

the relevant projected measurements and fit the expected precision on Wilson coeffi-

cients. For example, their Higgs+EW fit (updating the European Strategy study) showed

percent-level or better measurements of Higgs couplings would dramatically tighten the

bounds on certain coefficients. They also did a dedicated fit to four-fermion operators,

which is challenging at the LHC but would be probed cleanly by lepton colliders running at

the Z pole and above. Separately, they fit the top-quark sector using projected HL-LHC

and future lepton collider top data. The outcome was a broad view that future colliders

have complementary strengths: FCC-ee/CEPC excels in high-precision EW and Higgs

measurements, Muon Collider (with multi-TeV energy) could probe contact interactions

far beyond the LHC reach, and HL-LHC still plays a role in QCD-dominated processes.

In all cases, the fits were reported in terms of Wilson coefficient sensitivities or equivalent

coupling deviations, enabling comparison between scenarios.

A particularly comprehensive projection is the SMEFiT3.0 study by Celada et al. [63].

They updated the global data fit to include the latest Run 2 results for Higgs, top, and

diboson channels, then extrapolated to the HL-LHC at 14 TeV with 3 ab−1 by scaling

uncertainties and central values appropriately. The addition of HL-LHC data is expected
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to significantly strengthen constraints on many coefficients, especially those affecting high-

p> tails. Furthermore, Celada et al. incorporated detailed FCC-ee projections at multiple

energies: the Z-pole, the WW threshold, the Higgs factory (240 GeV), and even tt

threshold and 365 GeV runs. Using optimal observable techniques for some channels, they

showed that FCC-ee data would push SMEFT sensitivity to the 10−3 level in many cases,

effectively eliminating vast areas of parameter space or probing multi-TeV scales for new

physics. For example, FCC-ee’s precise measurements of the Z lineshape, asymmetries,

and W mass can improve constraints on four-fermion and EW operators by one to two

orders of magnitude beyond the capabilities of the HL-LHC. The study also examined

how these improvements could enhance the ability to distinguish between different UV

models, based on the characteristic patterns they induce in SMEFT coefficients. The

clear message is that future high-energy and high-precision colliders will sharpen SMEFT

tests of the SM dramatically, making full use of the EFT framework to search for new

physics.

***

In summary, a vast array of phenomenological studies [112, 103, 68, 66, 122, 123, 20,

91, 99, 95, 94, 153, 101, 67, 79, 115, 100, 16, 18, 17, 37, 109, 78, 29, 47, 44,

147, 119, 48, 97, 137, 143, 90, 74, 93, 114, 53, 150, 25, 92, 78, 29, 107, 98,

62, 15, 46, 97, 80, 125, 30, 45, 33, 39, 63] have firmly established the SMEFT as a

powerful and unifying framework to describe potential new physics in a model-independent

way. The continued refinement of this framework, both in theoretical consistency and in

confrontation with data, is a central component of modern particle physics research.
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1.4. Outline of the thesis

This thesis investigates how future colliders can constrain new physics through pre-

cision observables, primarily within the SMEFT framework. Each chapter addresses a

different angle of this broader goal, with a focus on collider-specific reach, theoretical

clarity, and realistic observables.

• Chapter 2. The Opening Repertoire introduces collider kinematics, the

SMEFT formalism, and statistical tools used throughout the thesis.

• Chapter 3. EIC Wide Shut studies PV DIS observables at the EIC and their

role in resolving parameter degeneracies in SMEFT fits.

• Chapter 4. DISentangling SMEFT: A Few Colliders More combines

SMEFT projections at the EIC, LHeC, and FCC-eh to test complementarity, in-

clude next-to-leading-order QCD corrections, and resolve flat directions in global

fits using EW observables.

• Chapter 5. Transcendental Étude in e− Minor introduces a novel transverse

spin asymmetry at the FCC-ee to significantly improve sensitivity to the electron

Yukawa coupling.

• Chapter 6. CP -odd to Joy explores CP -violating dimension-8 gluonic opera-

tors via Collins-Soper angular moments in the DY production with an associated

jet.

• Chapter 7. Conclusion summarizes the findings, contributions, and future

directions in precision collider phenomenology.
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CHAPTER 2

The Opening Repertoire

The only difference between screwing around and science is writing it down.

Adam Savage

This chapter outlines the theoretical foundations and methodological tools used through-

out this thesis. We begin with collider phenomenology, focusing on three main classes of

collisions: deep inelastic scattering, Drell-Yan production, and electron-positron annihi-

lation. These processes are central to precision measurements and new physics searches,

providing complementary access to the quantum chromodynamics and electroweak struc-

ture of the Standard Model. The discussion then moves on to an overview of the Standard

Model Effective Field Theory, which provides a systematic framework to parametrize de-

viations from Standard Model predictions. We then examine the kinematics of many-

particle final states and the construction of Lorentz-invariant phase space. Afterwards,

we summarize the statistical methods used to obtain bounds on new physics parameters.

Finally, we describe the computational frameworks used throughout this work, including

symbolic amplitude calculations, numerical integration routines, and statistical analysis

workflows.
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2.1. Collider phenomenology

We have three main classes of collisions that serve as the core tools of collider phe-

nomenology: deep inelastic scattering (DIS), Drell-Yan (DY) production, and electron-

positron (e−e+) annihilation. They offer complementary views into the structure of matter

and the quantum chromodynamics (QCD) and electroweak (EW) interactions. Their full

theoretical treatment fills textbooks, and here we focus on the basics relevant to our

works.

2.1.1. Deep inelastic scattering

DIS involves the collision of a lepton ` with a hadron H, typically a proton or a light

nucleus, illustrated in Figure 2.1. At leading order, the lepton scatters off a single parton

inside the hadron via neutral or charged gauge-boson exchange, V = γ, Z,W . The scat-

tered lepton `′ is detected, while the hadronic final state X is treated inclusively. In this

thesis, we focus on neutral-current (NC) DIS processed mediated by a photon or Z-boson

exchange.

A typical DIS process can be expressed as

`(k) +H(P )→ `′(k′) +X.(2.1)

Here, k, k′, and P are the mometum of the incoming lepton, the scattered lepton, and

the incoming hadron, respectively. The underlying partonic process at leading order is

`(k) + q(p)→ `′(k′) + qf (p
′),(2.2)
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ℓ

ℓ′ 

X

V = γ, Z, W

H

Figure 2.1. Schematic representation of a typical deep inelastic scattering

event. An incoming lepton, `, scatters off a parton inside the hadron, H,

via EW gauge-boson exchange, resulting in an outgoing lepton, `′, and an

inclusive hadronic final state X. Throughout this thesis, blue lines indicate

leptons, orange lines denote quarks, magenta lines represent EW gauge

bosons, green lines represent gluons, and brown lines indicate scalar par-

ticles. This color scheme is used consistently throughout, and should be

particularly helpful for the synesthetically inclined. Feynman diagrams are

produced using Jaxodraw [38].

with q a quark or an antiquark inside the hadron. The Feynman diagram that represents

this process is pictured in Figure 2.2.

Partonic and hadronic momenta are related by the Bjorken-x parameter, p = xP . The

standard notation for the momentum transfer is q = k − k′, with q2 = −Q2. Some of the

fundamental kinematic relations relevant for DIS are given as follows:

p · k = pf · k′ =
xs

2
, k · k′ = p · q =

Q2

2
, P · q =

Q2

2x
,
P · q
P · k

=
p · q
p · k

= y.(2.3)
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ℓ ℓ′￼

V = γ, Z

q qf

Figure 2.2. The Feynman diagram for the underlying partonic process for

the DIS at leading order.

At leading order in massless approximation, these relations give us Q2 = xys.

For the NC DIS, the matrix element has contributions from photon and Z-boson

exchanges,

A = Aγ +AZ .(2.4)

Let us write down the amplitudes in the parametric form that we call the sleight of

hand. The sleight-of-hand parametrization tells us that the vertex factors are of the form

V µ
ffV = iγµ(CL

ffV PL+CR
ffV PR) and the propagators of the form ∆µν

V (k) = iNµν
V (k)DV (k);

furthermore, when the propagator has the momentum that corresponds to one of the

d = s, t, u channels, we use the shorthand notation ∆µν
V d. Here, we call the C factors

the coupling strengths and the D terms the propagator denominators, which we keep in

the closed form until we actually plug in the numbers, which helps us keeping the input

scheme general, as well as keeping track of any mistakes in writing down the amplitude.

To illustrate the latter, if we ever see the factors CL
eeZ

2 and CL
qqZ

2 together with polar-

ization factors (1 − λe) and (1 + λq) in an electron-quark (specifically not an antiquark)
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scattering, we understand that the quark-Z coupling must be actualy CR
qqZ . The propaga-

tor numerators, namely the N factors, are supposed to be evaluated immediately because

they contain Lorentz structures. For a massless gauge boson in general, we have

Nµν
V (k) = −gµν , V = γ, g,(2.5)

and for a massive gauge boson, we have

Nµν
V (k) = −gµν +

kµkν

m2
V

, V = Z,W,(2.6)

We assume unitary gauge because we work at tree level. It is beneficial to remark that

if the massive gauge boson ever couples to external, massless fermions, the momentum-

dependent term drops (because these terms give zero if we use the Dirac equation of

motion). For the propagator denominators, we may use the full Breit-Wigner form only

when we are certain that we assume a collider energy or an invariant-mass variable around

a specific resonance point, and this can take place only at the numerical step, so we avoid

having to carry around so many terms in our analytical expressions.

We take this opportunity also to introduce our convention for labeling external par-

ticles. Instead of deploying an index scheme such as 1 + 2 → 3 + 4 + . . ., we call the

incoming particles a and b, and then we call the leading particle 1, subleading particle 2,

subsubleading particle 3, and so on, namely for a collision, we have a+b→ 1+2+3+ . . ..

For a decay, we drop b. Consequently, for a partonic process, we use the momenta pa,

pb, p1, p2, p3, and so on, and in fact, we go on to denote any given process in terms of

momenta as pa+pb → p1 +p2 +p3 + · · · . We elaborate more on the momenta later in this

chapter. Now, we write the underlying partonic processes for the DIS under consideration
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in a manner consistent with our convention for particle labeling as

q(pa) + e−(pb)→ q(p1) + e−(p2),(2.7)

q(pa) + e+(pb)→ q(p1) + e+(p2),(2.8)

q(pa) + e−(pb)→ q(p1) + e−(p2),(2.9)

q(pa) + e+(pb)→ q(p1) + e+(p2).(2.10)

With our sleight-of-hand parametrization, we write the amplitudes as

Aie− =
∑
V=γ,Z

i[u1V
µ
qqV ua][u2V

ν
eeV ub]∆

µν
V t,(2.11)

Aie+ =
∑
V=γ,Z

i[u1V
µ
qqV ua][vbV

ν
eeV v2]∆µν

V t,(2.12)

A−ie− =
∑
V=γ,Z

i[vaV
µ
qqV v1][u2V

ν
eeV ub]∆

µν
V t,(2.13)

A−ie+ =
∑
V=γ,Z

i[vaV
µ
qqV v1][vbV

ν
eeV v2]∆µν

V t,(2.14)

where i = 1, 2, 3, 4, 5. Here, we assume the familiar Partice Data Group (PDG) particle

identification numbers, namely the quarks are numbers (d, u, s, c, b) = (1, 2, 3, 4, 5), anti-

quarks picks up a minus sign, and the gluon is 0. For the sake of completeness, we write

A0e± = 0.

All Lorentz indices are written in the upstairs position. Since this work is purely

phenomenological, we never deal with Lorentz indices showing up more than twice in any

term, and raising/lowering would be superfluous. Aside from occasional SU(2) and SU(3)

indices on the respective generator and the gauge bosons, which are always explicit, we
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make no use of spinor, flavor, or other group-theoretical index structures. As a result, all

index contractions are unambigous.

We discuss the computation of squared amplitudes in the last section in this chapter,

when we describe our computational infrastructure. Now, we write the partonic cross

section as

σie±(ŝ) = F

∫
|Aie± |2 dLIPS, i = q, q,(2.15)

and the hadronic cross section is given by

σHe±(s) =

Nf∑
i=−Nf

∫
dxa fi(xa, µF )σie±(ŝ),(2.16)

where Nf is the number of active flavors, fi(xa, µF ) is the parton distribution function

(PDF) evaluated at the Bjorken parameter xa and the factorization scale µF , F is the

flux factor, and dLIPS is the differential Lorentz-invariant phase space (LIPS), which we

detail later in this chapter. We note that if any or both of the incoming beams, H or

e±, are polarized, then we can write a polarized cross section, or yet an observable based

on various polarization states of the two beams that eventually depends on various linear

combinations of polaried cross sections.

In processes involving hadrons in the initial state, such as the DIS process or the

DY production discussed in the next section, the QCD factorization theorem allows the

hadronic cross section to be expressed as a convolution of PDFs and perturbatively cal-

culable partonic cross sections [96, 72]. PDFs encapsulate nonperturbative information

about the momentum distribution of partons inside the hadron, while the partonic cross
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section describes the short-distance interaction and is computed using standard techniques

in perturbative QCD. This separation of scales is valid up to power-suppressed corrections

and forms the theoretical foundation for the expressions used throughout this thesis.

2.1.2. Drell-Yan production

X

X

ℓ

ℓp

p
V = γ, Z, W

Figure 2.3. Schematic representation of Drell-Yan production in pro-

ton–proton collisions. A quark and an antiquark from the incoming protons

annihilate via an intermediate EW gauge boson, V = γ, Z,W , which decays

into a lepton pair. Additional hadronic activity from the proton remnants

is denoted by X and treated inclusively. This is a general schematic; in our

analysis, we focus on neutral-current production and include a real jet in

the final state.

The DY process describes the production of an EW gauge boson in quark-antiquark

annihilation, followed by its decay into a lepton pair; in this thesis, we focus exclusively

on NC DY processes. At leading order, the partonic process is qq → γ∗/Z → `−`+. The
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lepton pair kinematics offer precision access to EW parameters and are highly sensitive

to potential new physics contributions.

We study the DY production in association with a real jet (DYj) and in which the

final leptonic product is an electron-positron pair. The process can be expressed as

p(Pa) + p(Pb)→ j(p1) + V (p23)→ j(p1) + e−(p2) + e+(p3),(2.17)

where ps are the incoming protons, V is the intermediate EW gauge boson that later

decays into the lepton pair. We take this opportunity to emphasize our notation for

larger processes that have more than four external states and that can be expressed as

chain events. The entire process can be considered as a jV production, followed by the

decay V → e−e+. Our labeling scheme is a + b → 1 + 2 + 3 for the process in the big

picture, but since V is the mother for particles 2 and 3, we find it appropriate to denote

it 23. The underlying partonic process at leading order is

pi(pa) + pj(pb)→ j(p1) + V (p23)→ j(p1) + e−(p2) + e+(p3),(2.18)

where pi and pj could be a quark, an antiquark, or a gluon inside the protons. Since

the initial states of the hadronic process are identical, there is no way of knowing which

parton comes from which proton, which we take care of carefully when we write down the

hadronic cross section. With the real jet accompanying the electron-positron pair, the

Feynman diagrams depicted in Figure 2.4 look more populated compared to a usual DY

production.

Partonic and hadronic momenta are related by the Bjorken-x parameters, pa = xaPa

and pb = xbPb. The standard quantities relevant to this process are the Mandelstam
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Figure 2.4. The Feynman diagrams for the underlying partonic process for

the Drell-Yan and jet production at leading order.

invariants of the 2→ 2 subprocess pi(pa)+pj(pb)→ j(p1)+V (p23), namely ŝ = (pa+pb)
2,

t̂ = (pa − p1)2, and û = (pa − p23)2. We denote the dilepton invariant mass by m``

such that m``
2 = (p2 + p3)2. From momentum conservation, we notice that this quantity

is also the invariant mass of the EW gauge boson V , corresponding to the momentum

p23, namely m``
2 = p23

2. Speaking of invariant mass, we have one more, namely the

invariant mass of the jV system, denoted mjV . From momentum conservation, we note

that this is nothing but the Mandelstam-s parameter for the partonic process, namely

ŝ = (pa + pb)
2 = (p1 + p23)2 = mjV

2. At the Large Hadron Collider, where the collider

energy is at the TeV scale, we assume massless fermions. In conjunction with this, we

note that the familiar relation involving the Mandelstam parameters holds true for the
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2→ 2 subprocess pi(pa) + pj(pb)→ j(p1) + V (p23); to wit,

ŝ+ t̂+ û = ma
2 +mb

2 +m1
2 +m23

2 = 0 + 0 + 0 +m23
2 = m``

2,(2.19)

so we can express û = m``
2 −mjV

2 − t̂ to eliminate one Mandelstam parameter. Other

quantities relevant to the DY production are the dilepton transverse momentum, rapidity,

pseudorapidity, azimuthal angle, and beam separation, denoted p>, y, η, φ, and ∆R,

respectively, which are all measured in the lab frame, namely the hadronic center-of-mass

(c.m.) frame. For particle momenta k and k′, the standard definitions are

kT =
√
k2
x + k2

y, yk =
1

2
log

(
Ek + kz
Ek − kz

)
, ηk =

1

2
log

(
|k|+ kz
|k| − kz

)
,(2.20)

φk = arctan

(
ky
kx

)
, ∆Rkk′ =

√
∆ηkk′ + ∆φkk′ ,(2.21)

where ∆ηkk′ = ηk − ηk′ and ∆φkk′ = φk − φk′ .

For the NC DY production, the amplitude has contributions from photon and Z-boson

channels,

A = Aγ +AZ ,(2.22)

and the interference between these contributions plays a significant role in observables

like AFB, especially in the vicinity of the Z pole. Let us write down the amplitudes,

Aij, with the sleight-of-hand parametrization. Here, i and j are parton flavors. With

Nf = 5, in principle we have 121 amplitudes. Since we have massless fermions and since

we focus exclusively on neutral current (so the flavor change is forbidden, up and charm

amplitudes are equal, and down, strange, and bottom amplitudes are identical), this



68

number becomes 25. Furthermore, not all processes exist. The only nontrivial processes

are ij = 20, 2 − 2, 10, 1 − 1, 02, 01, 0 − 1, 0 − 2,−11,−10,−22,−20. The sleight-of-hand

amplitudes are

Ai0 =
∑
V=γ,Z


i[u1V

ν
qqV ∆qsV

ρ
qqgua][u2V

µ
eeV v3]∆µν

V 23ε
ρ
b

+i[u1V
ρ
qqg∆quV

ν
qqV ua][u2V

µ
eeV v3]∆µν

V 23ε
ρ
b

 , i = 1, 2(2.23)

Ai−i =
∑
V=γ,Z


[vbV

ν
qqV ∆qsV

ρ
qqgua][u2V

µ
eeV v3]∆µν

V 23ε
∗
1
ρ

+i[vbV
ρ
qqg∆quV

ν
qqV ua][u2V

µ
eeV v3]∆µν

V 23ε
∗
1
ρ

 , i = 1, 2(2.24)

A0i =
∑
V=γ,Z


i[u1V

ν
qqV ∆qsub][u2V

µ
eeV v3]∆µν

V 23ε
ρ
a

+i[u1V
ρ
qqg∆qtV

ν
qqV ub][u2V

µ
eeV v3]∆µν

V 23ε
ρ
a

 , i = 1, 2(2.25)

A0−i =
∑
V=γ,Z


i[vbV

ρ
qqg∆qsV

ν
qqV v1][u2V

µ
eeV v3]∆µν

V 23ε
ρ
a

+i[vbV
ν
qqV ∆qtV

ρ
qqgv1][u2V

µ
eeV v3]∆µν

V 23ε
ρ
a

 , i = 1, 2(2.26)

A−ii =
∑
V=γ,Z


i[vaV

ρ
qqg∆qtV

ν
qqV ub][u2V

µ
eeV v3]∆µν

V 23ε
∗
1
ρ

+i[vaV
ν
qqV ∆quV

ρ
qqgub][u2V

µ
eeV v3]∆µν

V 23ε
∗
1ρ

 , i = 1, 2(2.27)

A−i0 =
∑
V=γ,Z


i[vaV

ρ
qqg∆qsV

ν
qqV v1][u2V

µ
eeV v3]∆µν

V 23ε
ρ
b

+i[vaV
ν
qqV ∆quV

ρ
qqgv1][u2V

µ
eeV v3]∆µν

V 23ε
ρ
b

 , i = 1, 2.(2.28)
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Here, ε
(∗)
k is the gluon polarization vector corresponding to the momentum pk when the

gluon is incoming (outgoing), and we have a new vertex factor, V µ
qqg = iCqqgT

A
abγ

µ, and

multiple new propagators, ∆qd and ∆µν
V 23. The former is the quark propagator in the

indicated channel, d = s, t, u, namely ∆qd = i/k/d̂, where k is such that k2 = d̂. The latter

is the good old EW gauge-boson propagator but now having the momentum p23.

Now, the partonic cross section is given by

σij(ŝ) = F

∫
|Aij|2 dLIPS,(2.29)

and the hadronic cross section is obtained as

σ(s) =

Nf∑
i=−Nf

Nf∑
j=−Nf

∫
dxa dxb fi(xa, µF )fj(xb, µF )σij(ŝ).(2.30)

Adding the partonic cross section this way, weighted by the corresponding factors of

PDFs, makes sure that we remain blind as to which parton comes from which proton.

The angular analysis of the DY production typically takes place by expressing the

differential hadronic cross section in terms of spherical harmonics:

dσ

dΩ?
=

3σ

16π

[
1 + cθ?

2 +
7∑

m=0

AmYm(Ω?)

]
,(2.31)

where Ω? = (θ?, ϕ?) are the Collins-Soper (CS) angles [73], the Ym are just some linear

combinations of the spherical harmonics Y 0
1 , Y 1

1 ± Y −1
1 , Y 0

2 , Y 1
2 ± Y −1

2 , and Y 2
2 ± Y −2

2 ,

namely

Y0 =
1

2
(1− 3cθ?

2), Y1 = s2θ?cϕ? , Y2 =
1

2
sθ?

2c2ϕ? , Y3 = sθ?cϕ? , Y4 = cθ? ,(2.32)
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Y5 = sθ?
2s2ϕ? , Y6 = s2θ?sϕ? , Y7 = sθ?sϕ? ,(2.33)

with

∫
dΩ? YmYn ∝ δmn,(2.34)

and the Am are the CS moments. Here, s and c are shorthand notations for the sine and

cosine of the angle given in the subscript, respectively. We note that the CS angles are

directly related to the lab momenta of the electron and the positron:

cθ? =
2(pe

−
z E

e+ − pe+z Ee−)

m``

√
m``

2 + p>2
, ϕ? = arctan

[
2pe

−
y

√
m``

2 + p>2

m``(pe
−
x − pe

+

x )

]
,(2.35)

where p> is the transverse momentum of the dilepton system, and Ee± and pe
±
x,y,z are

the energy and momentum components of the electron and positron, provided that the

jV system is produced in the xz plane in the lab frame. Using the orthogonality of the

spherical harmonics, we obtain

A0 =
20

3
〈Y0〉+

2

3
, A1 = 5〈Y1〉, A2 = 20〈Y2〉, A3 = 4〈Y3〉, A4 = 4〈Y4〉,(2.36)

A5 = 5〈Y5〉, A6 = 5〈Y6〉, A7 = 4〈Y7〉,(2.37)

with

〈Ym〉 =

∫
Ym dσ

σ
.(2.38)

In a proton-proton collision, the incoming quark typically carries a larger momentum frac-

tion than the antiquark, imparting a net boost to the intermediate gauge boson V along
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the beam axis. Consequently, the CS polar angle θ? must be reconstructed experimentally

as

cθ?R = sign(pVz )cθ?(2.39)

to assign the correct direction [6, 148], where pVz is the z component of the lab momentum

of the EW gauge boson V . This ensures that the angular distributions reflect the true

kinematics of the process. Notably, the azimuthal angle ϕ? does not require such an

adjustment. We use the reconstructed expression in our calculations of the expectation

values of the angular structures.

These angular coefficients, or the CS moments, encode the full angular structure of

the dilepton final state in the DY production. The moments A0 through A7 correspond

to spherical harmonics up to ` = 2, reflecting the spin-1 nature of the intermediate EW

boson in the Standard Model (SM) at leading order. In this picture, the lepton pair

is produced from an s-channel vector current, and the angular distribution reflects the

interference patterns of different helicity amplitudes. Specifically, A0 and A2 are sensi-

tive to longitudinal and transverse polarizations, A1 and A3 probe spin correlations and

parity-violating effects, and A4 captures the forward-backward asymmetry. The remain-

ing coefficients A5 through A7 are zero at leading order in the SM but can be activated at

higher QCD orders, by CP -odd and higher-dimensional SMEFT operators, or simply by

including additional jets in the final state at tree level (so the azimuthal symmetry of the

intermediate states jj . . . jV is broken). Notably, angular structures beyond ` = 2, such

as those corresponding to the Bm harmonics [15], arise only through spin-2 interference

patterns and are a hallmark of dimension-8 SMEFT contributions, as these operators
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induce ` = 2 partial waves at the amplitude level, allowing for ` = 3 harmonics in the

squared amplitude.

2.1.3. Electron-positron annihilation

Electron-positron (e−e+) annihilation offers a clean theoretical and experimental environ-

ment, free from hadronic uncertainties such as PDFs. In this thesis, we study the bb and

semi-leptonically decaying W−W+ channels, namely e−e+ → bb and e−e+ → W−W+ →

`νjj. With these processes, we can probe EW interactions and quantum interference near

the Higgs resonance, providing an opportunity to access the electron Yukawa coupling.

The use of transversely polarized electron beams and longitudinally polarized positron

beams allows the construction of single and double spin asymmetries that are linearly sen-

sitive to the electron Yukawa coupling. These asymmetries emerge from the interference

between the Higgs-mediated signal amplitude and the SM background. In the bb final

state, the Higgs contribution interferes with the dominant EW production channels; in

the semi-leptonic WW final state, the interference arises between the Higgs and the con-

tinuum WW production processes. In both cases, the signal is enhanced through beam

polarization and the use of angular observables that isolate the relevant interference terms.

Among all possible Higgs decay modes and relevant background processes illustrated

in Figure 2.5, the bb and semi-leptonic WW channels are chosen due to their large branch-

ing ratios. These channels offer the best statistical reach while maintaining manageable

experimental complexity. Ref. [88] established the baseline sensitivity using unweighted

cross section measurements in these final states and noted that the use of polarized beams
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Figure 2.5. Representative diagrams for Higgs production (top) and its de-

cay into EW bosons or fermions and gluons, alongside the dominant back-

ground processes (bottom). Adapted from Ref. [88].

could enhance the reach, particularly through interference effects involving the Higgs-

mediated amplitude. While that study did not employ polarization-sensitive observables

or optimized event weighting, it pointed out the opportunity for further improvement via

tailored asymmetries. This motivates our focus on constructing spin asymmetries that

are linearly sensitive to the electron Yukawa coupling.

These annihilation processes, due to their cleanliness and sensitivity to small couplings,

complement the hadronic probes discussed earlier and play a critical role in testing the

SM at sub-percent precision.

The processes of interest are

e−(pa) + e+(pb)→ b(p1) + b(p2),(2.40)

e−(pa) + e+(pb)→ W−(p12) +W+(p34)→ `−(p1) + ν`(p2) + uf (p3) + df (p4),(2.41)
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e−(pa) + e+(pb)→ W+(p12) +W−(p34)→ `+(p1) + ν`(p2) + uf (p3) + df (p4).(2.42)
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W

ℓ
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W

ℓ
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ℓ

νℓ

uf

df

e

e
V = γ, Z

W

W

ℓ
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νℓ

uf

df

νe
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Figure 2.6. Leading-order Feynman diagrams for e−e+ → bb (top) and

e−e+ → W−W+ → `νjj (bottom two).

The leading-order Feynman diagrams within the SM are presented in Figure 2.6. Here,

` could be an electron, muon, or tau, and uf (df ) represents an up (down) or charm

(strange) quark. In our work, we set the Cabibbo-Kobayashi-Maskawa matrix equal to
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identity. The sleight-of-hand amplitudes are

A =


i[vbVeehua][u1Vbbhv2]∆hs

+
∑
V=γ,Z

i[vbV
µ
eeV ua][u1V

ν
bbV v2]∆µν

V s


(2.43)

for the bb process,

A =



i[vbVeehua][u1V
µ
ff ′Wv2][u3V

ρ
ff ′Wv4]V νσ

hWW∆hs∆
µν
W12∆ρσ

W34

+
∑
V=γ,Z

[vbV
α
eeV ua][u1V

µ
ff ′Wv2][u3V

ρ
ff ′Wv4]V βνσ

VWW∆αβ
V s∆

µν
W12∆ρσ

W34

+i[vbV
σ
ff ′W∆νtV

ν
ff ′Wua][u1V

µ
ff ′Wv2][u3V

ρ
ff ′Wv4]∆µν

W12∆ρσ
W34


(2.44)

for the WW process if the lepton flying off has negative charge, and

A =



i[vbVeehua][u2V
µ
ff ′Wv1][u4V

ρ
ff ′Wv3]V νσ

hWW∆hs∆
µν
W12∆ρσ

W34

+
∑
V=γ,Z

[vbV
α
eeV ua][u2V

µ
ff ′Wv1][u4V

ρ
ff ′Wv3]V βνσ

VWW∆αβ
V s∆

µν
W12∆ρσ

W34

+i[vbV
ν
ff ′W∆νuV

σ
ff ′Wua][u2V

µ
ff ′Wv1][u4V

ρ
ff ′Wv3]∆µν

W12∆ρσ
W34


(2.45)

for the WW process if the lepton flying off has positive charge. Here, we have defined new

quantities. For the vertex factors, we have Vff ′W = iCff ′Wγ
µPL as the universal ff ′W

coupling for leptons and quarks, Vffh = iCffh the fermion-Higgs vertex, which means

Cffh is essentially the Yukawa coupling of fermion f , V µν
hWW = iChWWg

µν the coupling

of the Higgs particle to two W bosons, and V µνλ
VWW = iCVWWS

µνλ
pV pW−pW+

the triple EW
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gauge-boson interaction, with Sµνλqpk = gµν(q − p)λ + gνλ(p− k)µ + gλµ(k − q)ν . As for the

propagators, ∆νd = i/k/d̂ is the neutrino propagator for the d channel, namely k2 = d̂,

∆hs is the Higgs propagator in the s channel, ∆µν
V s is the propagator for V = γ, Z in the s

channel, and ∆µν
W12(34) is the W propagator with momentum p12(34). We note that at the

SM, the Yukawa couplings are proportional to the mass of the fermion; however, in our

work, we keep it as Cffh to distinguish it from the mass term deriving from the equation

of motion. We are interested in the squared amplitudes to the leading order in electron

mass. We expand squared amplitudes to leading order in bottom mass for the bb process

and we assume massless final states for the WW process.

We detail squared amplitude computations later in this chapter, and we emphasize

here an important aspect. We are interested in transversely polarized electrons and lon-

gitudinally polarized positrons. Since we are assuming massive initial states, this requires

careful use of generalized projectors [43]. In the computation of the squared amplitude,

we make use of the relations

uλ(p)uλ(p) = (/p+m)P+
λ (S),(2.46)

vλ(p)vλ(p) = (/p−m)P−λ (S).(2.47)

Here, P±λ (S) is the generalized projector for the particle/antiparticle spinors, given by

P±λ (S) =
1± λγ5/S

2
,(2.48)

where Sµ is the polarization 4-vector. We detail our analysis in the relevant chapter later

in the thesis.
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Now, the cross section is given by

σ(s) = F

∫
|A|2 dLIPS,(2.49)

for both of the bb and WW processes. We note that since we specify the polarization states

of the incoming beams explicitly by introducing the helicity signs λa/b for the incoming

electron/positron beam, the cross section is technically a function of λa and λb through

the squared amplitude, a fact that we later exploit to define asymmetries.

2.2. The SMEFT formalism

The Standard Model Effective Field Theory (SMEFT) is a model-independent exten-

sion of the SM. In this framework, one constructs operators of mass dimension n > 4,

denoted O
(n)
k , deploying the existing SM particle spectrum. Each operator is introduced

with an effective coupling strength, C
(n)
k , which are called Wilson coefficients. These ef-

fective couplings are defined at an ultraviolet cutoff scale, Λ. We assume that Λ is heavier

than all SM fields and beyond accessible collider energy. The SMEFT Lagrangian is given

schematically by

L = LSM +
∑
n>4

1

Λn−4

∑
k

C
(n)
k O

(n)
k .(2.50)

We note that the SMEFT operators modify the SM vertices in a gauge-invariant manner

and generate gauge-invariant amplitudes if it is a new interactions absent in the SM.

Gauge invariance is a fundamental symmetry of the SM, ensuring the consistency of the

theory and the preservation of key principles such as unitarity and renormalizability. In

the SMEFT framework, maintaining gauge invariance is essential because it guarantees
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that the extended theory respects the same underlying symmetry structure as the SM.

This constrains the possible forms of higher-dimensional operators. The construction of

gauge-invariant operators prevents the introduction of unphysical degrees of freedom and

maintains the predictive power of the SMEFT extension.

Let’s consider the operators that are relevant to our studies and that we use in our

works presented later in the thesis. We start with the DIS. At the parton level, the DIS

is represented by the interaction of a leptonic current with a quark current by exchanging

an EW gauge boson, which we assume to be neutral. Thus, there are operators in the

form (`Γ`)(qΓ′q), where ` and q are Dirac fermions and Γ and Γ′ are some Dirac matrices,

that could contribute to the amplitude. At high energies, we assume massless fermions,

which are then chiral eigenstates, and since the SM amplitude has definite chiral structure,

we can have only operators of the form (`γµPX`)(qγµPY q) that conserve helicity, where

PX and PY are the chiral projections operators, PL or PR. A fermionic field has mass

dimension 3/2, so such an operator would have dimension 6, so this is the lowest dimension

we can consider to extend our amplitudes to a new physics scenario. Thus, our dimension-

6 operators are of the form

OXY = (`γµPX`)(qγµPY q).(2.51)

We call operators of this form semi-leptonic four-fermion operators. Now let ` and q

denote SU(2) left-handed doublets and e, u, and d denote SU(2) right-handed singlets.

In the Warsaw basis [110], there are seven such operators:

O
(1)
`q = (`γµ`)(qγµq), O

(3)
`q = (`γµτ I`)(qγµτ

Iq),(2.52)
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O`u = (`γµ`)(uγµu), O`d = (`γµ`)(dγµd),(2.53)

Oeu = (eγµe)(uγµu), Oed = (eγµe)(dγµd),(2.54)

Oqe = (eγµe)(qγµq),(2.55)

where the τ I are the Pauli matrices. The corresponding vertex factors are of the form

VXY = iCXY [γµPX ]`[γµPY ]q,(2.56)

where ` and q indicate the leptonic and quark currents, and

C
u/d
LL = C

(1)
`q ∓ C

(3)
`q , C

u/d
LR = C`u/d, C

u/d
RL = Cqe, C

u/d
RR = Ceu/d(2.57)

for the up or down-like quarks. The SMEFT Feynman diagram for the underlying partonic

process of the DIS is painted in Figure 2.7.

ℓ ℓ

q q

Figure 2.7. The SMEFT Feynman diagram for the underlying partonic pro-

cess of the DIS generated by the semi-leptonic four-fermion operators.

The corresponding amplitudes are

Aie− =
∑
XY

Ci
XY [u2γ

µPXub][u1γ
µPY ua],(2.58)
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A−ie− =
∑
XY

Ci
XY [u2γ

µPXub][vaγ
µPY v1],(2.59)

Aie+ =
∑
XY

Ci
XY [vbγ

µPXv2][u1γ
µPY ua],(2.60)

A−ie+ =
∑
XY

Ci
XY [vbγ

µPXv2][vaγ
µPY v1],(2.61)

where i = 1, 2, 3, 4, 5 represent quark flavors d, u, s, c, b. We add these amplitudes

to the corresponding SM amplitudes given in Eqs. (2.11)–(2.14). At this point, we

emphasize that we assume flavor universality of the SMEFT operators. To illustrate, the

operator O
(1)
`q could describe the electron-up quark coupling, as well as muon-strange quark

coupling. Furthermore, since we have NC interaction and since we are in the massless

limit, up and charm quarks, as well as down, strange, and bottom quarks are identical at

the amplitude level. This is the basis of our calculations for Chapter 3.

The next we can do is to consider the SMEFT corrections to the ffV vertices, where

V is a neutral EW gauge boson. We expect these corrections to be of the form

V µ
ffV = V µ

ffV,SM

(
1 +

∑
k

Ckvk

)
,(2.62)

where vk is some SMEFT shift to the SM vertex factor characterized by the Wilson

coefficient Ck. We note that these modifications respect gauge invariance and all the un-

derlying symmetries of the SM Lagrangian. In the Warsaw basis, there are 10 dimension-6

operators that cause this kind of a modification:

OϕWB = (ϕ†τ Iϕ)W I
µνB

µν , OϕD = (ϕ†Dµϕ)∗(ϕ†Dµϕ),(2.63)

O
(1)
ϕ` = (ϕ†i

↔
D

µϕ)(`γµ`), O
(3)
ϕ` = (ϕ†i

↔
D

µτ Iϕ)(`γµτ I`),(2.64)
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Oϕe = (ϕ†i
↔
D

µϕ)(eγµe),(2.65)

O(1)
ϕq = (ϕ†i

↔
D

µϕ)(qγµq), O(3)
ϕq = (ϕ†i

↔
D

µτ Iϕ)(qγµτ Iq),(2.66)

Oϕu = (ϕ†i
↔
D

µϕ)(uγµu), Oϕd = (ϕ†i
↔
D

µϕ)(dγµd),(2.67)

O`` = (`γµ`)(`γµ`),(2.68)

where ϕ is the SU(2) scalar doublet, W I
µν and Bµν are SU(2) and U(1) gauge boson field

strength tensors, Dµ is the covariant derivative, and as is standard in this basis, ` and q

are SU(2) left-handed doublets and e, u, and d are right-handed singlets. The left-right

covariant derivative is such that

ϕ†i
↔
D

µϕ = ϕ†iDµφ+ h.c.,(2.69)

where h.c. denotes the Hermitian conjugate. We are only interested in the Higgs vacuum

expectation value, v, from the scalar doublet and the gauge-boson coupling terms in the

covariant derivative. It might not be obvious at first glance how the operators without two

fermionic fields and a covariant derivative could possible modify the ffV vertices, and the

answer is via the input scheme. In the Gµ input scheme, also known as the {GF , α,mZ}

input scheme, we perform the transformation from the bare parameters {g2, g1, v}, where

g2 is the SU(2) coupling and g1 is the U(1) coupling, and the operators O``, O
(3)
ϕ` , OϕD,

and OϕWB naturally contributes to said transformation, namely the first two to the Fermi

constant via the muon decay and the last three via the spontaneous symmetry breaking,

or the Higgs mechanism. We note that the SMEFT shifts to the ffV vertices scale as

v2/Λ2, whereas the semi-leptonic four-fermion operators scale as s/Λ2. Ref. [20] has the
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expressions GF , mZ , and α (or actually e =
√

4πα) in terms of bare parameters g2, g1,

and v, as well as the relevant Wilson coefficients:

−4GF√
2

= − 2

v2
+

2C``
Λ2
−

4C
(3)
ϕ`

Λ2
,(2.70)

m2
Z =

v2

4
(g2

1 + g2
2) +

1

8

v4

Λ2
CϕD(g2

1 + g2
2) +

1

2

v4

Λ2
g1g2CϕWB,(2.71)

e =
g1g2√
g2

1 + g2
2

(
1− v2

Λ2

g1g2

g2
1 + g2

2

CϕWB

)
.(2.72)

We can then solve these three equations for the bare parameters g2, g1, and v perturba-

tively, namely by assuming q = q(0) + εq(1), where q is any of the bare parameters and

ε = 1/Λ2 and then borrow the ffV vertices in terms of the bare parameters from [85]:

V µ
ffγ = V µ

eeγ,SM

{
1− g1g2v

2CϕWB

(g1
2 + g2

2) Λ2

}
,(2.73)

V µ
eeZ =

V L
eeZ,SM

µ
{

1−
v2
(

(g1
2 + g2

2) 2C
(1)
ϕ` + (g1

2 + g2
2) 2C

(3)
ϕ` + g1 (g1 − g2) g2 (g1 + g2)CϕWB

)
(g1

4 − g2
4) Λ2

}
+V R

eeZ,SM
µ
{

1− v2 ((g1
2 + g2

2) 2Cϕe − 2g1g2
3CϕWB)

2g1
2 (g1

2 + g2
2) Λ2

}
,(2.74)

V µ
uuZ =

V L
uuZ,SM

µ
{

1 +
v2
(

3 (g1
2 + g2

2) 2C
(1)
ϕq − 3 (g1

2 + g2
2) 2C

(3)
ϕq + g1g2 (g2

2 − 3g1
2)CϕWB

)
(g1

2 − 3g2
2) (g1

2 + g2
2) Λ2

}
+V R

uuZ,SM
µ
{

1 +
v2 (4g1g2

3CϕWB + 3 (g1
2 + g2

2) 2Cϕu)

4g1
2 (g1

2 + g2
2) Λ2

}
,(2.75)



83

V µ
ddZ =

V L
ddZ,SM

µ
{

1 +
v2
(

3 (g1
2 + g2

2) 2C
(1)
ϕq + 3 (g1

2 + g2
2) 2C

(3)
ϕq + g1g2 (3g1

2 + g2
2)CϕWB

)
(g1

2 + g2
2) (g1

2 + 3g2
2) Λ2

}
+V R

ddZ,SM
µ
{

1− v2 (3 (g1
2 + g2

2) 2Cϕd − 2g1g2
3CϕWB)

2g1
2 (g1

2 + g2
2) Λ2

}
,(2.76)

where V µ
ffV,SM are the corresponding SM couplings, for which we have considered left and

right-handed Z couplings explicitly separately. Now armed with these modification, we

can go back to the SM amplitudes and introduce these SMEFT contributions, which is

what we do in Chapter 4, on top of introducing the more familiar semi-leptonic four-

fermion operators.

For the DY process accompanied by a single jet, we focus on one particular set of

operators, namely ones that can generate CP -odd observables. The unpolarized SM

cross section is CP -even, and the LIPS is CP -even. If we consider our favorite class of

operators, namely the semi-leptonic four-fermion operators, coupled to the gluonic field

strength tensor, we can generate CP -odd observables via SM-SMEFT interference. One

immediate example is the CS moments A5, A6, and A7. A four-fermion operator coupled

to a gluonic field strength tensor means a dimension-8 operator. Emphasizing the helicity

conservation in SM-SMEFT interference, we need operators of the form

OXY g = (`γµPX`)(qγ
νPY T

Aq)GA
µν .(2.77)



84

Such operators have nonzero contributions to the DYj amplitudes. In the Murphy ba-

sis [140], there are seven such operators:

O
(1)

`2q2g = (`γµ`)(qγνTAq)GA
µν , O

(3)

`2q2g = (`γµτ I`)(qγνTAτ Iq)GA
µν ,(2.78)

O`2u2g = (`γµ`)(uγνTAu)GA
µν , O`2d2g = (`γµ`)(dγνTAd)GA

µν ,(2.79)

Oe2u2g = (eγµe)(uγνTAu)GA
µν , Oe2d2g = (eγµe)(dγνTAd)GA

µν ,(2.80)

Oq2e2g = (eγµe)(qγνTAq)GA
µν ,(2.81)

where ` and q are SU(2) left-handed doublets, e, u, and d are right-handed singlets, GA
µν

is the gluon field strength tensor, the TA are the SU(3) generators, and the τ I are the

Pauli matrices. Since we want specifically one jet, we discard the nonabelian term in the

gluon field strength. Thus, the vertex factors are of the form

V µνρ
XY g = iCXY [γµPX ]`[γ

νPY ]qT
A
ab

[
(−i)(pµggνρ − pνggµρ)

]
,(2.82)

where pg is the gluon momentum, assumed outgoing from the vertex, and

C
u/d
LL = C

(1)

`2q2g ∓ C
(3)

`2q2g, C
u/d
LR = C`2u2/d2g, C

u/d
RL = Cq2e2g, C

u/d
RR = Ce2u2/d2g.(2.83)

The SMEFT Feynman diagram for the underlying partonic process of the DYj is depicted

in Figure 2.8.

The corresponding amplitudes are

Aij =
∑
XY

CXY [u2γ
µPXv3][qjγ

νPY qi]T
A
ab(p

µ
gg

νρ − pνggµρ)ερg.(2.84)
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Figure 2.8. The SMEFT Feynman diagram for the underlying partonic pro-

cess of the Drell-Yan production with a jet, generated by the semi-leptonic

four-fermion operators coupled to a gluon field strength tensor.

Here, i, j = −2,−1, 0, 1, 2 are the parton flavors u, d, g, d, and u. Technically, we go

from −Nf to Nf but even if we consider multiple generations, going from −2 to 2 is

sufficient because we consider only neutral current inteactions so flavor is conserved, and

we assume massless quarks, so up and charm amplitudes, as well as down, strange, and

bottom amplitudes are equivalent. Meanwhile, qi and qj are quark spinors depending on

the process, pg is the gluon momentum, and ερg is the gluon polarization. We have

ij = 2− 2, 1− 1 : qi = ua, qj = vb, pg = p1, ε
ρ
g = ε∗1

ρ,(2.85)

ij = 20, 10 : qi = ua, qj = u1, pg = −pb, ερg = ερb ,(2.86)

ij = −20,−10 : qi = v1, qj = va, pg = −pb, ερg = ερb ,(2.87)

ij = −22,−11 : qi = ub, qj = va, pg = p1, ε
ρ
g = ε∗1

ρ,(2.88)

ij = 02, 01 : qi = ub, qj = u1, pg = −pa, ερg = ερa,(2.89)

ij = 0− 2, 0− 1 : qi = v1, qj = vb, pg = −pa, ερg = ερa.(2.90)

We add these amplitudes to the corresponding SM amplitudes given in Eqs. (2.23)–(2.28).
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2.3. Particle momenta and many-particle Lorentz-invariant phase space

Consider a two-body decay in the form a → 1 + 2. In the rest frame of the decaying

particle, we know the expressions for the particle 4-momenta, which derives from a cute

exercise of taking dot products in conjunction with the conservation of momentum, pa =

p1 + p2, and the invariant masses, p2
a = m2

a, p
2
1 = m2

1, and p2
2 = m2

2. If we write p =

(E, |p|p̂), where we use bold letters to denote the usual 3-momentum, we have

E•a = ma, p•a = (0, 0, 0),(2.91)

E•1/2 =
m2
a +m2

1/2 −m2
2/1

2ma

, |p•1/2| =
∇(m2

a,m
2
1,m

2
2)

2ma

,(2.92)

p̂•1/2 = ±n̂•1.(2.93)

Here, the superscript bullet indicates that this is the rest frame of the mother particle,

and we have defined

∇(x, y, z) =
√
λ(x, y, z)(2.94)

as the square root of the Källén function,

λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + zx),(2.95)

and n̂1 is the spherical radial unit vector (with an arbitrary choice for the z• direction)

defined by the spherical angles of the leading particle 1,

n̂1 = (sθ1cϕ1 , sθ1sϕ1 , cθ1),(2.96)
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where s and c are the sine and cosine functions of the angles indicated in the subscript,

respectively. The quantity ma, which is the mass of particle a, is the available energy for

this decay. The geometry of the decay is illustrated in Figure 2.9.

Figure 2.9. The geometry of the 2-body decay in the rest frame of the

mother particle.

Next, consider a 2 → 2 scatter in the form a + b → 1 + 2. In the c.m. frame of

the ab system, we also know the expressions for the particle 4-momenta, which satisfy

pa + pb = p1 + p2 and p2
i = m2

i for i = a, b, 1, 2. The momentum components are given by

E•a/b =
E2 +m2

a/b −m2
b/a

2E
, |p•a/b| =

∇(E2,m2
a,m

2
b)

2E
, p̂a/b = ±(0, 0, 1),(2.97)

E•1/2 =
E2 +m2

1/2 −m2
2/1

2E
, |p•1/2| =

∇(E2,m2
1,m

2
2)

2E
, p̂1/2 = ±n̂•1.(2.98)

Here, the superscript bullet now indicates the c.m. frame of the incoming particle, and

we note that by assuming the incoming particles to move along the z axis, we explicitly

assume that this is the first of a chain of processes, upon which we elaborate shortly in

this section. The quantity E , which is the invariant mass of the ab system, is the available
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energy for the final states, namely (pa + pb)
2 = E2. Clearly, it is the Mandelstam-s

parameter of this 2 → 2 process. The geometry of the scattering is depicted in Figure

2.10.

Figure 2.10. The geometry of the 2-body decay in the center-of-mass frame

of the incoming particles.

Let’s discuss what happens if we have a process of the form a + b → 1 + 2 + 3 or

a+b→ 1+2+3+4. To illustrate the notation, we can give the processes p+p→ j+e−+e+

and e− + e+ → `− + ν + j + j as examples. The former is a DY production with

a real jet emission accompanying the EW gauge boson V , which later decays into the

electron-positron pair. The latter is more intricate in the sense that we now have a lot

more possibilities; thus, we simplify the picture by focusing on an electron-positron pair

colliding to produce two W bosons, one of which decays into the lepton pair and the other

into two jets, which is one of the processes we study later in this thesis. A fine trick to

study these many-particle processes is to break them into known pieces, e.g. a 2 → 2
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scattering or a two-body decay, in a chain of subprocesses. Thus, the first example can

actually be rewritten as p+ p→ j+V followed by V → e−+ e+, and the second example

as e− + e+ → W− +W+ followed by W− → `− + ν and W+ → j + j, which we precisely

know how to tackle.

This brings us to the next topic, namely the many-particle LIPS. For a process with

two particles in the final state, e.g. a → 1 + 2 and a + b → 1 + 2, the formula is well

known:

∫
dLIPS2 =

∇(P 2,m1
2,m2

2)

32π2P 2

∫
dΩ•1,(2.99)

where P is the total incoming momentum in the relevant c.m. frame, i.e. P = p•a for the

decay (so P 2 = ma
2) or P = p•a + p•b for the scattering (so P 2 = E2), and Ω•1 = (θ1, ϕ1)

are the spherical angles of the leading particle in the said c.m. frame. Now we want a

formula for the many-particle LIPS, which we build up from scratch. To this end, we

can consider either a many-particle decay or a scattering with many particles in the final

states, which are equivalent for our purposes if we simply express the processes in terms

of particle momenta as P → p1 + . . . + pn. Each outgoing particle is massive with mass

mi. We have

∫
dLIPSn =

∫ { n∏
i=1

d4pi
(2π)4

(2π) δ(pi
2 −mi

2) θ(p0
i )

}
(2π)4 δ4

(
P −

n∑
i=1

pi

)
,(2.100)

where δ is the Dirac delta function and θ is the Heaviside step function. Now consider

the process P → p1 + p2 + p3, so n = 3 explicitly, and break it into P → p1 + p23 followed

by p23 → p2 + p3. Let m23 be the invariant mass corresponding to the momentum p23, i.e.
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p23
2 = m23

2. We have

∫
dLIPS3 =

1

(2π)5

∫
d4p1 d4p2 d4p3 δ(p1

2 −m1
2) θ(p0

1)

× δ(p2
2 −m2

2) θ(p0
2) δ(p3

2 −m1
2) θ(p0

3) δ4(P − p1 − p2 − p3).(2.101)

Resolve an identity of the form

1 =

∫
d4Q dM2 δ(Q2 −M2) δ4

(
Q−

∑
k

pk

)
,(2.102)

where Q is a momentum equal to the sum of some other momenta,
∑

k pk, and M is the

invariant mass corresponding to Q. With Q = p23 and M = m23, we obtain

∫
dLIPS3 =

1

(2π)5

∫
d4p1 d4p2 d4p3 d4p23 dm23

2 δ(p1
2 −m1

2) θ(p0
1)

× δ(p2
2 −m2

2) θ(p0
2) δ(p3

2 −m1
2) θ(p0

3) δ4(P − p1 − p2 − p3)

× δ(p23
2 −m23

2) δ4(p23 − p2 − p3).(2.103)

If we rearrange the terms, we get

∫
dLIPS3 =

1

(2π)5

∫
dm23

2

×
∫

d4p1 d4p23 δ(p1
2 −m1

2) θ(p0
1) δ(p23

2 −m23
2) δ4(P − p1 − p23)

×
∫

d4p2 d4p3 δ(p2
2 −m2

2) θ(p0
2) δ(p3

2 −m3
2) θ(p0

3) δ4(p23 − p2 − p3),(2.104)
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which is nothing but the product of two 2-particle LIPSs convoluted over the invariant

mass of the particle that lives in the intermediate state at which we split the process,

∫
dLIPS3[P → p1 + p2 + p3] =

∫
dm23

2

×
∫

dLIPS2[P → p1 + p23]

×
∫

dLIPS2[p23 → p2 + p3].(2.105)

If we repeat the calculation for the 4-particle final state, P → p1 + p2 + p3 + p4, by first

breaking it into P → p12 + p34 followed by p12 → p1 + p2 and p34 → p3 + p4, we find that

we need two invariant-mass integrals, corresponding to the two split points of the process:

∫
dLIPS4[P → p1 + p2 + p3 + p4] =

∫
dm12

2

∫
dm34

2

×
∫

dLIPS2[P → p12 + p34]

×
∫

dLIPS2[p12 → p1 + p2]

×
∫

dLIPS2[p34 → p3 + p4].(2.106)

This is a robust method of building the n-particle LIPS with a sleight of hand. Fur-

thermore, since each 2-particle LIPS is Lorentz-invariant on its own, we are at liberty to

evaluate each in any frame for which our hearts seek. As it turns out, the most convenient

frame is the c.m. frame of the total incoming momentum that provides the available en-

ergy for the process. To illustrate, in (2.106), for the first subprocess, we go to a frame

where P = 0, and p12 = 0 for the next one, and p34 = 0 for the last one. We already
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know the expression for the 2-particle LIPS. Each such LIPS goes like

∫
dLIPS2[p→ k + q] =

∇(p2, k2, q2)

8p2

∫
dΩ•k,(2.107)

where the factor 8 in the denominator is merely for convenience, and the rest is just

figuring out the factors of 2π in the total phase space. After careful power counting,

we find this factor to be equal to 1/(2π)3n−4 for the n-particle LIPS. Namely, for the

3-particle LIPS for the process P → p1 + p23 → p1 + p2 + p3, we have

∫
dLIPS3 =

[
1

(2π)3n−4

]
n=3

∫
dm23

2

×
[
∇(P 2,m1

2,m23
2)

8P 2

∫
dΩ•1

] [
∇(m23

2,m2
2,m3

2)

8m23
2

∫
dΩ◦2

]
,(2.108)

where the solid angles are the spherical angles of the leading particles for each subprocess

and the superscripts bullet and circle denote the c.m. frame where P = 0 and p23 = 0,

respectively. As for the 4-particle LIPS for the process P → p12 + p34 → p1 + p2 + p3 + p4,

we have

∫
dLIPS4 =

[
1

(2π)3n−4

]
n=4

∫
dm12

2 dm34
2

[
∇(P 2,m12

2,m34
2)

8P 2

∫
dΩ•12

]
×
[
∇(m12

2,m1
2,m2

2)

8m12
2

∫
dΩ◦1

] [
∇(m34

2,m3
2,m4

2)

8m34
2

∫
dΩ∗3

]
,(2.109)

where this time the superscripts bullet, circle, and asterisk indicate the c.m. frame where

P = 0, p12 = 0, and p34 = 0, respectively. The integration limits for the solid angles

are as usual, and the bounds of the invariant-mass integrals are obtained by requiring the
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nabla functions to be real or equivalently the Källén functions to be positive. This can

be done for instance by using the Reduce command on Mathematica.

We have seen the power of splitting the process at convenient and perhaps physically

meaningful points to facilitate the phase-space calculations. One important take-home

message is that we can work in any frame for each subprocess to write down the momen-

tum. This frame is usually the rest frame of the mother if it is a decay or the c.m. frame

of the initial states if it is a 2 → 2 scattering. Once we start splitting our process, we

actually generate subprocesses that are nothing but 2-particle decays. For the final-state

particles of these processes, the explicit momenta are always given as discussed earlier:

the mother is at rest, the leading particle flies off in a direction defined by the familiar

spherical angles, and the subleading particles takes off in the opposite direction. We note

that since we are breaking our processes at intermediate states, the mother is always

massive with the corresponding invariant mass, not the on-shell mass. We also note that

whilst we can make simplifying assumptions such as letting the jet and the gauge boson

be emitted in the xz plane of the lab frame for the aforementioned DYj process so as to

eliminate one azimuthal angle (so its integration just contributes a factor of 2π); however,

both states are intermediate, as the two W particles in the above-mentioned example of

the electron-positron collision, we cannot make this simplification.

Now we know how to write down the LIPS for any process and the particle momenta

explicitly. However, we have mentioned only the relevant c.m. frame for each subprocess.

We still need to bring all the momenta into one common frame, which is usually the lab

frame, i.e. the c.m. frame of the two protons in the said DYj process or the c.m. frame

of the electron-positron pair in the aforementioned example. The transformation takes
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place using a Lorentz matrix, Λ. Given the form of the momenta in the c.m. frame of

any given subprocess, we perform the Lorentz transformation as a rotation around some

z axis (to eliminate the azimuthal angle) followed by a rotation around the y axis of the

frame under consideration (to get rid of the polar angle so now we have a one-dimensional

motion) followed by a boost. This transformation is carried out with respect to the

intermediate particle at which we split the process. We illustrate this yet another robust

method of handling momenta later in the thesis, specifically designed for the process under

consideration.

Once we have the all momenta boosted into a single frame, there are certain sanity tests

that we can perform to verify our results. For instance, for the process a+b→ 1+ . . .+n,

we should be able to verify

∫
dLIPSn (p1 + p2)2 =

∫
dLIPSn (p1 + p3)2 = · · · =

∫
dLIPSn (pn−1 + pn)2,(2.110)

and

∫
dLIPSn pa · p1 = · · · =

∫
dLIPSn pa · pn

=

∫
dLIPSn pb · p1 = · · ·

∫
dLIPSn pb · pn,(2.111)

when the initial-state particles have the same mass and the final-state particles have the

same mass. We call these the symmetry integrals, where the symmetry refers to the

permutation symmetry of the final states. The LIPS becomes essentially particle-blind if

all the final state particles have the same mass. If the initial-state particles have different
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masses, then the second relation breaks into two, namely the pa integrals are equal to one

number and the pb integrals are equal to another.

2.4. Statistical analysis

Statistical analysis is, without exaggeration, half of the game we play here, and a basic

χ2 test statistics constitutes the backbone of our calculations. Let’s take our favorite

observable, Q, and consider a set of data points with NB bins, {Qb}NB
b=1, each with a set

of uncertainties, {δQ1b, δQ2b, . . .}NB
b=1. These may be statistical uncertainties, systematical

uncertainties, uncertainties deriving from higher-order corrections, PDF uncertainties,

and renormalization and factorization scale uncertainties. Some days, all or only a subset

of these are correlated across bins. We discuss how to build the uncertainty matrix in

each study in the subsequent chapters of the thesis, whenever relevant, in great detail.

This section aims to guide the user what to do next once they have in their hands the

uncertainty matrix, denoted E .

We need a fit or model function to make predictions. At this point, we use the SMEFT

version of our observable, which looks like

Q̂b = QSM,b +

NW∑
w=1

CwQwb(2.112)

after linearization, where QSM,b is the SM value at the bth bin, Qwb is the SMEFT correc-

tion characterized by the Wilson coefficient Cw, and we assume NW Wilson coefficients

activated. This is actually the case in our works involving SMEFT because we activate

either dimension-6 or dimension-8 operators alone and in the squared amplitude, we take

into account only the SM squared and SM-SMEFT interference terms. Thus, we have a
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linear fit model. With this, we can write the χ2 test statistic as

χ2 =

NB∑
b=1

NB∑
b′=1

(Q̂b −Qb)Hbb′(Q̂b′ −Qb′),(2.113)

where H = E −1 is the inverse of the uncertainty matrix. At this point, one has every

right to question what the data points we use are since the colliders of interest live in

the future. We use made-up data, which we technically refer to as pseudodata (but we

continue calling them data because that’s all we’ve got). We generate pseudodata by

smearing the SM predictions with the experimental uncertainties predicted by people

who know better:

Qb = QSM,b + rb δQuncorr
b +

∑
j

r′j δQ
corr,j
b ,(2.114)

where δQuncorr
b is the total uncorrelated experimental uncertainty at the bth bin added

in quadrature, δQcorr,j
b is the jth correlated uncertainty, and rb and r′j are unit normal

variates, rb, r
′
j ∼ N (0, 1). We introduce the correlated uncertainties with a different unit

normal variate, which is fixed across the bins, to ensure that all the bins feel the shift

uniformly.

Since our fit model is a linear function of Wilson coefficients, the χ2 function is a

quadratic function of Wilson coefficients. We may as well write

χ2 = k0 +

NW∑
w=1

k1wCw +

NW∑
w=1

NW∑
w′=1

k2ww′CwCww′ = k0 + k1 ·C + C · k2C.(2.115)

We now minimize this expression with respect to the Wilson coefficients. The vanishing

gradient of the expression gives us the values of the Wilson coefficients that minimize the
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χ2 function,

∇χ2(C) = 0,(2.116)

and the Hessian evaluated at these values give us the Fisher information matrix [136, 13,

92],

F =
1

2
∇∇χ2(C).(2.117)

Here, all the derivatives are with respect to the variables of the parameter space, namely

the Wilson coefficients. With the quadratic form of the χ2 function presented above, we

have

C =
1

2
k−1

2 k1,(2.118)

and

F = k2.(2.119)

Once we have the Fisher information matrix, we can do anything. We can obtain non-

marginalized bounds for Wilson coefficients around some central value with a desired

confidence level (CL), which is equivalent to the best-fit analysis of the model function

as if we turn on one Wilson coefficient at a time, or confidence ellipses at a desired CL,

which is equivalent to the best-fit analysis with just two Wilson coefficients activated at

a time, or marginalized bounds and marginalized confidence ellipses when a larger set of

or all the Wilson coefficients of interest activated at a time.
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Before we proceed, there is one more concern we need to address. Our statistical

analysis strongly relies on pseudodata. If we generate one set of pseudodata, namely if we

perform just one pseudoexperiment, we might as well obtain best-fitted C values away

from the origin. However, we know that the best-fit values of the Wilson coefficients must

be centered at zero. We are sure because our pseudodata generation procedure deploys

unit normal variates, which are just random numbers picked from a Gaussian distribution

centered at the origin. Therefore, in order to ensure that our fits are reliable, we need to

create statistics. This goes on to say that we repeat a finite number of pseudoexperiments,

denoted NE. Our best-fitted values for Wilson coefficients and our Fisher information

matrix are meaningful only when we average over the pseudoexperiments. Let’s put a

subscript e to indicate the eth pseudoexperiment. Then, our previous notation for the

best-fit values and the Fisher information matrix evolve into Ce and Fe, respectively.

The best-fit values of the Wilson coefficients averaged over pseudoexperiments is given by

C =

(
NE∑
e=1

Fe

)−1 NE∑
e=1

FeCe,(2.120)

and the Fisher information matrix averaged over the pseudoexperiments is given by

F =
1

NE

NE∑
e=1

Fe.(2.121)

Now we claim that we do not even need to run pseudoexperiments and we prove it.

The disclaimer is that what follows works only when the model function is a multilinear

function of Wilson coefficients so the χ2 function is quadratic in Wilson coefficients; for

instance, it works when we have only dimension-6 SMEFT operators or only dimension-8
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SMEFT operators and when their effects are included in the squared amplitude only via a

SM-SMEFT interference term. Let’s show how. In the χ2 function, we have the difference

between the observed value, which is the SM entry plus uncertainties added after scaled

by random numbers pick from unit normal distribution, and the predicted value, which is

just the SM value plus the SMEFT corrections each characterized by a particular Wilson

coefficient. The SM parts cancel out and we are left with

χ2 = (CwQwb − rb δQuncorr
b − r′ δQcorr

b ))Hbb′(Cw′Qw′b′ − rb′ δQuncorr
b′ − r′ δQcorr

b′ ),

(2.122)

where we assume summation over b, b′, w, and w′. If we rewrite this as

χ2 = k0 + k1 ·C + C · k2C,(2.123)

then we see that

k1w = −Hbb′(r
′Qwb δQcorr

b′ + r′Qwb′ δQcorr
b + rbQwb′ δQuncorr

b + rb′Qwb δQuncorr
b′ ),(2.124)

and

k2ww′ = Hbb′QwbQw′b′ .(2.125)

Thus, whilst the best-fit values of Wilson coefficients certainly depend on pseudoexperi-

ments (because they depend on k1 and k1 depends on the random variates), the Fisher

information matrix depends only on the uncertainty matrix and the SMEFT corrections,



100

which is independent of random variates and hence of pseudoexperiments. With F be-

ing constant across pseudoexperiments, the formula for the averaged best-fitted values of

Wilson coefficients simplifies to

C =
1

NE

NE∑
e=1

Ce.(2.126)

Now we can hypothetically carry out infinitely many pseudoexperiments to ensure that

the Wilson coefficients are best-fitted around zero.

The take-home message is that if the fit model is linear in Wilson coefficients, then

we don’t really need to run pseudoexperiments to create statistics. This may seem like

a trivial statement but it is au contraire. Experience shows that for a single Wilson co-

efficient, running 1k pseudoexperiments guarantees that {Ce}Nexp

e=1 is distributed normally

around the origin beautifully by visual inspection. When we activate two Wilson coeffi-

cients, this number easily becomes 50k, and for six Wilson coefficients, we quickly reach

10M pseudoexperiments to make sure the results are sensible. This is nothing but an

unfortunate waste of computational resources and time. Occasionally, we introduce other

parameters in an attempt to improve the bounds on SMEFT parameters, and we might

have to do it in a nonlinear manner. In this unfortunate occasion, one has to run a couple

pseudoexperiments for statistically sensible results.

We are now at a point where we have F in our hands and we want to obtain bounds and

draw confidence ellipses. First, we emphasize that the Fisher matrix is always symmetric

and positive definite. Furthermore, the inverse of the Fisher matrix gives the symmetric
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covariance matrix, V , which looks like

V =



σ2
1 ρ12σ1σ2 ρ13σ1σ3 · · · ρ1NW

σ1σNW

σ2
2 ρ23σ2σ3 · · · ρ2NW

σ2σNW

. . .
...

...

. . .
...

σ2
NW


sym

,(2.127)

where σw is correlated (or marginalized) 1-sigma, or about 68% CL, uncertainty of the

Wilson coefficient Cw and ρww′ is the correlation of Cw and Cw′ . The correlation matrix

is obtained by

1 ρ12 ρ13 · · · ρ1NW

1 ρ23 · · · ρ2NW

1 · · · ...

. . .
...

1


sym

= diag

(
1

σ1

, . . . ,
1

σNW

)
V diag

(
1

σ1

, . . . ,
1

σNW

)
(2.128)

Furthermore, if we are combining more than one independent experiments or data sets, we

add up the individual Fisher matrices and then take the inverse to obtain the correlations

and the uncertainties. This is to say, if we combine data from distinct data sets or

independent experiments, the factor 1/NE in Eq. (2.121) drops. The reason is that

pseudoexperiments correspond to one set of run parameter or configuration so they are

technically not independent and that pseudoexperiments are required only to generate

statistics (so they should not accidentally improve the allowed bounds). Now, we discuss
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how to actually obtain bounds and confidence ellipses. The nonmarginalized interval of

Wilson coefficient Cw is given by [−x, x], where x is the positive solution of the equation

(x)Fww(x) = ∆χ2(1, c),(2.129)

where ∆χ2(p, c) is the scaling factor of the bounds depending on the number of fitted

parameters p and the CL c, which can be numerically computed using Mathematica

by Quantile[ChiSquareDistribution[p],c], where p is an integer and c is between

0 and 1, which we usually like to take 95% or 0.95. The reason why we write this

equation in this form shall become apparent shortly. On the other hand, the marginalized

interval is, in general, larger because it includes the correlation effects among all activated

Wilson coefficients (or essentially, if the data size is kept fixed but the set of parameters

is extended, then we lose information about each parameter). The marginalized interval

is given by [−x, x], where x is the positive solution of the equation

(x)(Vww)−1(x) = ∆χ2(1, c).(2.130)

The fundamental difference between the two intervals is that in the first, we take the

(w,w) entry of the Fisher matrix before inversion, which immediately eliminates all other

variables as if they were not activated in the first place, which in turn avoids the correlation

effects. The situation is similar in confidence ellipses, the only difference being that now

we have one more variable. Suppose we just active two Wilson coefficients at a time, Cw
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and Cw′ . Then, the confidence ellipse at a CL c is given by equation

(
x y

)Fww Fww′

Fw′w Fw′w′


x
y

 = ∆χ2(2, c).(2.131)

This is the non-marginalized ellipse, which completely ignores the correlation effects from

other Wilson coefficients. The marginalized ellipse when a larger subset of or all the

Wilson coefficients are activated is given by

(
x y

)Vww Vww′

Vw′w Vw′w′


−1x

y

 = ∆χ2(2, c).(2.132)

We present a minimal working example (MWE), or rather a hypothetical case study at

the end of the next section.

2.5. Computational frameworks

We outline the analytical and numerical tools used in this thesis. Our main tool

for analytical and numerical computations, statistical analysis, and data visualization

is Mathematica, as long as the observable does not require full phase-space integration.

When the observable necessitates inclusive phase-space integration especially for more

crowded final states as in 2 → 3 and 2 → 4 topologies, we deploy Monte-Carlo methods

designed for this purpose on Python, or some days Fortran if we are in the mood or

believe it might run faster. We use FeynArts [111] and FeynCalc [146, 145, 144, 138]

to compute traditional amplitudes and Vegas [133, 132] for numerical integration. For

hadronic processes, we use ManeParse [69] on Mathematica or LHAPDF [59] on Python

and Fortran for PDFs.
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2.5.1. Amplitudes with FeynArts and FeynCalc

We obtain the SM amplitudes using FeynCalc in conjuction with FeynArts because it

is already a closed ecosystem that works just fine, especially when we have a significant

amount of amplitudes that we want to generate systematically with the least possible

number of keystrokes.

Some of the key ideas are as follows. In the standard model files (pun intended),

all the couplings are given in terms of electric charge, particle masses, and weak mixing

angle explicitly, which is not immediately helpful. We parametrize the vertex factors

as V = iCΓS, where C is the coupling strength, Γ is some Dirac matrix, and S is a

momentum structure tensor. We let Γ and S ride along because we want them explicitly to

get traced or to join Lorentz contractions. We do not substitute expressions for Cs because

it creates larger files already and because we want to keep track of helicity structures for

diagnosis, for instance using the ffZ couplings, defined as CffZL and CffZR, where f is

some fermion. To illustrate, in the array M$Couplings in our custom .mod file, we define

the interactions eeγ, uuZ, udW , eeh, hWW , and γWW as follows:

(* eeA *)

C[-F[2,{j1}],F[2,{j2}],V[1]] ==

I CeeA IndexDelta[j1,j2] {{1, 0}, {1, 0}},

(* uuZ *)

C[-F[3,{j1,o1}],F[3,{j2,o2}],V[2]] ==

I IndexDelta[j1,j2] IndexDelta[o1,o2] {{CuuZL,0},{CuuZR,0}},

(* udW, CKM = Identity *)
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C[-F[3,{j1,o1}],F[4,{j2,o2}],-V[3]] ==

I CffW IndexDelta[j1,j2] IndexDelta[o1,o2] {{1,0},{0,0}},

C[F[3,{j1,o1}],-F[4,{j2,o2}],V[3]] ==

I CffW IndexDelta[j1,j2] IndexDelta[o1,o2] {{1,0},{0,0}},

(* eeh *)

C[-F[2,{j1}],F[2,{j2}],S[1]] ==

I Ceeh IndexDelta[j1,j2] {{1,0},{1,0}},

(* hWW *)

C[S[1], -V[3], V[3]] ==

I ChWW {{1,0}},

(* AWW *)

C[V[1],-V[3],V[3]] ==

I CAWW {{1,0}}

Once we modify the model file following this vision, we generate the amplitudes and

then perform another set of simplifying substitutions for the propagator denominators.

FeynArts introduces FeynAmpDenominator and we simply replace it by Dp, where p is

some particle identifier. For instance, if we have a single photon or a Z boson in a given

amplitude, which is the case for our studies, then we replace these lengthy objects by

DA or DZ with the appropriate momenta. Another example would be a quark living in

different channel propagators, for example Dqs or Dqt. In the former, the quark is the

s-channel resonant particle and in the latter, it is the t-channel exchanged particle, with

Dqd = Dqd = i/k/d̂, with k2 = d̂. Also, if we have successive decays as in the case of

e−e+ annihilation, we introduce DW12 and DW34. Here, the W bosons have the momentum
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p12 and p34, respectively, so they have the invariant masses m12 and m34. This is also

illustrative in the sense that the first W decays into a pair of particles with momenta

p1 and p2, and the second one into a pair with momenta p3 and p4. Whenever relevant,

all D factors are assumed complex so they have the full Breit-Wigner form, which is

also defined in numerical calculations later. All this leads to simple-looking traditional

amplitudes even for larger topologies such as 2→ 3 and 2→ 4.

As far as we know, FeynArts do not immediately support four-fermion interactions

yet. Thus, we define the SMEFT amplitudes manually. Doing so, we follow the sign

convention of FeynArts and FeynCalc, namely derivatives are replaced by −ip, assuming

outgoing momenta, and we append a factor of i to obtain the vertex factor after functional

derivatives of the interaction Lagrangian. Then, we introduce one more factor of i to form

the amplitude after writing down all the currents, vertex factors, and perhaps gauge-boson

polarization vectors.

In order to obtain the squared amplitude, there is a certain order of operations we

follow. Once we have the SM and SMEFT amplitudes, first we add them with trackers,

amp["SMEFT"] =

track["SM"] amp["SM"] + track["X"] amp["X"]

where we use X to denote the pure SMEFT amplitudes because the corresponding Feyn-

man diagrams look like ×. Next, we compute the squared amplitudes as

amp["SMEFT"] //

csq //

FermionSpinSum[#, ExtraFactor -> extraFactor]& //

DoPolarizationsSum[#, pV]& //
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projections //

DiracSimplify //

colorSimplify //

momentumSimplify

where csq is the complex square defined as

csq[expr_] :=

expr ComplexConjugate[expr, Conjugate -> {(* BW propagators, any other

complex param *)}]↪→

FermionSpinSum is the command to convert expressions of the form [u2Γu1][u1Γ′u2] into

tr((/p2
+ m2)Γ(/p1

+ m1)Γ′), the extraFactor is the factors for initial spin and color av-

eraging, whenever relevant, DoPolarizationSums is the polarization sum for the gauge

boson V with momentum pV whenever relevant, projections is the command where we

replace /p by P±λ /p for incoming massless fermions or /p±m by (/p±m)P±λ (S) for incoming

massive fermions when we collide polarized beams, defined for example as

projections[expr_] :=

expr /. {

DiracGamma[Momentum[k1]] -> proj[sgn1, lam1].GS[k1],

DiracGamma[Momentum[k2]] + m2 -> (GS[k2]+m2).projGen[+1, lam2, S2]

} /. {

proj[sgn_, lam_] :> (1+sgn lam GA5)/2,

projGen[sgn_, lam_, S_] :> (1+sgn lam GA5.GS[S])/2

}
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where the projection operators are defined as P±λ = (1 ± λγ5)/2 and P±λ (S) = (1 ±

λγ5/S)/2, k1 = k1 is the momentum of some massless incoming particle longitudinally

polarized with helicity sign lam1 = λ1, k2 = k2 is the momentum of some massive particle

having polarization vector S = Sµ with helicity sign lam2 = λ2, sgn is the particle sign,

namely +1 for particles and −1 for antiparticles. Continuing with squaring the amplitude,

colorSimplify takes care of SU(3) algebra, momentumSimplify replaces various momenta

in terms of others as much as possible so as to have a squared amplitude that depends

on the least amount of independent momenta. For a 2 → 2 process, this is natürlich

irrelevant because all dot products are already accounted for by either invariant masses

or Mandelstam parameters, but for 2 → 3 or 2 → 4 processes, this is especially useful

if we can write the process at hand in terms of successive subprocesses so as to have

multiple equations for momentum conservation. Finally, since we assume a linear SMEFT

observable in Wilson coefficient, or to be more precise at leading order in power of 1/Λ,

throughout this thesis, we kill the terms proportional to Track["X"]2. With that, we are

ready for numerical calculations.

2.5.2. Numerical calculations

For our numerical routines, depending on the complexity of the problem, we either stick

to Mathematica if the observable does not require the full phase-space integration, or else

we use purely numerical integration tools on Python or Fortran. On Mathematica, we use

ManeParse to call and use PDFs. We do this in Chapters 3 and 4, where we evaluate our

observable at the central points bin by bin, so no integration is necessary. For these partic-

ular studies, it is actually a more tidious exercise to keep track of data sets, generate our
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own data tables filled with SM and SMEFT predictions and generated uncertainties. For

the successive studies, which are slightly different in nature and philosophy, we have more

populated final states so the inclusive phase-space integrals require more sophisticated

tools than Mathematica’s naive NIntegrate. We use the Vegas routine for this purpose

on Python or Fortran. For the PDFs, we use the LHAPDF library. The involvement of

PDFs is more straightforward than preparing the integrand for the Vegas routine.

Modern Vegas integrators allow integration variables to vary between general limits.

However, some days we have dependent variables so we need to pay more attention. Fur-

thermore, we still opt to scale our integrals so they run from 0 to 1, which is preferred to

increase sampling efficiency. We refer to this process as unitizing variables. On Python,

with batching and multiprocessing, we can reach lightning speeds on our personal comput-

ers compared to widely accepted open-source packages such as MadGraph and MCFM.

Of course, this is because our integration routines are written solely for the process under

consideration, and because of our manipulation of the integration order so as to further

maximize the sampling efficiency. Thus, we include an MWE for Vegas on Python.

Consider the following 3D integral:

f(x1, x2, x3) =

∫ 1

0

dx1

∫ 1−x1

0

dx2

∫ x21−x22

0

dx3 x1x2x3.(2.133)

The analytical result of this integral is 1/480, or approximately 0.00208333. Let’s write

a Vegas routine, pretending that this integration represents our observable, so all the

constants, PDFs, and the good stuff are defined or called beforehand. Below is a batched,

multiprocessed vegas routine:
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import vegas

nitn = 10

ncall = int(1e7)

nproc = 10

ntrain = 10

@vegas.lbatchintegrand

def f(var):

x1min = 0

x1max = 1

x1jac = x1max-x1min

x1 = x1jac*var[:, 0]+x1min

x2min = 0

x2max = 1-x1

x2jac = x2max-x2min

x2 = x2jac*var[:, 1]+x2min

x3min = 0

x3max = x1**2-x2**2

x3jac = x3max-x3min

x3 = x3jac*var[:, 2]+x3min
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J = x1jac*x2jac*x3jac

integ = x1*x2*x3

return J*integ

def main():

integ = vegas.Integrator(3*[[0, 1]], nproc = nproc, nitn = nitn)

for _ in range(ntrain):

integ(f, neval = ncall/10)

result = integ(f, neval = ncall, adapt = False)

mean = result.mean

error = result.sdev

perror = abs(error/mean*100)

chi2dof = result.chi2/result.dof

print(

f"result = "

f"{round(mean, 8)}"

f" +- {error:.1e}"

f" [{perror:.1e}%],"

f" chi2/dof = {round(chi2dof, 1)}")
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if __name__ == '__main__':

main()

This prints

result = 0.00208333 +- 1.1e-08 [5.2e-04%], chi2/dof = 1.0

The rest is just to apply this to the observables.

2.5.3. Statistical analysis with Mathematica

We conclude this chapter with MWEs of cases that one might encounter in our line

of work. Suppose that we activate only three Wilson coefficients, C1, C2, and C3, to

illustrate marginalization and we consider the cases with weak correlation betwen C1 and

C2, moderate correlation between C1 and C3, and strong correlation between C2 and C3 to

illustrate various shapes of ellipses. We demonstrate how to obtain the nonmarginalized

bounds, the marginalized bounds, and the equation for the confidence ellipse at 95% CL

in a systematic way that can be easily generalized to a larger number of parameters. We

use a Mathematica code snippet accompanying the explanations.

Suppose that we obtain a Fisher matrix

F =


329.825 380.117 −333.333

380.117 487.329 −416.667

−333.333 −416.667 364.583

 .(2.134)

We define this as F. The nonmarginalized 1-sigma (or 68% CL) bounds, sigmaNM68, are

the inverse square roots of the diagonal entries of the Fisher matrix. If we multiply these
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uncertainties by ∆χ2(1, 0.95) = 3.841, we obtain the nonmarginalized 2-sigma (or 95%

CL) bounds, sigmaNM95.

In[1]:= sigmaNM68 = 1/Sqrt[Diagonal[F]];

dchisq1 = Quantile[ChiSquareDistribution[1], 0.95];

sigmaNM95 = Sqrt[dchisq1] sigmaNM68;

The marginalized 1-sigma bounds, sigmaM68, are the square roots of the diagonal

entries of the inverse of the Fisher matrix. The marginalized 2-sigma bounds, sigmaM95,

are obtained with the same factor of ∆χ2(1, 0.95).

In[4]:= V = Inverse[F];

sigmaM68 = Sqrt[Diagonal[V]];

dchisq1 = Quantile[ChiSquareDistribution[1], 0.95];

sigmaM95 = Sqrt[dchisq1] sigmaM68;

The correlation matrix is given by Eq. (2.128).

In[8]:= R = DiagonalMatrix[1/sigmaM68].V.DiagonalMatrix[1/sigmaM68];

The nonmarginalized confidence ellipses, namely the confidence ellipses when only two

Wilson coefficients are activated at a time, at 95% CL are given by Eq. (2.131).

In[9]:= NW = Length[F];

Wpairs = Sort /@ Permutations[Range[NW], {2}] //

DeleteDuplicates;

dchisq2 = Quantile[ChiSquareDistribution[2], 0.95];

ellipsesNM = Table[

{x, y}.{
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{F[[w[[1]], w[[1]]]], F[[w[[1]], w[[2]]]]},

{F[[w[[2]], w[[1]]]], F[[w[[2]], w[[2]]]]}

}.{x, y} == dchisq2, {w, Wpairs}];

Here, the confidence ellipse of the pairs (C1, C2), (C1, C3), and (C2, C3) is called with the

indices 1, 2, and 3, respectively. If we now replace the Fisher matrix here by the covariance

matrix and take the inverse of the created 2× 2 matrix, we obtain the equations the 95%

CL confidence ellipses described by Eq. (2.132).

In[13]:= ellipsesM = Table[

{x, y}.Inverse[{

{V[[w[[1]], w[[1]]]], V[[w[[1]], w[[2]]]]},

{V[[w[[2]], w[[1]]]], V[[w[[2]], w[[2]]]]}

}].{x, y} == dchisq2, {w, Wpairs}];

The rest is now just to paint these ellipses, like Bob Ross painting on The Joy of Paint-

ing. The correlation matrix can be plotted with a simple ArrayPlot and the ellipses with

ContourPlot. In Figure 2.11, we present the nonmarginalized bounds (the red dashed

rectangles), the marginalized bounds (the red solid rectangles), and the nonmarginalized

ellipses (black dashed) and the marginalized ellipses (black) at 95% CL. The correlation

values indicated in the plot labels are the ones obtained with the three-dimensional fit.

These ellipses beautifully demonstrate the boot camp basics.

To summarize this section, let’s note the following.

• Nonmarginalized bounds are obtained by fixing all other parameters to zero.
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Figure 2.11. Comparison of nonmarginalized and marginalized constraints

on the parameter pairs (C1, C2), (C1, C3), and (C2, C3).

• Marginalized bounds are obtained by allowing the other parameters to vary freely

in the fit. They account for degeneracies and correlations, and therefore are

generally wider or less stringent.
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• Marginalization leads to an effective loss of information due to projection onto

a lower-dimensional subspace, which naturally increases the allowed region for

each parameter.

• Nonmarginalized ellipses are typically tighter and reflect the direct correlation

between two parameters, assuming all others are fixed.

• Marginalized ellipses incorporate correlations with the remaining parameters.

This can change the orientation, size, and even the qualitative shape of the

allowed region.

• The correlation coefficient between two parameters can differ between nonmarginal-

ized and marginalized cases. Marginalizing over a third parameter can weaken

or even flip the sign of the apparent correlation.

• When the correlation between two parameters is small and their uncertainties are

comparable, the resulting confidence ellipse is approximately circular in shape.

• As the correlation strength increases, the ellipse becomes increasingly elongated,

with its major axis oriented along the principal direction of degeneracy.

• In the limiting case of ρ = ±1, the ellipse becomes a narrow band or even collapses

into a line, corresponding to a flat direction in the parameter space.

• Such flat directions typically signal degeneracies at the observable level, where

certain combinations of Wilson coefficients appear together in analytical expres-

sions and cannot be disentangled by the data.

• Identifying these directions is important for both interpreting the fit and de-

signing future measurements that can break the degeneracy and constrain the

orthogonal directions.
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• In linear models such as SMEFT with interference-only terms, these features are

directly encoded in the structure of the Fisher matrix and its inverse, allowing

for analytical control and efficient estimation of confidence regions.
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CHAPTER 3

EIC Wide Shut

I didn’t need an explanation. Making an effort he took the plunge: “It’s all about trying

to create ties, you see.” Well, sure, I understood. In this life that sometimes seems to be

a vast, ill-defined landscape without signposts, amid all of the vanishing lines and the

lost horizons, we hope to find reference points, to draw up some sort of land registry so

as to shake the impression that we are navigating by chance. So we forge ties, we try to

find stability in chance encounters.

Patrick Modiano, In the Café of Lost Youth

In this chapter, we study the potential of the Electron-Ion Collider (EIC) to search for

physics beyond the Standard Model using cross section asymmetries in neutral-current

deep inelastic scattering. We include a complete accounting of anticipated experimental

and theoretical uncertainties. The analysis covers both proton and deuteron beams, with

a wide range of beam energies and integrated luminosities. We also consider possible

extensions such as a positron beam and a 10-fold luminosity upgrade. The Standard Model

Effective Field Theory framework is used to parametrize new physics effects, focusing on

semi-leptonic four-fermion operators. A simultaneous fit of the beam polarization and

luminosity difference parameters with the Wilson coefficients is also performed. The

results show that the EIC can constrain the Wilson coefficients competitively with, and

in some cases better than, neutral-current Drell-Yan measurements at the Large Hadron
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Collider. Unlike the latter, EIC pseudodata does not yield strong degeneracies in the

parameter space.

3.1. Prelude

The Standard Model (SM) describes all laboratory phenomena to date. With the

discovery of the Higgs boson, the predicted particle spectrum has now been complete.

Yet no new particles have been discovered, and no remarkable deviation from the SM

has emerged. Despite its success, the theory has several shortcomings. It offers no expla-

nation for dark matter, the baryon-antibaryon asymmetry of the universe, or the origin

of neutrino masses. The hierarchy problem remains unresolved. Even within the known

parts, there are features that resist interpretation, such as the proton spin decomposition

in terms of the spin and orbital angular momentum of its constituent quarks and gluons.

Many experimental programs are running or under design to address these open ques-

tions. Our focus in this work is on the Electron-Ion Collider (EIC), currently under

construction at Brookhaven National Laboratory. The EIC will collide electrons with

protons and nuclei in an intermediate-energy regime, connecting the realms of fixed-

target experiments and high-energy colliders. Its luminosity is expected to exceed that

of Hadron-Electron-Ringanglage (HERA) by several orders of magnitude, making it the

highest-luminosity electron-proton collider to date. It will also be the first lepton-ion col-

lider with both beams polarized, with a fast spin-flip capacity. In addition, uncertainties

are expected to be significantly reduced due to improved luminosity measurements and

detector acceptance and efficiency. These features together allow for a clean extraction
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of parity-violating (PV) asymmetries in neutral-current (NC) deep inelastic scattering

(DIS), associated with spin flips of either the electron or the hadron beam.

The EIC is primarily designed as a machine of quantum chromodynamics (QCD), no

one promised that it would be a new physics machine, yet its potential reach in probing

physics beyond the Standard Model (BSM) is strong. The accessible range of momentum

transfer complements both Z-pole measurements and low-energy precision experiments.

The availability of polarized beams offers unique handles on potential new physics effects.

Our goal in this chapter is to provide a detailed assessment of the EIC’s sensitivity

to new physics, incorporating a complete accounting of the expected experimental and

theoretical uncertainties. The primary observables of interest are PV asymmetries. We

also consider lepton-charge (LC) asymmetries, assuming that a positron beam will become

available.

Given the absence of new particle discoveries, we employ the Standard Model Effective

Field Theory (SMEFT) framework to parametrize potential deviations from SM predic-

tions. SMEFT introduces operators of mass dimension greater than four, constructed

using SM fields, and suppressed by powers of an ultraviolet (UV) scale Λ higher than SM

particle masses and beyond collider reach. We neglect the dimension-5 operator that vio-

lates lepton number, and work instead with the leading dimension-6 operators, following

the Warsaw basis [58, 28, 110].

We find that the EIC can probe SMEFT scales of a few TeV. The combination of

different asymmetry observables allows us to constrain the relevant Wilson coefficients

without leaving flat directions, unlike what is observed in NC Drell-Yan (DY) at the

Large Hadron Collider (LHC) [23, 47, 142].
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This chapter is organized as follows. Section 2 introduces the formalism of NC DIS

at the EIC, including SMEFT contributions. Section 3 presents the projected asymmetry

datasets and associated uncertainties. Section 4 details the generation of pseudodata, the

construction of the uncertainty matrix, and the fitting procedure. Section 5 shows the

SMEFT fit results for both single and two-parameter cases. We conclude with a summary

in Section 6.

3.2. Neutral-current DIS physics at the EIC

3.2.1. SMEFT meets DIS

We generalize the SM DIS cross section and asymmetries to include SMEFT effects. The

process of interest is

`(k) +H(P )→ `′(k′) +X,(3.1)

where the incoming lepton ` is either an electron or a positron, the hadron H is either a

proton or a deuteron, and X is the final-state hadron. The kinematic variables are

s = (P + k)2, Q2 = −(k − k′)2,(3.2)

x =
Q2

2P · (k − k′)
, y =

P · (k − k′)
P · k

,(3.3)

W 2 = (P + k − k′)2,(3.4)

where s is the collider energy, Q is the momentum transfer, x is the momentum fraction

carried by the parton, y is the fractional energy loss of the lepton in the hadron rest

frame, and W is the invariant mass of the hadronic system. These variables are related
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via Q2 = xy(s − M2), where M is the mass of the incoming hadron. The Feynman

diagrams at tree level are shown in Figure 3.1

ℓ ℓ ℓ ℓ

V = γ, Z

q q q q

Figure 3.1. The Feynman diagrams for `+H → `+X at the parton level

from one-boson exchange (left) and SMEFT contact interactions (right).

In SMEFT, one constructs operators O(n)
r of mass dimension n > 4 at a UV scale Λ,

and introduces Wilson coefficients C
(n)
r as effective couplings. The SMEFT Lagrangian

looks like

LSMEFT = LSM +
∑
n>4

1

Λn−4

∑
r

C(n)
r O(n)

r(3.5)

We focus on n = 6 and keep only the SMEFT effects at leading order in the Wilson

coefficients, or more precisely, at order E2/Λ2, where E is a typical energy scale, which is

the momentum transfer in our case. Higher-order terms may become important for the

DY process at the LHC [15, 46], but the EIC runs at low enough momentum transfer to

justify neglecting them. We therefore keep only the SM-SMEFT interference and ignore

the squared SMEFT amplitudes. Consequently, all observables are linearized with respect

to the SMEFT parameters.

The dimension-6 operators of interest are listed in Table 3.1. Following a common

phenomenological approach, we write these operators in the vector–axial vector basis
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Table 3.1. The list of dimension-6 SMEFT operators relevant to DIS in the

Warsaw basis before electroweak symmetry breaking and reexpressed in the

vector and axial-vector current basis after electroweak symmetry breaking.

The cfV/Ar
coefficients represent the chiral structure of each operator.

Cr Or C̃r ceVr ceAr
cuVr cuAr

cdVr cdAr

C
(1)
`q O

(1)
`q = (`γµ`)(qγµq) C

(1)
`q /4 1 1 1 1 1 1

C
(3)
`q O

(3)
`q = (`γµτ I`)(qγµτ

Iq) C
(3)
`q /4 1 1 –1 –1 1 1

Ceu Oeu = (eγµe)(uγµu) Ceu/4 1 –1 1 –1 0 0

Ced Oed = (eγµe)(dγµd) Ced/4 1 –1 0 0 1 –1

C`u O`u = (`γµ`)(uγµu) C`u/4 1 1 1 –1 0 0

C`d O`d = (`γµ`)(dγµd) C`d/4 1 1 0 0 1 –1

Cqe Oqe = (eγµe)(qγµq) Cqe/4 1 –1 1 1 1 1

using massive Dirac fields [157]:

LSMEFT = LSM +
1

Λ2

∑
r

C̃r

{∑
f

[eγµ(ceVr − c
e
Ar
γ5)e][qfγµ(cfVr − c

f
Ar
γ5)qf ]

}
.(3.6)

Table 3.1 also shows the electroweak couplings and the rescaled SMEFT parameters.

The differential hadronic cross section is written in terms of the usual SM DIS structure

functions and additional SMEFT-induced structure functions:

d2σ

dx dy
=

2πyα2

Q4

{
ηγLγµνW

µν
γ + ηγZLγZµνW

µν
γZ + ηZLZµνW

µν
Z +

∑
r

ξγrLγrµνW
µν
γr +

∑
r

ξZrLZrµνW
µν
Zr

}
,

(3.7)
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where α is the electromagnetic fine structure constant, and Ljµν and W j
µν with j = γ,

Z, γZ, γr, Zr represent the leptonic and hadronic tensors, respectively. These include

contributions from the photon and Z channels, as well as the photon-Z, photon-SMEFT,

and Z-SMEFT interference terms. The ηj and ξj coefficients are

ηγ = 1, ηγZ =
GFm

2
Z

2
√

2πα

Q2

Q2 +m2
Z

, ηZ = (ηγZ)2,(3.8)

ξγr =
C̃r

4πα

Q2

Λ2
, ξZr = ηγZ

C̃r
4πα

Q2

Λ2
,(3.9)

where GF is the Fermi constant and mZ is the Z mass. The lepton tensors are

Lγµν = 2[kµk
′
ν + k′µkν − k · k′gµν − iλeεµναβkαk′β],(3.10)

LγZµν = −(geV − λegeA)Lγµν ,(3.11)

LZµν = (geV − λegeA)2Lγµν ,(3.12)

Lγrµν = (ceVr − λec
e
Ar

)Lγµν ,(3.13)

LZrµν = −(ceVr − λec
e
Ar

)(geV − λegeA)Lγµν ,(3.14)

where λe = ±1 is the lepton helicity. For positron beams, one flips the signs of all g and

c couplings, and also the overall signs of LγZµν and Lγrµν .

The cross section becomes more explicit when these lepton tensors are inserted:

d2σ

dx dy
=

2πyα2

Q4
Lγµν

{
ηγW µν

γ − ηγZ(geV − λegeA)W µν
γZ + ηZ(geV − λegeA)2W µν

Z

+
∑
r

ξγr(ceVr − λec
e
Ar

)W µν
γr −

∑
r

ξZr(cVr − λeceAr
)(geV − λegeA)W µν

Zr

}
.(3.15)
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The hadronic structure tensor is parametrized using structure functions as

W j
µν =

(
−gµν +

qµqν
q2

)
F j

1 +
P̂µP̂ν
P · q

F j
2 +

iεµναβ
2P · q

(
PαqβF j

3 + 2qαSβgj1
)

− S · q
P · q

[
P̂µP̂ν
P · q

gj4 +

(
gµν −

qµqν
q2

)
gj5

]
.(3.16)

This form follows from general Lorentz structures, available four-momenta, and the spin

vector Sµ of the nucleus. We define P̂ µ = P µ − qµ(P · q)/q2. The functions F j
i and gji

represent the unpolarized and polarized structure functions. We omit gj2 and gj3 because

they are suppressed by M2/Q2. The spin vector satisfies S2 = −M2 and S · P = 0. For

longitudinally polarized nuclei, we use Sµ = λH(|p|, Ep̂), where λH = ±1 is the nucleon

helicity and P µ = (E,p) is its four-momentum.

The structure functions Fi and gi each include the SM piece and a SMEFT contribu-

tion:

Fi = F SM,NC
i + F SMEFT

i ,(3.17)

gi = gSM,NC
i + gSMEFT

i .(3.18)

The SM terms are given in terms of the familiar NC structure functions as

F SM,NC
i = F γ

i − ηγZ(geV − λegeA)F γZ
i + ηZ(geV − λegeA)2FZ

i ,(3.19)

gSM,NC
i = gγi − ηγZ(geV − λegeA)gγZi + ηZ(geV − λegeA)2gZi(3.20)
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The SMEFT corrections are

F SMEFT
i =

∑
r

ξγr(ceVr − λec
e
Ar

)F γr
i −

∑
r

ξZr(ceVr − λec
e
Ar

)(geV − λegeA)FZr
i ,(3.21)

gSMEFT
i =

∑
r

ξγr(ceVr − λec
e
Ar

)gγri −
∑
r

ξZr(ceVr − λec
e
Ar

)(geV − λegeA)gZri .(3.22)

The expressions for these structure functions in the parton model are

[
F γ

2 , F
γZ
2 , FZ

2 , F
γr
2 , FZr

2

]
=

x
∑
f

[
Q2
f , 2Qfg

f
V , g

f
V

2
+ gfA

2
, 2Qfc

f
Vr
, 2(gfV c

f
Vr

+ gfAc
f
Ar

)
]

(qf + qf ),(3.23)

[
F γ

3 , F
γZ
3 , FZ

3 , F
γr
3 , FZr

3

]
=∑

f

[
0, 2Qfg

f
A, 2g

f
V g

f
A, 2Qfc

f
Ar, 2(gfV c

f
Ar

+ gfAc
f
Vr

)
]

(qf − qf ),(3.24)

[
gγ1 , g

γZ
1 , gZ1 , g

γr
1 , g

Zr
1

]
=

1

2

∑
f

[
Q2
f , 2Qfg

f
V , g

f
V

2
+ gfA

2
, 2Qfc

f
Vr
, 2(gfV c

f
Vr

+ gfAc
f
Ar

)
]

(∆qf + ∆qf ),(3.25)

[
gγ5 , g

γZ
5 , gZ5 , g

γr
5 , g

Zr
5

]
=∑

f

[
0, Qfg

f
A, g

f
V g

f
A, Qfc

f
Ar
, gfV c

f
Ar

+ gfAc
f
Vr

]
(∆qf −∆qf ).(3.26)

Here, (∆)qf refers to the un(polarized) parton distribution functions (PDFs) and Qf is the

electric charge of parton flavor f . In the parton model at leading order, the Callan–Gross

relations hold, namely F j
2 = 2xF j

1 and gj4 = 2xgj5, for all channels j.
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If the incoming hadron is an ion or a nucleus, we also need neutron PDFs. From

isospin symmetry, neutron PDFs are given by

qu/n(x,Q2) = qd/p(x,Q
2),(3.27)

qd/n(x,Q2) = qu/p(x,Q
2),(3.28)

qs/n(x,Q2) = qs/p(x,Q
2),(3.29)

qc/n(x,Q2) = qc/p(x,Q
2),(3.30)

∆qu/n(x,Q2) = ∆qd/p(x,Q
2),(3.31)

∆qd/n(x,Q2) = ∆qu/p(x,Q
2),(3.32)

∆qs/n(x,Q2) = ∆qs/p(x,Q
2),(3.33)

∆qc/n(x,Q2) = ∆qc/p(x,Q
2).(3.34)

For the deuteron, which is an isoscalar combination of a proton and a neutron, the PDFs

are given by

qf/D(x,Q2) =
1

2
[qf/p(x,Q

2) + qf/n(x,Q2)],(3.35)

∆qf/D(x,Q2) =
1

2
[∆qf/p(x,Q

2) + ∆qf/n(x,Q2)].(3.36)

The hadronic cross section, now written in terms of the structure functions Fi and gi, is

d2σλeλH

dx dy
=

4πα2

xyQ2

{
xy2F1 + (1− y)F2 − λe

y

2
(y − 2)xF3

+ λeλH(2− y)xyg1 − λH(1− y)g4 − λHxy2g5

}
,(3.37)
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for specific helicities of the electron and nucleon. We neglect the electron mass and

corrections of order M2/Q2. The unpolarized and polarized cross sections are built by

summing combinations of this expression evaluated at all helicity configurations:

dσ0 =
1

4

(
dσ++ + dσ+−+ dσ−+ + dσ−−

)
,(3.38)

dσe =
1

4

(
dσ++ + dσ+−− dσ−+− dσ−−

)
,(3.39)

dσH =
1

4

(
dσ++− dσ+−+ dσ−+− dσ−−

)
,(3.40)

dσeH =
1

4

(
dσ++− dσ+−− dσ−+ + dσ−−

)
.(3.41)

Here, dσ0 is the unpolarized cross section, dσe refers to a polarized electron and unpolar-

ized hadron, dσH corresponds to a polarized hadron and unpolarized electron, the fully

polarized case is dσeH , and we have suppressed the differentials dx and dy. The SM parts

of these cross sections are

d2σ0

dx dy
=

4πα2

xyQ2

{
xy2

[
F γ

1 − geV ηγZF
γZ
1 + (geV

2 + geA
2)ηZF

Z
1

]
+(1− y)

[
F γ

2 − geV ηγZF
γZ
2 + (geV

2 + geA
2)ηZF

Z
2

]
−xy

2
(2− y)

[
geAηγZF

γZ
3 − 2geV g

e
AηZF

Z
3

]}
,(3.42)

d2σe
dx dy

=
4πα2

xyQ2

{
xy2

[
geAηγZF

γZ
1 − 2geV g

e
AηZF

Z
1

]
+(1− y)

[
geAηγZF

γZ
2 − 2geV g

e
AηZF

Z
2

]
+
xy

2
(2− y)

[
geV ηγZF

γZ
3 − (geV

2 + geA
2)ηZF

Z
3

]}
,(3.43)

d2σH
dx dy

=
4πα2

xyQ2

{
(2− y)xy

[
geAηγZg

γZ
1 − 2geV g

e
AηZg

Z
1

]
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+(1− y)
[
geV ηγZg

γZ
4 − (geV

2 + geA
2)ηZg

Z
4

]
−xy2

[
geV ηγZg

γZ
5 − (geV

2 + geA
2)ηZg

Z
5

]}
,(3.44)

d2σeH
dx dy

=
4πα2

xyQ2

{
(2− y)xy

[
gγ1 − geV ηγZg

γZ
1 + (geV

2 + geA
2)ηZg

Z
1

]
−(1− y)

[
geAηγZg

γZ
4 − 2geV g

e
AηZg

Z
4

]
−xy2

[
geAηγZg

γZ
5 − 2geV g

e
AηZg

Z
5

]}
.(3.45)

The SMEFT contributions are

d2σ
SMEFT
0

dx dy
=

4πα2

xyQ2

∑
r

[
xy2(ceVrξγrF

γr
1 − (ceVrg

e
V + ceAr

geA)ξZrF
Zr
1 )

+(1− y)(ceVrξγrF
γr
2 − (ceVrg

e
V + ceAr

geA)ξZrF
Zr
2 )

+
xy

2
(2− y)(ceAr

ξγrF
γr
3 − (ceVrg

e
A + ceAr

geV )ξZrF
Zr
3 )
]
,(3.46)

d2σ
SMEFT
e

dx dy
= − 4πα2

xyQ2

∑
r

[
xy2(ceAr

ξγrF
γr
1 − (ceVrg

e
A + ceAr

geV )ξZrF
Zr
1 )

+(1− y)(ceAr
ξγrF

γr
2 − (ceVrg

e
A + ceAr

geV )ξZrF
Zr
2 )

+
xy

2
(2− y)(ceVrξγrF

γr
3 − (ceAr

geA + ceVrg
e
V )ξZrF

Zr
3 )
]
,(3.47)

d2σ
SMEFT
H

dx dy
= − 4πα2

xyQ2

∑
r

[
xy(2− y)(ceAr

ξγrg
γr
1 − (ceVrg

e
A + ceAr

geV )ξZrg
Zr
1 )

+(1− y)(ceVrξγrg
γr
4 − (ceAr

geA + ceVrg
e
V )ξZrg

Zr
4 )

+xy2(ceVrξγrg
γr
5 − (ceAr

geA + ceVrg
e
V )ξZrg

Zr
5 )
]
,(3.48)

d2σ
SMEFT
eH

dx dy
=

4πα2

xyQ2

∑
r

[
xy(2− y)(ceVrξγrg

γr
1 − (ceAr

geA + ceVrg
e
V )ξZrg

Zr
1 )
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+(1− y)(ceAr
ξγrg

γr
4 − (ceVrg

e
A + ceAr

geV )ξZrg
Zr
4 )

+xy2(ceAr
ξγrg

γr
5 − (ceVrg

e
A + ceAr

geV )ξZrg
Zr
5 )
]
.(3.49)

The observables of interest are PV and LC asymmetries. To be more precise, we consider

the left-right asymmetry of electrons with unpolarized hadrons,

AePV =
dσe
dσ0

,(3.50)

left-right asymmetry of hadrons with unpolarized electrons,

AHPV =
dσH
dσ0

,(3.51)

and unpolarized electron-positron asymmetry with unpolarized hadrons,

ALC =
dσe

+

0 − dσe
−

0

dσe
+

0 + dσe
−

0

.(3.52)

3.2.2. Measurement of PV asymmetries at the EIC

In DIS experiments with polarized electron and hadron beams, the measured differential

cross section with the beam polarizations Pe and PH is given by

dσ = dσ0 +Pe dσe +PH dσH +PePH dσeH .(3.53)

Here, Pe and PH play a role similar to helicity signs, but in practice they are not exactly

±100%. Instead, they take values somewhere in between. PV asymmetries correspond to

flipping the spin direction of either the electron or the hadron.
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At the EIC, electron and hadron beams with opposite polarization signs will be enter

alternately into the storage rings. This means both beam polarizations will flip periodi-

cally over short time scales. This is in contrast to HERA, where data were collected with

one polarization at a time. The intervals between different polarization configurations

were so long that each setting effectively formed an independent experiment. The EIC

setup avoids that limitation.

The DIS event counts during a given beam helicity configuration are expressed as

N++ = adetL
++
(
dσ0 +|P++

e | dσe +|P++
H | dσH +|P++

e ||P++
H | dσeH

)
,(3.54)

N+− = adetL
+− (dσ0 +|P+−

e | dσe−|P+−
H | dσH −|P

+−
e ||P+−

H | dσeH
)
,(3.55)

N−+ = adetL
−+
(
dσ0−|P−+

e | dσe +|P−+
H | dσH −|P

−+
e ||P−+

H | dσeH
)
,(3.56)

N−− = adetL
−− (dσ0−|P−−e | dσe−|P−−H | dσH +|P−−e ||P−−H | dσeH

)
,(3.57)

where LXY is the integrated luminosity for configuration XY , and PXY
e and PXY

H are

the electron and hadron beam polarizations for that helicity bunch. The label XY =

++,+−,−+,−− corresponds to the electron and hadron helicity signs, respectively. The

factor adet accounts for detector acceptance, efficiency, and phase space coverage. Assum-

ing beam polarization, luminosity, and detector effects to be constant over the measure-

ment period, we get

dσ0 =
1

4

(
dσ++ + dσ+−+ dσ−+ + dσ−−

)
,(3.58)

dσe =
1

4|Pe|
(
dσ++ + dσ+−− dσ−+− dσ−−

)
,(3.59)



132

dσH =
1

4|PH |
(
dσ++− dσ+−+ dσ−+− dσ−−

)
,(3.60)

dσeH =
1

4|Pe||PH |
(
dσ++− dσ+−− dσ−+ + dσ−−

)
,(3.61)

where the experimentally measured cross section is defined by dσXY = NXY /LXY /adet.

The PV asymmetries are then obtained as ratios of these measured cross sections. Since

both beam helicities flip frequently on a short time scale, it is safe to treat adet as constant.

We extract the asymmetries from the measured yields Y XY = NXY /LXY using

AePV =
dσe
dσ0

=
1

|Pe|
Y ++ + Y +− − Y −+ − Y −−

Y ++ + Y +− + Y −+ + Y −−
,(3.62)

AHPV =
dσH
dσ0

=
1

|PH |
Y ++ − Y +− + Y −+ − Y −−

Y ++ + Y +− + Y −+ + Y −−
.(3.63)

The EIC has been designed to keep point-to-point luminosity uncertainties at the level of

O(10−4). As a result, the dominant experimental uncertainty is expected to come from

polarimetry.

3.2.3. Measurement of LC asymmetries at the EIC

PV asymmetries can be extracted from the yields within a single run. In contrast, form-

ing the LC asymmetry requires two separate runs: one with electrons, the other with

positrons. To reduce possible systematic effects coming from differences in electron and

positron detection, the magnet polarity can be flipped between the runs. In this case,

the dominant uncertainty is expected to be from luminosity. For the LC asymmetry, we

assume a 2% relative uncertainty in luminosity, treated as an absolute uncertainty on the

asymmetry itself.



133

3.3. Projections of PV and LC asymmetry data

The anticipated runs and corresponding pseudodatasets, including beam energies, in-

tegrated luminosities, and the labeling convention used throughout this study, are listed

in Table 3.2.

Table 3.2. Expected runs at the EIC, in terms of beam energy, beam type,

and nominal annual luminosity, together with our labeling scheme. P6 is

the Yellow Report reference setting.

D1 5 GeV × 41 GeV e−D, 4.4 fb−1 P1 5 GeV × 41 GeV e−p, 4.4 fb−1

D2 5 GeV × 100 GeV e−D, 36.8 fb−1 P2 5 GeV × 100 GeV e−p, 36.8 fb−1

D3 10 GeV × 100 GeV e−D, 44.8 fb−1 P3 10 GeV × 100 GeV e−p, 44.8 fb−1

D4 10 GeV × 137 GeV e−D, 100 fb−1 P4 10 GeV × 275 GeV e−p, 100 fb−1

D5 18 GeV × 137 GeV e−D, 15.4 fb−1 P5 18 GeV × 275 GeV e−p, 15.4 fb−1

P6 18 GeV × 275 GeV e−p, 100 fb−1

We refer to these configurations as datasets for simplicity. D# and P# labels denote

the unpolarized PV asymmetry datasets in e−D and e−p collisions, while ∆D# and ∆P#

indicate the polarized ones. LD# and LC# labels are used for the LC asymmetry datasets.

P6 represents the unrealistic e−p collision setting with the highest energy and luminosity,

and corresponds to the reference configuration used in the Yellow Report [9]. We also

include a high-luminosity scenario, HL-EIC, in which the integrated luminosity of each

run is increased by a factor of 10.

The projected data are subject to a series of baseline cuts. We require Q > 1 GeV

to suppress nonperturbative QCD effects. To reduce uncertainties from bin migration
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and unfolding, we apply a cut y > 0.1. To suppress photoproduction backgrounds from

the final-state hadron, we apply y < 0.9. For the scattered lepton, we require |η′| < 3.5

to restrict events to the main detector region and E ′ > 2 GeV to ensure high sample

purity. In the SMEFT analysis, we apply additional cuts of x < 0.5 and Q > 10 GeV.

These remove regions where uncertainties from nonperturbative QCD and nuclear effects

become large. The kinematic region covered by the datasets spans
√
s = 70 to 140 GeV,

with 0.1 ≤ y ≤ 0.9. This coverage is shown in Figure 3.2.

Now let’s talk about the money. The statistical uncertainty on the unpolarized PV

asymmetry is determined by the event count and corrected by the electron beam polariza-

tion. It is given by δA
(e)
PV, stat = 1/Pe/

√
N . For the HL-EIC scenario, where the integrated

luminosity is increased by a factor of 10, this improves to δA
(e)
PV, stat, HL = δA

(e)
PV, stat/

√
10.

For the polarized PV asymmetry, the hadron beam polarization should be included, and

the uncertainty becomes δA
(H)
PV, stat = (Pe/PH) δA

(e)
PV, stat. In the case of the LC asymmetry,

both beams are unpolarized, so the polarization factors are removed. We also introduce

a
√

10 penalty to account for the expected 10-fold reduction in positron luminosity. The

resulting uncertainty is δALC, stat =
√

10Pe δA
(e)
PV, stat. We consider a HL-EIC upgrade

also for the polarized PV asymmetry, but not for the LC case. The remaining sources of

uncertainty are treated as follows. A 1% uncorrelated systematic uncertainty is assigned

to all asymmetries. Beam polarization uncertainties are taken as fully correlated, and

1% for the unpolarized PV asymmetry and 2% for the polarized case, since the latter is

smaller in magnitude. The LC asymmetry has no associated polarization uncertainty. We

include an absolute luminosity uncertainty of 2% for the LC asymmetry, treated as fully
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Figure 3.2. The kinematic coverage at the EIC in terms of the Bjorken-

x variable and the momentum transfer for the lowest and highest collider

energies. The shaded region indicates the good region used in our SMEFT

analysis.

correlated. For the LC observables, we also include higher-order quantum electrodynam-

ics (QED) effects by assigning the 5% of the difference between the next-to-leading-order

(NLO) and Born-level values as uncorrelated uncertainty. Finally, PDF variations are

included as fully correlated theoretical uncertainties. All experimental and theoretical

uncertainties are summarized in Table 3.3.
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Table 3.3. Anticipated uncertainty components for each observable at each

family of runs at the EIC. NL means the case of nominal luminosity and

HL indicates the case of a 10-fold higher luminosity.

Uncertainty AePV (D, P) AHPV (∆D, ∆P) ALC (LD, LC)

statistical (NL) δAePV,stat = 1
Pe

√
N

Pe

PH
δAePV,stat

√
10Pe δA

e
PV,stat

statistical (HL) 1√
10
δAPV,stat

1√
10

Pe

PH
δAePV,stat –

uncorrelated

systematics
1% rel. 1% rel. 1% rel.

fully correlated

beam polarization
1% rel. 2% rel. –

fully correlated

luminosity
– – 2% abs.

uncorrelated

NLO QED
– – 5%× (ANLO

LC − ABorn
LC )

fully correlated

PDF
yes yes yes

3.4. Pseudodata generation, the uncertainty matrix, and the fitting

For the PV asymmetries, both unpolarized and polarized, three sources of uncertainty

are considered: statistical, uncorrelated systematics, and correlated beam polarization

uncertainty. For the bth bin, the pseudodata are generated as

Apseudo
PV,b = APV,SM,b + rb(δAPV,stat,b ⊕ δAPV,sys,b) + r′ δAPV,pol,b,(3.64)
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where ⊕ means sum in quadrature, and rb, r
′ ∼ N (0, 1) are independent unit normal

variates. For the LC asymmetries, four types of uncertainty are included: statistical,

uncorrelated systematics, uncorrelated NLO QED effects, and correlated luminosity un-

certainty. The pseudodata in the bth bin are generated as

Apseudo
LC,b = ALC,SM,b + rb(δALC,stat,b ⊕ δALC,sys,b ⊕ δALC,NLO QED,b) + r′ δALC,lum,b,(3.65)

The total uncertainty matrix has two parts, experimental and theoretical,

E = Eexp + Etheo(3.66)

The only theoretical uncertainty we consider is from PDf variations. The experimental

part is defined as

Eexp,bb′ =


(δAuncorr

b ⊕ δAcorr
b )2, b = b′,

ρbb′ δA
corr
b δAcorr

b′ , b 6= b′,

(3.67)

where δA
un(corr)
b denotes the total un(correlated) uncertainty and we assume full correla-

tion ρbb′ = 1. The PDF uncertainty matrix is given by

Epdf,bb′ =
1

NP

NP∑
m=1

(ASM,m,b − ASM,0,b)(ASM,m,b′ − ASM,0,b′),(3.68)

where ASM,0(m),b is the observable evaluated at the central (mth) member of the PDF set.

We use NNPDF3.1 NLO [32] for the unpolarized cross section and NNPDFPOL1.1 [141]

for the polarized one.
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Figure 3.3. Error budget plots for representative datasets D4, ∆P4, and LP5.

In Figures 3.3 and 3.4, we present the error budget plots for representative datasets D4,

∆P5, and LC5. These plots show the contribution of the uncertainty contributions to the

diagonal entries of the uncertainty matrix. The black line corresponds to the central value

of the asymmetry, A
(e)
PV, A

(H)
PV , or ALC, depending on the dataset. The solid red line shows

the statistical uncertainty for the nominal luminosity case, while the dashed red line shows

the HL-EIC scenario. No high-luminosity configuration is assumed for ALC. The solid

blue line corresponds to the default uncorrelated systematic uncertainty of 1% relative,

and the dashed blue line represents a hypothetical 2% case, which is shown for illustration

but not used in the analysis. The cyan lines indicate the correlated beam polarization

uncertainty, 1% for A
(e)
PV and 2% for A

(H)
PV , and 2% absolute luminosity uncertainty for
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Figure 3.4. The same as Figure 3.3 but for LP5.

ALC. The orange line shows the uncertainty from PDF variations, and the green line,

included only for ALC, corresponds to NLO QED uncertainty introduced as higher-order

effects. The horizontal axes show only those bins that pass both detector-level cuts and the

additional cuts used in the SMEFT analysis. The bins are sorted by momentum transfer

first and then by Bjorken-x, which explains the wave pattern. In the nominal luminosity

case, statistical uncertainty dominates the PV asymmetries. In the high-luminosity case,

systematic and beam polarization uncertainties are comparable. The LC asymmetry is

dominated by luminosity uncertainty. PDF uncertainties are subdominant for A
(e)
PV but

become more important in the polarized case.
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We perform fits using both e−p and e−D data, focusing on datasets #4 and #5, where

the center-of-mass (c.m.) energy is higher and SMEFT effects become more visible. The

fit is based on a standard χ2 function:

χ2 =

NB∑
b=1

NB∑
b′=1

(ASMEFT − Apseudo)bHbb′(ASMEFT − Apseudo)b′ ,(3.69)

where H = E −1 is the inverse of the uncertainty matrix. The error budget plots suggest

that the uncertainties from polarimetry and luminosity differences could become limiting

factors. To assess this, we also perform simultaneous fits of SMEFT parameters along

with either the beam polarization parameter P or the luminosity difference parameter

Alum, in order to potentially improve the bounds on the Wilson coefficients. In the fits

where P is included as a free parameter, the χ2 function is defined as

χ2 =

NB∑
b=1

NB∑
b′=1

(PASMEFT − Apseudo)bHbb′(PASMEFT − Apseudo)b′ +
(P − P )2

δP 2
.(3.70)

In this case, we omit the beam polarization uncertainty from the error matrix, since P is

treated as a fit parameter. We set the reference value P = 1. The idea is that polarimetry

gives an external estimate of P , but a better value may be inferred directly from the data,

constrained within the uncertainty provided by polarimetry. In the fits where Alum is

included as a free parameter, the χ2 function is defined as

χ2 =

NB∑
b=1

NB∑
b′=1

(ASMEFT − Apseudo − Alum)bHbb′(ASMEFT − Apseudo − Alum)b′ .(3.71)

Here, we omit the luminosity uncertainty from the uncertainty matrix.
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Let W denote the full set of fit parameters, including the Wilson coefficients and,

where applicable, the additional nuisance parameter, P or Alum. The best-fit values are

obtained by solving the condition

∇χ2(W ) = 0.(3.72)

The Fisher information matrix is constructed from the Hessian of the χ2 function evaluated

at the best-fit point:

F =
1

2
∇∇χ2(W ).(3.73)

The inverse of the Fisher matrix gives the covariance matrix V .

Since a single pseudodataset reflects just one outcome, we repeat the procedure over

NE = 1000 pseudoexperiments to generate statistics. The final best-fit values and corre-

sponding covariance matrix are then obtained by averaging over this ensemble:

W =

[
NE∑
e=1

Fe

]−1 NE∑
e=1

FeW e,(3.74)

F =
1

NE

NE∑
e=1

Fe.(3.75)

The fit results are shown in the next section.
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3.5. SMEFT fit results

3.5.1. Single Wilson coefficients

We now present the results of the single-parameter fits for the Wilson coefficients. These

are quoted as 95% confidence level (CL) intervals, averaged over 1000 pseudoexperiments.

The bounds on the Wilson coefficients are shown in Figures 3.5–3.11.

D4 D5 P4 P5 D4 D5 P4 P5
Δ
D4

Δ
D5

Δ
P4

Δ
P5

Δ
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Δ
D5

Δ
P4

Δ
P5

LD4
LD5

LP4
LP5

-4
-2

0
2
4

-0.4
0

0.4

Cℓq
(1) at 95% CL, Λ = 1 TeV

NL HL NL HL

unpolarized APV polarized APV lepton-charge A

Figure 3.5. 95% CL bounds of C
(1)
`q from single-parameters fits (darker)

and from the (1+1)-parameter fits with beam polarization as an additional

fitting parameter (lighter) using the families of data sets D4, D5, P4, and

P5 at Λ = 1 TeV.

The plots are grouped into three categories based on the observable: unpolarized PV

asymmetry, polarized PV asymmetry, and the LC asymmetry. For each PV asymmetry

type, we show results for both the nominal and high-luminosity scenarios. The fits are

restricted to datasets #4 and #5, where the c.m. energy is highest and sensitivity to
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Figure 3.6. The same as Figure 3.5 but for C
(3)
`q .
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Figure 3.7. The same as Figure 3.5 but for C`u.

SMEFT effects is enhanced. In each plot, two lines are shown per parameter. The darker

line corresponds to the fit where only the Wilson coefficient is fitted, and the lighter line
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Figure 3.8. The same as Figure 3.5 but for C`d.
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Figure 3.9. The same as Figure 3.5 but for Ceu.

corresponds to the fit where the beam polarization parameter P is also included. The
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Figure 3.10. The same as Figure 3.5 but for Ced.
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Figure 3.11. The same as Figure 3.5 but for Cqe.

color scheme is as follows: black for the D4-family (D4, ∆D4, LD4), red for D5-family,

blue for P4-family, and orange for P5-family.



146

From these figures, we note the common patterns. Across all observables, proton

targets lead to stronger bounds than deuteron targets. The higher-energy but lower-

luminosity datasets, D5 and P5, yield weaker constraints than the less-energetic but

higher-luminosity D4 and P4 datasets. Among the observables, unpolarized PV asymme-

tries yield the strongest bounds, followed by polarized PV, and then the LC asymmetries.

The HL-EIC scenario results in a noticeable improvement in sensitivity, particularly for

the deuteron datasets.

For the unpolarized PV asymmetries, we find that the SMEFT parameters and the

beam polarization parameter are strongly correlated, with correlation coefficients typically

greater than 0.7. Including P in the fit leads to a 30 to 50% improvement in the bounds

on the Wilson coefficients. In contrast, for the polarized PV asymmetries, the correlation

between the SMEFT parameters and P is weaker, generally below 0.2, and the bounds

weaken by 15 to 20%. Since the potential gain outweighs the loss, including P in the fit

can be justified. For fits involving Alum, the correlation with the SMEFT parameters is

moderate, around 0.4, and the resulting bounds become 15 to 20% weaker. This suggests

that treating Alum as a fit parameter does not offer a meaningful improvement.

Figures 3.12–3.18 show the effective ultraviolet scales corresponding to these 95% con-

fidence intervals. The same grouping and color scheme are used. Darker bars correspond

to C-only fits, while lighter bars represent C + P fits.

With nominal annual luminosity, the EIC can probe scales up to 3 TeV in some

channels. With the 10-fold HL-EIC upgrade, the reach extends up to 4 TeV.
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Figure 3.12. Effective UV cut-off scales, Λ/
√
C

(1)
`q , defined in terms of the

95% CL bounds on the Wilson coefficient C
(1)
`q and with Λ = 1 TeV.
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Figure 3.13. The same as Figure 3.12 but for C
(3)
`q .
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Figure 3.14. The same as Figure 3.12 but for C`u.
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Figure 3.15. The same as Figure 3.12 but for C`d.

3.5.2. Double Wilson coefficients

We now turn to the results of the two-parameter fits, where pairs of Wilson coefficients

are varied simultaneously. These fits include beam polarization as a nuisance parameter.
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Figure 3.16. The same as Figure 3.12 but for Ceu.
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Figure 3.17. The same as Figure 3.12 but for Ced.

A known limitation of NC DY measurements at the LHC is that they suffer from

parameter degeneracies in this sector [47, 48]. One of the aims of this study is to test

whether the EIC can lift those degeneracies.
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Figure 3.18. The same as Figure 3.12 but for Cqe.

Figure 3.19 shows the joint constraints on (Ceu, Cqe) using datasets from the D4 and

P4 families. Each observable leads to a distinct correlation pattern, and the resulting

constraints are complementary. The LC asymmetry produces elongated ellipses, while

the unpolarized PV asymmetry gives the tightest bounds. As in the single-parameter

case, proton data are significantly more constraining than deuteron data.

Figure 3.20 compares the EIC reach on (Ceu, C`u) using D4 and P4 datasets against

the LHC bound adapted from [48]. The LHC result is based on 8 TeV, 20 fb−1 NC DY

data. That measurement exhibits a clear flat direction in this parameter subspace, namely

this specific parameter combination cannot be resolved fully using DY observables alone.

Figure 3.21 presents a similar comparison for (Ceu, C
(1)
`q ), using both nominal and

high-luminosity P4 datasets at the EIC. In this case, the EIC not only resolves the flat

direction but also provides stronger bounds with visibly distinct correlation contours.
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Figure 3.19. 95% CL ellipses for the Wilson coefficients Ceu and Cqe using

the families of data sets D4 and P4 in the simultaneous (2 + 1)-parameter

fits that includes the beam polarization as an additional fitting parameter.

In Figure 3.22, we show the results for (C
(1)
`q , C

(3)
`q ) using P4 at the EIC, compared

to LHC data from [47]. This particular subspace is already tightly constrained by the

DY data at the LHC, but we find that the EIC can lead to even stronger bounds. We

also include the result of a combined fit, which highlights the complementarity of the two

datasets.

The deuteron data at the EIC also exhibits flat directions for certain pairs of SMEFT

parameters, such as (Ceu, Ced) and (Clu, Cld). This behavior can be understood analyt-

ically. In the analytical expression for asymmetries, these coefficients appear in linear

combinations, for example, 2Ceu − Ced. Such combinations prevent the individual coef-

ficients from being disentangled using deuteron data alone. However, the degeneracy is
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Figure 3.20. 95% CL ellipses for the Wilson coefficients Ceu and Cqe using

the data sets D4 and P4 in the (2 + 1)-parameter fit that includes the

beam polarization as an additional fitting parameter, compared with the

corresponding two-parameter fit from the LHC data [48].

specific to the deuteron target and does not appear in the corresponding proton datasets.

As a result, the flat direction is lifted when data from different hadron beams are com-

bined. This highlights the importance of a physics program that includes multiple hadron

species at various energies at the EIC.

Let’s summarize our findings. Proton data consistently yield tighter bounds than

deuteron data. Among observables, unpolarized PV asymmetries provide the strongest

constraints. When taken together, the three types of observables, namely unpolarized

and polarized PV, and LC asymmetries, from both deuteron and proton collisions, as well

as the NC DY data at the LHC, form a complementary set. Each contributes a distinct
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Figure 3.21. 95% CL ellipses for the Wilson coefficients Ceu and C
(1)
`q using

the nominal- and high-luminosity data set P4 in the (2 + 1)-parameter

fit that includes the beam polarization as an additional fitting parameter,

compared with the corresponding two-parameter fit from the LHC data

[47].

correlation pattern. The EIC is capable of resolving all the flat directions that persist in

LHC DY data. In several subspaces, the EIC even outperforms the LHC, highlighting its

important role in future SMEFT analyses.

3.6. Coda

We conclude with a brief summary of the methodology and findings of this study. Our

goal was to assess the BSM sensitivity of the EIC. We adopted the model-independent
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Figure 3.22. 95% CL ellipses for the Wilson coefficients C
(1)
`q and C

(3)
`q using

the nominal-luminosity data set P4 in the (2+1)-parameter fit that includes

the beam polarization as an additional fitting parameter, compared with the

corresponding fit from the LHC data [47] and the combined fit of the two.

SMEFT approach, focusing on semi-leptonic four-fermion operators. The analysis incor-

porated a detailed treatment of anticipated experimental and theoretical uncertainties,

and explored the potential improvement in sensitivity through simultaneous fits of Wilson

coefficients with beam polarization and luminosity normalization parameters.

Our results show that the EIC can probe ultraviolet scales above 3 TeV using nominal

integrated luminosity per year. With a 10-fold luminosity upgrade, the reach extends

beyond 4 TeV. The most stringent constraints are obtained from polarized electron beams

scattering off unpolarized protons. These results are complementary to, and in some cases

competitive with, existing LHC bounds. In particular, the EIC’s clean environment and
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different initial states allow it to disentangle operator degeneracies that remain unresolved

in hadron collider data.

Although the EIC was primarily designed as a precision QCD facility, this study

demonstrates that it can also serve as a powerful probe of new physics.



156

CHAPTER 4

DISentangling SMEFT: A Few Colliders More

Blondie: Two hundred thousand dollars is a lot of money. We’re gonna have to earn it.

Sergio Leone, The Good, the Bad, and the Ugly

In this chapter, we extend our previous study of parity-violating deep inelastic scatter-

ing asymmetries at the Electron-Ion Collider to include additional simulated data from the

Large Hadron-electron Collider and the Future Circular Collider. We upgrade the leading-

order analysis of Chapter 3 with the framework of Standard Model Effective Field Theory

by incorporating the complete set of dimension-6 operators that affect the amplitude,

namely the shifts to the fermion couplings to neutral gauge bosons, and include next-

to-leading order corrections from quantum chromodynamics to the structure functions.

This allows us to directly compare the new physics sensitivity of all three future machines

under consistent assumptions.

4.1. Prelude

The Standard Model (SM) is a remarkably successful theory. It accurately describes

all known particles and interactions, and with the discovery of the Higgs boson, the

SM particle spectrum is now complete. But its success is limited to what it includes.

There is no explanation for the existence of dark matter, no mechanism to account for

the matter-antimatter asymmetry, and no built-in origin for neutrino masses. There

are also structural issues, such as the hierarchy problem and the vast spread of fermion
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Yukawa couplings. All this is just Nature’s way of saying “in your face”. Meanwhile,

in humankind’s long history of extensive and expensive experimental efforts, no new

particles have been found. If new physics exists, it is likely to appear as subtle deviations

in precision measurements before any new particle states are observed directly.

Electron-hadron colliders provide an ideal platform for these precision measurements.

They constitute the ultimate tools for high-precision quantum chromodynamics (QCD)

studies and microscopes for probing internal structures of hadrons. Electron stands out

as a desirable probe to look into the proton because it doesn’t get involved in color

interactions, so all the interactions are strictly electroweak (EW), which already has a

solid footing with the unmatched precision of quantum electrodynamics. Furthermore,

kinematics are uniquely determined by the incoming electron beam, the scattered lepton,

or the hadronic final state, which all can be measured with great accuracy. These machines

serve both as microscopes for QCD and as sensitive instruments for EW and BSM physics.

Historically, the only electron-hadron collider ever operated was Hadron-Electron-

Ringanglage (HERA), which ran at DESY in Germany between 1991 and 2007. Since

then, three next-generation facilities have been proposed or are under development. The

Electron-Ion Collider (EIC) [12] is a United States (U.S.) Department of Energy (DOE)

project now under construction at Brookhaven National Laboratory. It will be first high-

energy deep inelastic scattering (DIS) machine to collide polarized electrons with polarized

protons and ions at center-of-mass (c.m.) energies between 70 and 140 GeV, which is a

range between fixed-target-scattering and high-energy collider experiments. It is antici-

pated to start operating within a decade. Electron beams will have energies 5 to 18 GeV,

proton beams 41 to 275 GeV, light ions up to 166 GeV, and heavy ions up to 110 GeV.
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With yearly integrated luminosities up to 100 fb−1 and high detector acceptance and ef-

ficiency rates, it will help improve extraction of parity-violating (PV) DIS asymmetries

in EW neutral-current (NC) DIS cross section with reduced uncertainties. Just to give a

timeline of the history of the EIC, an electron-ion collider of this caliber was first offered

in 2012. In 2015, the U.S. DOE officially named the machine the EIC and released the

public annoucement of construction at Brookhaven in 2020. The construction will start

at the end of 2025 and is planned to be completed by 2040.

The Large Hadron-electron Collider (LHeC) [11] is a proposed upgrade of the Large

Hadron Collider (LHC) at CERN in Switzerland, which is awaiting approval at the time

of writing. It would run simultaneously with the LHC, using its proton and ion beams,

and a new, dedicated electron beamline, reaching c.m. energies of 1.5 TeV. The planned

integrated luminosity is 100 fb−1. Its primary design purpose is novel measurements in

QCD, DIS physics at low Bjorken-x, EW precision studies, and BSM physics. Historically,

the idea of an electron-proton collider in the LEP-LHC tunnel was discussed for the first

ime in 1984, which is also the year HERA was approved. In 2005, it was found feasible

to simultaneously run pp collisions in the LHC and the e−p collisions in the new machine

named LHeC. The first complete draft of the conceptual design was published in 2011.

Its earliest operational period is estimated to be around 2032, which would coincide with

the LHC Run 5.

The Future Circular Collider (FCC) [8, 34, 35, 36] would be a brand new collider to

be built at CERN; however, it will take at least 30 years for design and construction. The

designed collider energy is 3.5 TeV, and the planned integrated luminosity is at the order

of 1 ab−1. It would have a broad physics program similar to the LHeC’s, namely QCD and
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EW precision studies and new physics searches. As the history unfolds, European studies

of post-LHC circular accelerators that are at energy frontiers were published between

2010 and 2013. In 2014, these efforts were combined into the FCC study. The first

complete draft of the conceptual design was released in 2019. The feasibility studies were

very recently published in May, 2025. The design and construction are expected to be

completed by 2050.

In this work, we explore the potential of these future machines to probe physics beyond

the Standard Model (BSM) by presenting the complete set of uncertainties projected by

people who know better. Our observable is the PV asymmetries at the EIC based on our

previous study in Chapter 3, and the NC DIS cross section at the LHeC and FCC-eh.

Since there has been no definitive sign of new particles beyond the current spectrum of

the SM, we use the Standard Model Effective Field Theory as our BSM framework. We

consider the full spectrum of SMEFT operators that contribute to the NC DIS amplitude

at leading order in SMEFT couplings at dimension 6, namely the good old semi-leptonic

four-fermion operators, as well as operators that modify the fermion couplings to NC EW

gauge bosons.

The best method to measure and constrain ffV vertex corrections is via Z-pole

EW precision observables (EWPO) at LEP and SLC; however, data being limited yields

degeneracies among SMEFT parameters. This is illustrated in [92]. In the current study,

we demonstrate that DIS measurements at the future colliders can not only resolve these

degeneracies but also impose more stringent constraints.

We find that for semi-leptonic four-fermion operators, the LHeC and FCC-eh can probe

effective ultraviolet (UV) scales exceeding 10 TeV, whilst the reach of the EIC remains at a
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few TeV. We include all posibilities in our analysis: beam energy, polarization, luminosity,

and lepton species. No single choice of a configuration is sufficient to probe the parameter

space fully. Furthermore, a positron beam can significantly extend the UV reach for

certain Wilson coefficients due to the structure of the underlying amplitude. In addition,

the EWPO global fits can give the most stringent bounds; however, that is true for merely

single-parameter fits. Multi-parameter fits paints a picture, namely the allowed bounds of

the SMEFT parameter get weakened by an order due to strong correlations, which signals

flat directions. At this very point, the LHeC and FCC-eh become important.

This chapter is organized as follows. In Section 4.2, we review the SMEFT framework,

define the operator basis, and summarize the relevant kinematic structure of DIS. Section

4.3 describes the observables used and the simulated pseudodata sets in terms of their run

parameters, anticipated uncertainties, and error budgets for the SMEFT fits, as well as

our fitting procedure. In Section 4.4, we present first our fit results for the semi-leptonic

four-fermion operators, discussing the impact of different runs, luminosities, and lepton

species. In Section 4.5, we activate all 17 operators and shift the focus to the ffV vertex

corrections. We compare our results to those from global EWPO fits and highlight where

the LHeC and FCC-eh improve upon them. Section 4.6 concludes with a summary of the

main findings and their implications for the SMEFT program.

4.2. Formalism

4.2.1. The SMEFT Lagrangian

The SMEFT provides a systematic expansion of the SM Lagrangian in inverse powers of

a heavy new physics scale Λ, which is assumed to be above the SM particle masses and
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beyond collider reach. One builds operators, O
(n)
k , of mass dimension higher than n > 4

using the existing SM spectrum:

LSMEFT = LSM +
∑
n>4

1

Λn−4

∑
k

C
(n)
k O

(n)
k ,(4.1)

where Wilson coefficients C
(n)
k are introduced as effective coupling strengths. In this

study, we restrict ourselves to the case of dimension 6. We investigate only the leading-

order effects of the SMEFT operators, so we retain only the SM-SMEFT interference

amplitudes and discard the squared SMEFT contributions, and therefore all observables

are linearized in the Wilson coefficients.

There are 17 dimension-6 operators in the Warsaw basis [85] that contribute to NC

DIS. These include 7 semi-leptonic four-fermion operators, and 10 operators that shift the

fermion couplings to the neutral EW gauge bosons. The operators are listed in Table 4.1.

Here, ϕ is the SU(2) Higgs doublet, ` and q are left-handed lepton and quark doublets, e,

u, and d are the right-handed electron, up quark, and down quark singlets, respectively,

the τ I are the Pauli matrices, and the double-arrow covariant derivative is defined such

that

ϕ†i
↔
D

µ(τ I)ϕ = ϕ†iDµ(τ I)ϕ+ h.c..(4.2)

Operators involving dipoles or scalar bilinears are neglected because the corresponding

vertex factors are proportional to fermion masses, which we assume zero. We also assume

flavor universality and hence suppress flavor indices.
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Table 4.1. Dimension-6 SMEFT operators in the Warsaw basis [85] that

contribute to the NC DIS amplitudes at leading order. The 10 operators

that modify ffV vertices are shown on the left, and the 7 operators that

introduce semi-leptonic four-fermion contact interactions are presented on

the right.

ffV semi-leptonic four-fermion

OϕWB = (ϕ†τ Iϕ)W I
µνB

µν O
(1)
`q = (`γµ`)(qγµq)

OϕD = (ϕ†Dµϕ)∗(ϕ†Dµϕ) O
(1)
`q = (`γµτ I`)(qγµτ

iq)

O
(1)
ϕ` = (ϕ†i

↔
D µϕ)(`γµ`) Oeu = (eγµe)(uγµu)

O
(3)
ϕ` = (ϕ†i

↔
D µτ Iϕ)(`γµτ

I`) Oed = (eγµe)(dγµd)

Oϕe = (ϕ†i
↔
D µϕ)(eγµe) O`u = (`γµ`)(uγµu)

O
(1)
ϕq = (ϕ†i

↔
D µϕ)(qγµq) O`d = (`γµ`)(dγµd)

O
(3)
ϕq = (ϕ†i

↔
D µτ Iϕ)(qγµτ

Iq) Oqe = (eγµe)(qγµq)

Oϕu = (ϕ†i
↔
D µϕ)(uγµu)

Oϕd = (ϕ†i
↔
D µϕ)(dγµd)

O`` = (`γµ`)(`γµ`)

4.2.2. DIS and Structure Functions

We study the NC DIS in the process ` + H → `′ + X, where ` is an electron or a

positron, H can be proton or deuteron, and `′ and X are the final-state lepton and hadron,

respectively, within the framework of the SMEFT including next-to-leading-order (NLO)

QCD corrections. One has to worry about the missing energy and the reconstruction

of hadronic final states to determine kinematic variables in the CC DIS. This typically
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brings in larger systematic uncertainties, so we find it feasible not to dedicate time to the

CC DIS studies.

At parton level to leading order, said process can be mediated by single photon or

Z-boson exchange or by the SMEFT contact interaction of leptons with partons. The

tree-level Feynman diagrams are presented in Figure 4.1.

ℓ ℓ′

q q′

V = γ, Z

ℓ ℓ′

q q′

Figure 4.1. Feynman diagrams at tree level for the underlying partonic

process of the scattering `+H → `′ +X.

NLO QCD corrections to the SM process are well known [82, 22, 151, 21, 83].

These corrections modify only the quark lines, as illustrated in Figure 4.2; therefore, said

corrections are identical for both SM and SMEFT cross sections.

ℓ ℓ′

q q′

V = γ, Z

ℓ ℓ′

q q′

V = γ, Z

ℓ ℓ′

q q′

ℓ ℓ′

q q′

Figure 4.2. Feynman diagrams describing NLO QCD corrections to the

underlying partonic process of the scattering `+H → `′ +X.
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The NC DIS cross-section expressions for collisions of a lepton ` with an unpolarized

or polarized hadron are given in terms of the NC structure functions FNC
1,3,L and gNC

1,5,L by

d2σ`NC

dx dQ2
=

2πα2

xQ4

{
[1 + (1− y)2]2xFNC

1 + sgn(`)[1− (1− y)2]xFNC
3 + (1− y)2FNC

L

}
,

(4.3)

and

d2∆σ`NC

dx dQ2
=

8πα2

xQ4

{
[1 + (1− y)2]xgNC

5 − sgn(`)[1− (1− y)2]xgNC
1 + (1− y)gNC

L

}
,(4.4)

respectively, where sgn is the particle signum function that returns +1 for particles and

−1 for antiparticles. The dimension-6 SMEFT NC DIS structure functions FNC,e±

1,3,L and

gNC,e±

1,5,L are given in terms of the structure functions F Ṽ
1,3,L and gṼ1,5,L by

(∆)SNC,e±

i =



(∆)ΦNC,e±,γ
i Sγi

+(∆)ΦNC,e±,Z
i SZi

+(∆)ΦNC,e±,γZ
i SγZi

∓(λe − 1) (∆)ΦNC,e±,γ×±
i Sγ×±i

±(λe + 1) (∆)ΦNC,e±,γ×∓
i Sγ×∓i

∓(λe − 1) (∆)ΦNC,e±,Z×±
i SZ×±i

±(λe + 1) (∆)ΦNC,e±,Z×∓
i SZ×∓i



,(4.5)

where SNC,e±

i = FNC,e±

i and ∆SNC,e±

i = gNC,e±

i , and λe = ±1 is the incoming lepton

helicity sign. The structure factors (∆)ΦNC,e±,Ṽ
i are given by

ΦNC,e±,γ
1,L = Q2

eγ,(4.6)
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ΦNC,e±,Z
1,L = η2

γZ

(
(λe + 1)

(
Q
L/R
eZ

)
2 − (λe − 1)

(
Q
R/L
eZ

)
2
)
,(4.7)

ΦNC,e±,γZ
1,L = ±QeγηγZ

(
(λe ± 1)QL

eZ − (λe ∓ 1)QR
eZ

)
,(4.8)

ΦNC,e±,γ×+
1,L = ∓Qeγ,(4.9)

ΦNC,e±,γ×−
1,L = ∓Qeγ,(4.10)

ΦNC,e±,Z×+
1,L = ∓ηγZQR

eZ ,(4.11)

ΦNC,e±,Z×−
1,L = ∓ηγZQL

eZ ,(4.12)

ΦNC,e±,γ
3 = 0,(4.13)

ΦNC,e±,Z
3 = ±η2

γZ

(
(λe ± 1)

(
QL
eZ

)
2 + (λe ∓ 1)

(
QR
eZ

)
2
)
,(4.14)

ΦNC,e±,γZ
3 = ±QeγηγZ

(
(λe ± 1)QL

eZ + (λe ∓ 1)QR
eZ

)
,(4.15)

ΦNC,e±,γ×+
3 = ∓Qeγ,(4.16)

ΦNC,e±,γ×−
3 = ∓Qeγ,(4.17)

ΦNC,e±,Z×+
3 = ∓ηγZQR

eZ ,(4.18)

ΦNC,e±,Z×−
3 = ∓ηγZQL

eZ ,(4.19)

and

∆ΦNC,e±,γ
5,L = 0,(4.20)

∆ΦNC,e±,Z
5,L = λq

(
±η2

γZ

) (
(λe ± 1)

(
QL
eZ

)
2 − (λe ∓ 1)

(
QR
eZ

)
2
)
,(4.21)

∆ΦNC,e±,γZ
5,L = λq (±Qeγ) ηγZ

(
(λe ± 1)QL

eZ − (λe ∓ 1)QR
eZ

)
,(4.22)

∆ΦNC,e±,γ×+
5,L = λq (±Qeγ) ,(4.23)
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∆ΦNC,e±,γ×−
5,L = ∓λqQeγ,(4.24)

∆ΦNC,e±,Z×+
5,L = λq (±ηγZ)QR

eZ ,(4.25)

∆ΦNC,e±,Z×−
5,L = ∓λqηγZQL

eZ ,(4.26)

∆ΦNC,e±,γ
1 = λeλq

(
±Q2

eγ

)
,(4.27)

∆ΦNC,e±,Z
1 = λq

(
±η2

γZ

) (
(λe ± 1)

(
QL
eZ

)
2 + (λe ∓ 1)

(
QR
eZ

)
2
)
,(4.28)

∆ΦNC,e±,γZ
1 = λq (±Qeγ) ηγZ

(
(λe ± 1)QL

eZ + (λe ∓ 1)QR
eZ

)
,(4.29)

∆ΦNC,e±,γ×+
1 = λq (±Qeγ) ,(4.30)

∆ΦNC,e±,γ×−
1 = ∓λqQeγ,(4.31)

∆ΦNC,e±,Z×+
1 = λq (±ηγZ)QR

eZ ,(4.32)

∆ΦNC,e±,Z×−
1 = ∓λqηγZQL

eZ .(4.33)

The structure functions are given by

F Ṽ
1 (x,Q) =

1

2

∑
q

λṼV q1(x,Q),(4.34)

F Ṽ
3 (x,Q) =

∑
q

sgn(q)(−λṼA)q3(x,Q),(4.35)

F Ṽ
L (x,Q) = x

∑
q

sgn(q)λṼV qL(x,Q),(4.36)

gṼ1 (x,Q) =
1

2

∑
q

λṼV ∆q1(x,Q),(4.37)

gṼ5 (x,Q) =
1

2

∑
q

sgn(q)λṼA ∆q5(x,Q),(4.38)
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gṼL (x,Q) =
1

2

∑
q

sgn(q)λṼA ∆qL(x,Q),(4.39)

where Ṽ = γ, Z, γZ, γ ×+, γ ×−, Z ×+, Z ×− is the channel label and

q1(x,Q) = q(x,Q) +
αs(Q)

2π

[
C̃q1 ⊗ q(x,Q) + C̃g1 ⊗ g(x,Q)

]
,(4.40)

q3(x,Q) = q(x,Q) +
αs(Q)

2π

[
C̃q3 ⊗ q(x,Q) + C̃g3 ⊗ g(x,Q)

]
,(4.41)

qL(x,Q) =
αs(Q)

2π

[
C̃qL ⊗ q(x,Q) + C̃gL ⊗ g(x,Q)

]
,(4.42)

∆q1(x,Q) = ∆q(x,Q) +
αs(Q)

2π

[
∆C̃q1 ⊗∆q(x,Q) + ∆C̃g1 ⊗∆g(x,Q)

]
,(4.43)

∆q5(x,Q) = ∆q(x,Q) +
αs(Q)

2π

[
∆C̃q5 ⊗∆q(x,Q) + ∆C̃g5 ⊗∆g(x,Q)

]
,(4.44)

∆qL(x,Q) =
αs(Q)

2π

[
∆C̃qL ⊗∆q(x,Q) + ∆C̃gL ⊗∆g(x,Q)

]
,(4.45)

with (∆)q and (∆)g being the un(polarized) quark and gluon parton distribution functions

(PDFs), respectively. The quark couplings λṼV and λṼA are given by

λγV = Q2
qγ,(4.46)

λZV =
1

4

((
QL
qZ

)
2 +

(
QR
qZ

)
2
)
,(4.47)

λγZV =
1

2
Qqγ

(
QL
qZ +QR

qZ

)
,(4.48)

λγ×+
V =

Qqγ

(
CRL
q + CRR

q

)
2C2

γPγ
,(4.49)

λγ×−V =
Qqγ

(
CLR
q + CLL

q

)
2C2

γPγ
,(4.50)

λZ×+
V =

CRL
q QL

qZ + CRR
q QR

qZ

2C2
γPγ

,(4.51)
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λZ×−V =
CLR
q QR

qZ + CLL
q QL

qZ

2C2
γPγ

,(4.52)

and

λγA = 0,(4.53)

λZA =
1

4

((
QR
qZ

)
2 −

(
QL
qZ

)
2
)
,(4.54)

λγZA =
1

2
Qqγ

(
QR
qZ −QL

qZ

)
,(4.55)

λγ×+
A =

Qqγ

(
CRL
q − CRR

q

)
2C2

γPγ
,(4.56)

λγ×−A =
Qqγ

(
CLR
q − CLL

q

)
2C2

γPγ
,(4.57)

λZ×+
A =

CRL
q QL

qZ − CRR
q QR

qZ

2C2
γPγ

,(4.58)

λZ×−A =
CLR
q QR

qZ − CLL
q QL

qZ

2C2
γPγ

.(4.59)

The parametrization of the ffV and ``qq vertex factors in the L/R basis in our analysis

is given by

V
L/R
fV = iCVQ

L/R
fV ,(4.60)

V PP ′

q = iCPP ′

q ,(4.61)

where we denote the single-photon and single-Z exchange and the semi-leptonic four-

fermion interaction channels by V = γ, Z,×, respectively, in the subscripts. The CV and

CPP ′
q are the coupling strenghts and P, P ′ = L,R indicate the structure of the lepton and
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quark currents in the interaction term. To illustrate, CLL
q denotes the coupling of `γµPL`

and qγµPLq. The Q
L/R
fV are the SMEFT quantum numbers.

The gauge-boson propagators are defined as

PV =
1

Q2 +M2
V

.(4.62)

The coupling strengths are given by

Cγ = −
√

4πα,(4.63)

CZ = −2

√√
2GFM2

Z ,(4.64)

CLL
u/d =

C
(1)
`q ∓ C

(3)
`q

Λ2
,(4.65)

CLR
u/d =

C`u/d
Λ2

,(4.66)

CRL
u/d =

Cqe
Λ2

,(4.67)

CRR
u/d =

Ce/u
Λ2

,(4.68)

(4.69)

where the upper (lower) signs and indices are for the up (down) quark. The quantum

number of fermions in the photon interactions, Qfγ, is still given by the electric charge,

Qf , at dimension 6:

QL
fγ = QR

fγ = Qfγ = Qf .(4.70)
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The quantum numbers of the ffZ interactions are given by

QL
eZ =

1

4 4
√

2Λ2
√
GFMZ

(
g2

1(0) + g2
2(0)

)
3/2

{
g4

1(0)

(
Λ2 − v2

(0)

(
C

(1)
ϕ` + C

(3)
ϕ`

))

−g2(0)g
2
1(0)

(
2v2

(0)g2(0)

(
C

(1)
ϕ` + C

(3)
ϕ`

)
+ 3Λ2g2(1)

)
−g3

2(0)

(
g2(0)

(
v2

(0)

(
C

(1)
ϕ` + C

(3)
ϕ`

)
+ Λ2

)
+ Λ2g2(1)

)
+g3

1(0)

(
Λ2g1(1) − v2

(0)g2(0)CϕWB

)
+g2

2(0)g1(0)

(
v2

(0)g2(0)CϕWB + 3Λ2g1(1)

)}
,(4.71)

QR
eZ =

1

4 4
√

2Λ2
√
GFMZ

(
g2

1(0) + g2
2(0)

)
3/2

{
2g2

2(0)g1(0)

(
v2

(0)g2(0)CϕWB + 2Λ2g1(1)

)
+2g2(0)g

2
1(0)

(
g2(0)

(
Λ2 − v2

(0)Cϕe
)
− Λ2g2(1)

)
+ 2Λ2g3

1(0)g1(1)

+g4
1(0)

(
2Λ2 − v2

(0)Cϕe
)
− v2

(0)g
4
2(0)Cϕe

}
,(4.72)

QL
uZ = − 1

12 4
√

2Λ2
√
GFMZ

(
g2

1(0) + g2
2(0)

)
3/2

{
g4

1(0)

(
3v2

(0)

(
C(1)
ϕq − C(3)

ϕq

)
+ Λ2

)
−g2(0)g

2
1(0)

(
2g2(0)

(
3v2

(0)

(
C(3)
ϕq − C(1)

ϕq

)
+ Λ2

)
+ 7Λ2g2(1)

)
−3g3

2(0)

(
g2(0)

(
v2

(0)

(
C(3)
ϕq − C(1)

ϕq

)
+ Λ2

)
+ Λ2g2(1)

)
+g3

1(0)

(
Λ2g1(1) − 3v2

(0)g2(0)CϕWB

)
+g2

2(0)g1(0)

(
v2

(0)g2(0)CϕWB + 5Λ2g1(1)

)}
,(4.73)
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QR
uZ = − 1

12 4
√

2Λ2
√
GFMZ

(
g2

1(0) + g2
2(0)

)
3/2

{
4g2

2(0)g1(0)

(
v2

(0)g2(0)CϕWB + 2Λ2g1(1)

)
+2g2(0)g

2
1(0)

(
3v2

(0)g2(0)Cϕu + 2Λ2g2(0) − 2Λ2g2(1)

)
+ 4Λ2g3

1(0)g1(1)

+g4
1(0)

(
3v2

(0)Cϕu + 4Λ2
)

+ 3v2
(0)g

4
2(0)Cϕu

}
,(4.74)

QL
dZ = − 1

12 4
√

2Λ2
√
GFMZ

(
g2

1(0) + g2
2(0)

)
3/2

{
g4

1(0)

(
3v2

(0)

(
C(1)
ϕq + C(3)

ϕq

)
+ Λ2

)
+g2(0)g

2
1(0)

(
6v2

(0)g2(0)

(
C(1)
ϕq + C(3)

ϕq

)
+ 4Λ2g2(0) + 5Λ2g2(1)

)
+3g3

2(0)

(
g2(0)

(
v2

(0)

(
C(1)
ϕq + C(3)

ϕq

)
+ Λ2

)
+ Λ2g2(1)

)
+g3

1(0)

(
3v2

(0)g2(0)CϕWB + Λ2g1(1)

)
+g2

2(0)g1(0)

(
v2

(0)g2(0)CϕWB − Λ2g1(1)

)}
,(4.75)

QR
dZ =

1

12 4
√

2Λ2
√
GFMZ

(
g2

1(0) + g2
2(0)

)
3/2

{
2g2

2(0)g1(0)

(
v2

(0)g2(0)CϕWB + 2Λ2g1(1)

)
+2g2(0)g

2
1(0)

(
g2(0)

(
Λ2 − 3v2

(0)Cϕd
)
− Λ2g2(1)

)
+ 2Λ2g3

1(0)g1(1)

+g4
1(0)

(
2Λ2 − 3v2

(0)Cϕd
)
− 3v2

(0)g
4
2(0)Cϕd

}
,(4.76)

with

g1(0) =
gsW
cW

,(4.77)

g1(1) = −
cWM

2
Zs

2
W

(
sW

(
4C

(3)
ϕ` + CϕD − 2C``

)
+ 4cWCϕWB

)
gΛ2 (2s2

W − 1)
,(4.78)
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g2(0) = g,(4.79)

g2(1) =
c2
WM

2
Z

(
−s2

W

(
4C

(3)
ϕ` + CϕD

)
+ 4C

(3)
ϕ` + 4cW sWCϕWB − 2c2

WC`` + CϕD

)
gΛ2 (2s2

W − 1)
,(4.80)

v(0) =
1

4
√

2
√
GF

,(4.81)

v(1) = −
C`` − 2C

(3)
ϕ`

2 23/4Λ2G
3/2
F

,(4.82)

where we have defined

g =

√
4πα

sW
,(4.83)

cW =
√

1− s2
W ,(4.84)

sW =

√√√√√1

2

1−

√
GFM2

Z

(
GFM2

Z − 2
√

2πα
)

GFM2
Z

,(4.85)

as a shorthand notation. Numerically, in the input basis (GF , α,MZ) and with Λ = 1 TeV,

we have

QL
eZ = −0.0303121C

(1)
ϕ` + 0.0223408C

(3)
ϕ` + 0.0430523CϕWB + 0.0131632CϕD

− 0.0263264C`` − 0.287848,(4.86)

QR
eZ = 0.0223408C

(3)
ϕ` + 0.0430523CϕWB + 0.00558519CϕD − 0.0303121Cϕe

− 0.0111704C`` + 0.212152,(4.87)
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QL
uZ = −0.0303121C(1)

ϕq + 0.0303121C(3)
ϕq − 0.0452059C

(3)
ϕ` − 0.0287015CϕWB

− 0.0113015CϕD + 0.022603C`` + 0.358566,(4.88)

QR
uZ = −0.0148938C

(3)
ϕ` − 0.0287015CϕWB − 0.00372346CϕD − 0.0303121Cϕu

+ 0.00744692C`` − 0.141434,(4.89)

QL
dZ = −0.0303121C(1)

ϕq − 0.0303121C(3)
ϕq + 0.037759C

(3)
ϕ` + 0.0143508CϕWB

+ 0.00943975CϕD − 0.0188795C`` − 0.429283,(4.90)

QR
dZ = 0.00744692C

(3)
ϕ` + 0.0143508CϕWB − 0.0303121Cϕd + 0.00186173CϕD

− 0.00372346C`` + 0.0707172.(4.91)

The energy-dependent eta factors are defined by

ηγZ =
C2
ZPZ
C2
γPγ

, ηZ = η2
γZ .(4.92)

The convolution operator that appears in Equations (4.40)–(4.45) is defined as

C ⊗ f(x) =

∫ 1

x

dz

z
C(z)f

(x
z

)
.(4.93)

The normalized unpolarized and polarized coefficient functions, C̃q,gi and ∆C̃q,gi , are

borrowed from [82]. Before setting the factorization scale equal to the transfer momentum,
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we have

C̃q1(z) = CF

{
ln

(
Q2

µ2
F

)
P̃qq(z) + δ(1− z)

(
−9

2
− π2

3

)
+ L1(z)− L2(z)− 3

2

[
1

1− z

]
+

+ 3
}
,(4.94)

C̃q3(z) = C̃q1(z)− CF (1− z),(4.95)

C̃qL(z) = CF2z,(4.96)

C̃g1(z) =
1

2

{
P̃qg(z)

[
ln

(
Q2

µ2
F

1− z
z

)
− 1

]
+ 2z(1− z)

}
,(4.97)

C̃g3(z) = 0,(4.98)

C̃gL(z) = 2z(1− z),(4.99)

∆C̃q1(z) = C̃q1(z)− CF (1− z),(4.100)

∆C̃q5(z) = C̃q1(z),(4.101)

∆C̃qL(z) = C̃qL(z),(4.102)

∆C̃g1(z) =
1

2

{
∆P̃qg(z)

[
ln

(
Q2

µ2
F

1− z
z

)
− 1

]
+ 2(1− z)

}
,(4.103)

∆C̃g5(z) = 0,(4.104)

∆C̃gL(z) = 0,(4.105)

where the auxiliary functions are defined by

P̃qq(z) =
1

CF
Pqq(z), P̃qg(z) = 2Pqg(z), ∆P̃qg(z) = 2z − 1,(4.106)

L1(z) = (1 + z2)

[
ln(1− z)

1− z

]
+

, L2(z) =
1 + z2

1− z
ln(z),(4.107)
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with CF = 4/3 and Pqq,qg being the leading-order Altarelli-Parisi splitting functions (see

e.g. [155]), and the plus prescription is defined via

∫ 1

x

dz [f(z)]+g(z) =

∫ 1

x

dz f(z)[g(z)− g(1)]− g(1)

∫ x

0

dz f(z).(4.108)

In our case, the plus-prescription functions are of the form

f(z) =

[
ln(1− z)r

1− z

]
+

,(4.109)

where r is a natural number. With this, Equation (4.108) becomes

∫ 1

x

dz

[
ln(1− z)r

1− z

]
+

g(z) = g(1)
ln(1− x)r+1

r + 1
+

∫ 1

x

dz
ln(1− z)r

1− z
[g(z)− g(1)].(4.110)

We define the reduced cross sections as usual by

d2σ`r,NC

dx dQ2
=

{
2πα2

xQ4
[1 + (1− y)2]

}−1
d2σ`NC

dx dQ2
,(4.111)

d2∆σ`r,NC

dx dQ2
=

{
4πα2

xQ4
[1 + (1− y)2]

}−1
d2∆σ`NC

dx dQ2
.(4.112)

From this point onward, when we mention cross sections, we mean the reduced ones and

denote them simply by (∆)σNC.

In Figure 4.3, we show the NC DIS cross section with NLO QCD corrections for e−p

collisions at
√
s = 1.3 TeV with RH electrons of beam energy 60 GeV and polarization

P` = +80% and the corresponding k factors as a function of Q for various x values.

From Figure 4.3, we observe that NLO QCD corrections to the NC DIS cross section

are 30% at most in either direction and exhibit high sensitivity to Q and low sensitivity



176

1 5 10 50 100 5001000

0.1

1000

Q [GeV]

σ
N

C
/x

e-p, s = 1.3 TeV , Pℓ = +80%

1 5 10 50 100 5001000
0.7

0.8

0.9

1.0

1.1

1.2

1.3

Q [GeV]

k
fa

ct
or

e-p, s = 1.3 TeV , Pℓ = +80%

x = 2.×10-6 x = 5.×10-6 x = 8.5×10-6 x = 0.00002 x = 0.00005 x = 0.000085
x = 0.0002 x = 0.0005 x = 0.00085 x = 0.002 x = 0.005 x = 0.0085
x = 0.03 x = 0.1 x = 0.2 x = 0.4 x = 0.6 x = 0.8

Figure 4.3. NC DIS cross section with NLO QCD corrections for e−p colli-

sions at
√
s = 1.3 TeV with Ee = 60 GeV and P` = +80%.

to x for Q . 30 GeV and low sensitivity to Q and high sensitivity to x for higher values

of Q.

4.3. Observables

The EIC observable is the PV asymmetries based on the polarized DIS cross sections

following our previous study. The unpolarized PV asymmetry is defined as

APV =
σ+

NC − σ
−
NC

σ+
NC + σ−NC

,(4.113)
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and the polarized PV asymmetry as

∆APV =
∆σ0

NC

σ0
NC

,(4.114)

where σ±NC is the NC DIS e−H (H = p,D) cross section with unpolarized hadron and

polarized lepton beams with λ` = ±P`, σ0
NC is the all-unpolarized cross section, and ∆σ0

NC

is the cross section with polarized hadron and unpolarized lepton beams. Here, P` denotes

the lepton-beam polarization reach at the EIC. The observable of interest at the LHeC

and FCC-eh is the NC DIS cross section with unpolarized hadron and polarized lepton

beams. This observable is chosen so we can compare our simulated pseudodata with

previous studies in the literature [50, 51].

Since we consider only the SM-SMEFT interference at the amplitude level, all our

observables are linearized in SMEFT parameters, or to be more precise, are kept to

leading order in the SMEFT expansion, E2/Λ2, where E is a relevant variable with energy

dimensions, which is momentum transfer in our case. Thus, our observables have the

generic SMEFT form

O = OSM +
∑
k

CkOk,(4.115)

where k runs over the active Wilson coefficients, O = (∆)σNC or (∆)APV is the observ-

able, OSM is the SM prediction, and Ok is the SMEFT contribution to the observable

characterized by the Wilson coefficient Ck.
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4.4. Analysis

In our analysis, we use the EIC pseudodata from the previous work presented in

Chapter 3, the most recent public LHeC pseudodata available at

http://hep.ph.liv.ac.uk/~mklein/lhecdata/ [126],

and generate our own pseudodata for the FCC-eh following the procedure explained in

Chapter 3 using the run parameters found in [51]. To simplify the language, from now on,

we simply refer to these pseudodatasets as datasets. The configurations of these datasets

regarding beam energies, polarizations, and integrated luminosities, as well as our labeling

scheme, are summarized in Tables 4.2–4.4. We note that the case of a 10-fold luminosity

upgrade at the EIC (so as to have a high-luminosity EIC), which is considered in the

previous chapter, is not included here.

On top of the detector cuts, we introduce the kinematic cuts

x ≤ 0.5, Q ≥ 10 GeV, 0.1 ≤ y ≤ 0.9,(4.116)

and we refer to the bins that satisfy these conditions as the good bins. These cuts help us

avoid large uncertainties from nonperturbative QCD and nuclear dynamics. We expect

SMEFT effects to be minimal in the leftout regions anyway. The kinematic coverage of

the datasets is illustrated in Figure 4.4.

http://hep.ph.liv.ac.uk/~mklein/lhecdata/
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Table 4.2. The description of the EIC datasets used in our analysis. We

indicate beam energies, polarizations, integrated luminosities, our labeling

scheme, and the observable of interest.

Label Configuration Observable

D4 10 GeV × 137 GeV e−D, P` = 80%, L = 100 fb−1

APV

D5 18 GeV × 137 GeV e−D, P` = 80%, L = 15.4 fb−1

P4 10 GeV × 275 GeV e−p, P` = 80%, L = 100 fb−1

P5 18 GeV × 275 GeV e−p, P` = 80%, L = 15.4 fb−1

∆D4 The same as D4 but with P` = 0 and PH = 70%

∆APV

∆D5 The same as D5 but with P` = 0 and PH = 70%

∆P4 The same as P4 but with P` = 0 and PH = 70%

∆P5 The same as P5 but with P` = 0 and PH = 70%

LD4 The same as D4 but with P` = 0

ALC

LD5 The same as D5 but with P` = 0

LP4 The same as P4 but with P` = 0

LP5 The same as P5 but with P` = 0

Next, we discuss the anticipated uncertainties. For the EIC, we have previously as-

sumed uncertainties, which are statistical uncertainties,

δAstat
PV =

1

P`
√
N
, δ∆Astat

PV =
P`
PH

δAstat
PV ,(4.117)
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Table 4.3. The same as in Table 4.2 but for the LHeC.

Label Configuration Observable

LHeC1 60 GeV × 1000 GeV e−p, P` = 0, L = 100 fb−1

σNC

LHeC2 60 GeV × 7000 GeV e−p, P` = −80%, L = 100 fb−1

LHeC3 60 GeV × 7000 GeV e−p, P` = +80%, L = 30 fb−1

LHeC4 60 GeV × 7000 GeV e+p, P` = +80%, L = 10 fb−1

LHeC5 60 GeV × 7000 GeV e−p, P` = −80%, L = 1000 fb−1

LHeC6 60 GeV × 7000 GeV e−p, P` = +80%, L = 300 fb−1

LHeC7 60 GeV × 7000 GeV e+p, P` = 0%, L = 100 fb−1

Table 4.4. The same as in Table 4.2 but for the FCC-eh.

Label Configuration Observable

FCCeh1 60 GeV × 50000 GeV e−p, P` = −80%, L = 2 ab−1

σNCFCCeh2 60 GeV × 50000 GeV e−p, P` = +80%, L = 0.5 ab−1

FCCeh3 60 GeV × 50000 GeV e+p, P` = 0, L = 0.2 ab−1

where PH is the assumed hadron polarization reach, uncorrelated systematic uncertainties,

δ(∆)Asys
PV, 1% relative to the asymmetry due to particle background and other imperfec-

tions in measurements, and correlated lepton and hadron beam polarization uncertainties,

δ(∆)Apol
PV, 1% and 2% relative to the asymmetry, respectively. For the LHeC and FCC-

eh, we borrow the estimates from [50, 51]. These cover uncorrelated statistical, δσstat,

uncorrelated efficiency, δσeff , and correlated systematic uncertainties, δσsys. Systematics

include lepton energy scale and polar angle measurements, δσlen and δσlpol, hadronic en-

ergy scale, δσhen, radiative corrections, δσrad, photoproduction background, δσgam, global



181

Figure 4.4. Kinematic coverage of the EIC, LHeC, and FCC-eh data sets,

indicating the the complementarity of these experiments to each other in

terms of the good regions considered in our analysis.

efficiency factor, δσgeff , calorimetry noise, δσcal, and luminosity, δσlum. Luminosity uncer-

tainties are 1% relative to the cross section. Systematics are assumed fully correlated. In

addition to anticipated experimental uncertainties, we also include fully correlated PDF

uncertainties, δ(∆)Apdf
PV and δσpdf . We summarize the anticipated values and ranges of

experimental uncertainties for all the machines in Tables 4.5–4.7.
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Table 4.5. Anticipated values or ranges of experimental uncertainties at the

EIC for the good bins used in our analysis. All uncertainties are relative

with respect to the observable.

Source of uncertainty Value or range of uncertainty [%] Observable

Statistical 1.53–65.87

APVSystematical 1.00

Lepton beam polarization 1.00

Statistical 1.74–75.28

∆APVSystematical 1.00

Hadron beam polarization 2.00

Table 4.6. The same as in Table 4.5 but for the LHeC.

Source of uncertainty Value or range of uncertainty [%] Observable

Statistical 0.10–6.83

σNC

Uncorrelated efficiency 0.50

Lepton energy 0.11–0.49

Lepton polar angle 0.00–0.13

Hadron energy 0.00–1.81

Radiative corrections 0.30

Photoproduction background 0.00–1.00

Global efficiency 0.50

Calorimetry noise 0.00

Luminosity 1.00
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Table 4.7. The same as in Table 4.5 but for the FCC-eh.

Source of uncertainty Value or range of uncertainty [%] Observable

Statistical 0.10–5.49

σNC

Lepton energy 0.90

Lepton polar angle 0.40

Hadron energy 2.00

Radiative corrections 0.30

Photoproduction background 0.00–1.00

Global efficiency 0.50

Luminosity 1.00

With all the uncertainties accounted for, we can build the uncertainty matrices for

all data sets of all machines. An uncertainty matrix has two parts, experimental and

theoretical:

E = Eexp + Etheo.(4.118)

The experimental error matrix is defined by

Eexp,bb′ =


(δOuncorr,b ⊕ δOcorr,b)

2, b = b′,

ρbb′ δOcorr,b δOcorr,b′ , b 6= b′,

(4.119)

where b, b′ = 1, 2, . . . , NB are the bin indices, NB is the number of good bins, O is the

observable, δO(un)corr,b are the (un)correlated uncertainties added in quadrature at the bth
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bin, and we have defined

δO1 ⊕ δO2 ⊕ · · · =
√
δO2

1 + δO2
2 + · · ·.(4.120)

We assume full correlations among bins by taking ρbb′ = 1. For the EIC data sets, we

have

δ(∆)APV,uncorr,b = δ(∆)APV,stat,b ⊕ δ(∆)APV,sys,b,(4.121)

δ(∆)APV,corr,b = δ(∆)APV,pol,b,(4.122)

and for the LHeC and FCC-eh data sets, we have

δσuncorr,b = δσstat,b ⊕ δσueff,b,(4.123)

δσcorr,b = δσsys,b,(4.124)

with

δσsys,b = δσlen,b ⊕ δσlpol,b ⊕ δσhen,b ⊕ δσrad,b ⊕ δσgam,b ⊕ δσgeff,b ⊕ δσlum,b.(4.125)

On the theoretical side, the only source of uncertainty is the PDFs. The PDF error matrix

is defined as

Epdf,bb′ =
1

NP

NP∑
m=1

(Om,b −O0,b)(Om,b′ −O0,b′),(4.126)
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where NP is the number of PDF set members and O0(m),b is the SM prediction for the

observable O at the bth bin evaluated at the central (mth) member of the relevant PDF

set.

After obtaining the uncertainty matrices, we can compare various uncertainty com-

ponents to the observables at the EIC, LHeC, and FCC-eh. In Figures 4.5 and 4.6, we

exhibit the error budget for the fits by comparing the uncertainty components to the ob-

servables for representative data sets. On the horizontal axis, we have the bin numbers,

where the bins are sorted first by Q and then by x in increasing order. On the vertical

axis, we have the central values of the observables and the uncertainty components that

contribute to the diagonal entries of the error matrix.

In these error-budget plots, we see that systematics dominate at the LHeC and FCC-

eh and that PDF uncertainties are non-negligible, which means at some point, one should

consider a simultaneous fit of PDF in conjunction with SMEFT parameters, much like

[62, 107, 102]. At the EIC, statistics dominate by an order for the unpolarized PV

asymmetries, and for the polarized PV asymmetries, PDF uncertainties become more

important than statistics.

Later in our study, we consider joint fits of certain datasets within a given machine.

For the joint EIC fit, we assume beam polarization and PDF uncertainties to be correlated

among the combined runs, and for the joint LHeC and FCC-eh fits, we assume all the

uncertainites under systematics except for photoproduction background, as well as PDF

uncertainties to be correlated. A joint uncertainty matrix is given by the uncertainty

matrices of individual runs on the block-diagonal entries, E , and we define uncertainty
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Figure 4.5. The different sources of uncertainty that make up the diagonal

elements of the uncertainty matrix are shown for the LHeC3 (left) and P4

(right) data sets. The red line shows statistical uncertainty, the blue line

shows uncorrelated global efficiency uncertainty, the magenta line shows

systematic uncertainty, and the orange line shows PDF uncertainty. For

P4, the cyan line shows the uncertainty from beam polarization.

0 5 10 15 20 25 30 35

10-6

10-5

10-4

0.001

0.010

0.100

bin

ΔP4: 10 GeV 275 GeV e- p, Pℓ  0, ℒ  100 fb-1

Δ APV δΔ APV,stat δΔ APV,sys δΔ APV,pol δΔ APV,pdf

0 10 20 30 40
10-4

0.001

0.010

0.100

1

bin

FCCeh1: 60 GeV 50000 GeV e- p, Pℓ  -80 %, ℒ  2 ab-1

σNC σNC,stat σNC,sys σNC,pdf

Figure 4.6. The same as in Figure 4.5 but for ∆P4 (left) and for FCCeh1 (right).
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matrices of correlation, J , in the off-block-diagonal entries by

Jnn′ = Jexp,nn′ + Jpdf,nn′ ,(4.127)

where n, n′ = 1, 2, . . . , NR are the run indices, NR is the number of datasets or runs

combined, and

Jexp,nn′,bb′ = ρnn′,bb′ δOcorr,n,b δOcorr,n′,b′ ,(4.128)

Jpdf,nn′,bb′ =
1

NP

NP∑
m=1

(On,m,b −On,0,b)(On′,m,b′ −On′,0,b′),(4.129)

where b = 1, 2, . . . , NB,n, NB,n is the number of good bins of the nth run in the combined

datasets, δOcorr,n,b is the relevant correlated uncertain described above, and On,0(m),b is

the observable evaluated at the central (mth) member of the PDF set at the bth bin of the

nth run. At the end of the day, the joint uncertainty matrix looks like

E =



E1 J12 · · · J1NR

E2 · · · J2NR

. . .
...

ENR


sym

,(4.130)

where En is the error matrix of the nth run of the datasets combined.

Now we have the observable, as well as the uncertainty matrix for a given individual

or joint dataset. With that, we define a χ2 test function as

χ2
e =

NB∑
b,b′=1

(O −Qe)bHbb′(O −Qe)b′(4.131)
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for the eth pseudoexperiment, whereOb is the SMEFT observable, Oe,b is the pseudoexper-

imental value for the observable at the bth bin, and H = E −1 is the inverse uncertainty

matrix. Pseudoexperimental values are obtained by smearing the SM values with the

uncertainties using random variates as

Oe,b = OSM
b + re,b δOuncorr,b +

∑
j

r′j,e δOcorrj ,b,(4.132)

where OSM
b is the SM prediction for the observable, re,b, r

′
j,e ∼ N (0, 1) are unit normal

random variates, δOuncorr,b is the total uncorrelated uncertainty, and δOcorrj ,b is the jth

correlated uncertainty. The best-fit values are obtained as the solutions of the equation

∇χ2
e(Ce) = 0,(4.133)

and the Fisher information matrix is simply the hessian evaluated at the best-fit values:

F =
1

2
∇∇χ2

e(Ce),(4.134)

where all the derivatives are with respect to the SMEFT parameters. For a linear model,

the Fisher matrix is constant for all pseudoexperiments, hence we drop the subscript e

now on. Using the machinery of statistical analysis introduced in Section 2.4, we present

the SMEFT fit results in the next section.
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4.5. SMEFT fit results

For our numerical analysis, we use the input scheme {GF , α,mZ} with numerical

values

GF = 1.1663787× 10−5 GeV−2,(4.135)

α−1 = 137.036,(4.136)

mZ = 91.1876 GeV.(4.137)

We assume polarization reaches of P` = 80% and PH = 70% at the EIC, and use the

polarization values given with the LHeC and FCC-eh datasets. We set Λ = 1 TeV. We

use NNPDF3.1 NLO [32] and NNPDF1.1 NLO [141] PDF sets with unpolarized and

polarized cross sections, respectively. We compute αs from the renormalization group

equation running at two loops

µ2
R

dαs
dµ2

R

= β(αs) = −(b0α
2
s + b1α

3
s),(4.138)

where b0 = (33 − 2Nf )/(12π) and b1 = (153 − 19Nf )/(24π2), with the initial condition

αs(mZ) = 0.1185. We set Nf = 5 and µR = Q.

4.5.1. Semi-leptonic four-fermion operators

First, we activate only the semi-leptonic four-fermion operators. The Drell-Yan (DY) pro-

cess at the LHC has difficulty probing certain linear combinations of SMEFT parameters

in this subspace [47, 23]. As we have shown in Chapter 3, future DIS experiments can
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resolve these degeneracies (see also [47]). Thus, we want to compare the BSM potential

of the EIC, LHeC, and FCC-eh to the DY at the LHC first.

In Table 4.8, we present the nonmarginalized bounds and the corresponding effective

UV scales at 95% confidence level (CL) by activating one Wilson coefficient at a time,

as well as the marginalized bounds and the marginalized bounds in the seven-parameter

(7d) fit and the UV scales by activating them all. Our analysis focuses on the datasets

P4, ∆P4, the joint set of D4, ∆D4, P4, and ∆P4 at the EIC because #4 datasets are

the strongest at the EIC (see Chapter 3), individual and the combined LHeC runs, and

individual and the combined FCC-eh runs.

There are strong correlations among SMEFT parameters, which is why marginal and

nonmarginal bounds often look wildly different. This tells us that there are degeneracies

in the parameter space. But when we combine datasets, these degeneracies start to break,

and we get better results. The marginal effective UV scales range from about 500 GeV

to 1 TeV at the EIC, from 2.5 to 14 TeV at the LHeC, and from 2 to 18 TeV at the

FCC-eh. The trend is clear: higher energy, stronger reach. No man can eat 50 eggs, but

FCC-eh comes close. Polarized PV asymmetries at the EIC give weaker bounds on its

own, but plays an important role in joint fits. No single LHeC or FCC-eh run is able

to strongly constrain all semi-leptonic four-fermion operators. Each run uses different

lepton types and helicities, which affect sensitivity. Still, the LHeC bounds are generally

stronger than the EIC because of access to higher momentum transfers, where SMEFT

effects become more important. For most operators, FCC-eh joint fits give the strongest

bounds overall. Among the different configurations, e−p with right-handed e− beams are

best for constraining Ceu and Ced. High-luminosity e−p runs with left-handed e− beams
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Table 4.8. Individual and combined 95% confidence level limits on semi-

leptonic four-fermion Wilson coefficients at Λ = 1 TeV, using the EIC data

sets P4 and ∆P4, the combined EIC fit with D4, ∆D4, P4, and ∆P4, the

separate and combined LHeC runs, and the separate and combined FCC-eh

runs. The related effective UV scales are also shown in TeV. “nonmarg.”

means nonmarginalized and “marg.” means marginalized.

Ceu
Λ

Ceu
Ced

Λ

Ced
Cℓq

(1) Λ

Cℓq
(1) Cℓq

(3) Λ

Cℓq
(3) Cℓu

Λ

Cℓu
Cℓd

Λ

Cℓd
Cqe

Λ

Cqe

P4
nonmarg. 0.15 2.6 0.54 1.4 0.23 2.1 0.13 2.7 0.36 1.7 0.75 1.2 0.51 1.4

marg. 19. 0.23 2.5×102 0.063 1.2×102 0.091 1.3×102 0.089 43. 0.15 39. 0.16 46. 0.15

ΔP4
nonmarg. 0.34 1.7 2.2 0.68 0.28 1.9 0.44 1.5 0.81 1.1 5.3 0.43 0.74 1.2

marg. 39. 0.16 92. 0.10 52. 0.14 32. 0.18 36. 0.17 1.1×102 0.097 30. 0.18

Joint EIC
nonmarg. 0.12 2.9 0.34 1.7 0.17 2.4 0.10 3.2 0.28 1.9 0.57 1.3 0.39 1.6

marg. 2.1 0.69 7.2 0.37 2.8 0.59 4.2 0.49 9.1 0.33 9.8 0.32 8.9 0.33

LHeC1
nonmarg. 0.054 4.3 0.29 1.9 0.048 4.6 0.028 6.0 0.27 1.9 0.94 1.0 0.37 1.7

marg. 89. 0.11 1.9×102 0.073 67. 0.12 8.0 0.35 23. 0.21 62. 0.13 52. 0.14

LHeC2
nonmarg. 0.080 3.5 0.35 1.7 0.0089 11. 0.0043 15. 0.059 4.1 0.24 2.1 0.75 1.2

marg. 7.8×102 0.036 1.7×103 0.024 66. 0.12 9.4 0.33 28. 0.19 58. 0.13 5.1×102 0.044

LHeC3
nonmarg. 0.0066 12. 0.026 6.2 0.064 4.0 0.028 6.0 0.36 1.7 1.0 0.99 0.050 4.5

marg. 58. 0.13 1.3×102 0.089 4.0×102 0.050 55. 0.13 1.7×102 0.077 3.4×102 0.054 38. 0.16

LHeC4
nonmarg. 0.28 1.9 0.69 1.2 0.037 5.2 0.013 8.7 0.015 8.1 0.057 4.2 0.18 2.4

marg. 8.4×102 0.035 1.9×103 0.023 72. 0.12 11. 0.30 33. 0.17 63. 0.13 5.8×102 0.041

LHeC5
nonmarg. 0.053 4.3 0.30 1.8 0.0052 14. 0.0031 18. 0.037 5.2 0.18 2.4 0.49 1.4

marg. 3.0×102 0.058 6.6×102 0.039 25. 0.20 3.6 0.53 11. 0.31 22. 0.21 2.0×102 0.071

LHeC6
nonmarg. 0.0037 16. 0.019 7.3 0.030 5.8 0.017 7.7 0.20 2.2 0.77 1.1 0.032 5.6

marg. 20. 0.22 45. 0.15 1.4×102 0.084 20. 0.22 59. 0.13 1.2×102 0.090 13. 0.27

LHeC7
nonmarg. 0.024 6.5 0.075 3.7 0.023 6.6 0.011 9.5 0.014 8.5 0.065 3.9 0.020 7.1

marg. 41. 0.16 93. 0.10 32. 0.18 5.0 0.45 15. 0.26 28. 0.19 29. 0.19

Joint LHeC
nonmarg. 0.0022 21. 0.0097 10. 0.0031 18. 0.0017 24. 0.0084 11. 0.036 5.3 0.011 9.7

marg. 0.0053 14. 0.026 6.2 0.020 7.1 0.011 9.5 0.032 5.6 0.16 2.5 0.018 7.4

FCCeh1
nonmarg. 0.015 8.3 0.043 4.8 0.0020 22. 0.00070 38. 0.0061 13. 0.016 8.0 0.065 3.9

marg. 3.6×102 0.053 8.2×102 0.035 31. 0.18 4.9 0.45 14. 0.26 27. 0.19 2.6×102 0.063

FCCeh2
nonmarg. 0.0013 28. 0.0031 18. 0.019 7.2 0.0046 15. 0.042 4.9 0.077 3.6 0.0046 15.

marg. 20. 0.22 46. 0.15 1.4×102 0.083 22. 0.21 66. 0.12 1.2×102 0.090 14. 0.26

FCCeh3
nonmarg. 0.0059 13. 0.012 9.2 0.012 9.3 0.0021 22. 0.0074 12. 0.018 7.4 0.0083 11.

marg. 69. 0.12 1.5×102 0.081 53. 0.14 7.8 0.36 25. 0.20 44. 0.15 47. 0.15

Joint
FCCeh

nonmarg. 0.00056 42. 0.0012 28. 0.0014 27. 0.00038 51. 0.0028 19. 0.0061 13. 0.0016 25.

marg. 0.0031 18. 0.0070 12. 0.035 5.4 0.014 8.4 0.068 3.8 0.26 2.0 0.0092 10.
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are best for C
(1)
`q and C

(3)
`q . The only polarized e+p LHeC dataset is especially good for

Clu and Cld, because of the kinematic structures in the amplitudes. Finally, unpolarized

e+p runs are best for probing Cqe.

The effective field theory is based on an expansion in powers of Q/Λeff = Q/(Λ/
√

(C)).

In our case, this ratio stays small for all runs. This means the expansion works well. So,

keeping only the dimension-6 terms and treating their effects to first order is a safe and

good choice.

We show examples of 2d nonmarginalized fits and marginalized results from the 7d fit

in Figure 4.7. The strongest individual EIC data set, the strongest LHeC and FCC-eh sets

for these Wilson coefficients, and the combined EIC, FCC-eh, and LHeC fits are shown.

In the 2d case, we activate two Wilson coefficients at a time. These fits often look clean

because the data can separate the effects of the chosen pair. But in the 7d marginalized

case, some information is lost, and flat directions appear. These are combinations that

the data cannot fully resolve. The EIC is especially weak in this case. Even the joint EIC

fit does not break these flat directions. So, one must consider running the machine under

different setups to better cover the parameter space.

In both the LHeC and FCC-eh datasets, there are three parameters that vary: the in-

tegrated luminosity, the lepton beam polarization, and the lepton species. To keep things

simple, we focus on the LHeC as a representative case. Figure 4.8 shows a comparison

between two data sets that differ by a factor of 10 in total luminosity. The improvement

in the fit is small. This tells us that just increasing the event count is not always the most

effective way to gain sensitivity.
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Figure 4.7. Nonmarginalized (top) and marginalized (bottom) 95% confi-

dence level ellipses for the parameter spaces formed by C
(1)
`q and C`u (left)

and C
(1)
`q and Cqe (right) with Λ = 1 TeV. The insets display a zoomed-in

view of the combined LHeC and FCC-eh fits.
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Figure 4.8. Marginalized 95% confidence level ellipses in the parameter

spaces formed by C
(1)
`q and C

(3)
`q (left) and C`u and C`d (right) at Λ = 1 TeV,

comparing data sets with luminosities differing by a factor of 10: LHeC2

and LHeC5 (left), and LHeC3 and LHeC6 (right).

Figure 4.9 compares runs with electron and positron beams. Here, even though the

positron run has lower luminosity, the bounds improve significantly. The reason is in the

structure of the amplitudes. For electron and positron beams, different Wilson coefficients

contribute. When we switch from electron to positron beams, we replace Ceu with Clu,

Ced with Cld, and C
(1)
lq ± C

(3)
lq with Cqe. These new combinations remove the factor of

(1 − y)2 that suppresses the cross section in the electron case. On average, this factor

is about 1/4. Removing it gives a much larger SMEFT contribution. This shows that

changing the lepton species can improve the fit more than increasing luminosity. It also

supports the case for including positron beams in future DIS programs.
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Figure 4.9. The same as in Figure 4.8 but for C`u and C`d, with data sets

having different lepton species (LHeC3 and LHeC4).

The DY data from the LHC leaves blind spots in the SMEFT parameter space. These

directions are poorly constrained and limit the reach of global fits. DIS measurements

can remove them by probing different operator combinations. But DIS measurements

can also have their own degeneracies, especially at high energies. To illustrate this, we

examine one LHeC run configuration as an example.

The NC DIS amplitude contains two structures: one constant in y, and one propor-

tional to (1 − y)2. We set the coefficients of both structures to zero, for both up and

down quark amplitudes. This gives four equations involving seven Wilson coefficients. So

only three directions are independent. We choose C
(1)
lq , C

(3)
lq , and Cqe as a basis. For the
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SMEFT contribution to e−p scattering to vanish, the solutions are given by

Ceu =
P` − 1

P` + 1

Qu − ge+gu+η̂γZ
Qu − ge−gu−η̂γZ

(C
(1)
`q − C

(3)
`q ),(4.139)

C`u =
P` + 1

P` − 1

Qu − ge−gu+η̂γZ
Qu − ge+gu−η̂γZ

Cqe,(4.140)

Ced =
P` − 1

P` + 1

Qd − ge+gd+η̂γZ
Qd − ge−gd−η̂γZ

(C
(1)
`q + C

(3)
`q ),(4.141)

C`d =
P` + 1

P` − 1

Qd − ge−gd+η̂γZ
Qd − ge+gd−η̂γZ

Cqe,(4.142)

where Qu/d is the up/down quark electric charge, gf± = gfV ± gfA, gfV/A are the usual

SM vector/axial fermion couplings to the Z boson, and the energy-dependent η factor is

defined by

η̂γZ =
GFM

2
Z

2
√

2πα

Q2

Q2 +M2
Z

.(4.143)

These same combinations also cancel the SMEFT contribution to e+p scattering if we flip

the lepton polarization.

Because of energy-dependent factors in the amplitude, these cancellations are only

approximate. But they become more accurate at large Q. At the LHeC, Q can reach

up to 1 TeV, which is much larger than mZ . So the degeneracies become relevant. Since

the cancellations depend on the lepton polarization, they can be broken by running with

different polarization settings. This holds for both LHeC and FCC-eh.

This is a bottom-up construction of a flat direction. We do not try to connect it to any

specific UV model. For P` = −80%, we study how this direction appears in the LHeC2,
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LHeC4, and LHeC5 data sets. In the limit Q/mZ →∞, the solutions are given by

Ceu ≈ −13(C
(1)
`q − C

(3)
`q ) ≡ C(1)

eu(4.144)

C`u ≈ −0.052Cqe ≡ C
(1)
`u(4.145)

Ced ≈ −22(C
(1)
`q + C

(3)
`q ) ≡ C

(1)
ed(4.146)

C`d ≈ 0.12Cqe ≡ C
(1)
`d .(4.147)
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Figure 4.10. Effective UV scales corresponding to marginalized 95% con-

fidence level bounds on the Wilson coefficients C
(1)
`q , C

(3)
`q , and Cqe in the

analysis of flat directions for LHeC2, LHeC4, and LHeC5.

We apply these equations to the amplitudes and re-fit the data in the three-dimensional

parameter space spanned by C
(1)
lq , C

(3)
lq , and Cqe. The resulting bounds and effective UV

scales at 95% CL are shown in Figure 4.10. As expected, the individual runs give weak
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bounds, since the SMEFT effects are tuned to cancel out. But the joint fit removes the flat

direction and leads to strong bounds. This highlights the importance of running future

DIS programs with a variety of beam configurations.

4.5.2. ffV vertex corrections

We now activate a 17-dimensional parameter set that includes modifications to the fermion

couplings to neutral EW gauge bosons. In general, precision observables at the Z pole

provide strong constraints on these parameters. In some cases, they push the effective UV

scales up to 10 TeV, as shown in [76, 49]. But the number of independent measurements

is limited, and once we move beyond single-parameter fits, the bounds weaken by about

an order of magnitude. This is due to strong correlations among parameters, which create

flat directions in the global fit. These effects are discussed in [92].

Table 4.9 shows our results from a 17-dimensional marginalized fit of the ffV operators

using joint data sets from the EIC, LHeC, and FCC-eh. For comparison, we also show

the corresponding bounds from the 34-dimensional EW, diboson, Higgs, and top-quark

fits adapted from [92]. The correlation matrices from our joint LHeC and FCC-eh fits

are given in Figures 4.11 and 4.12. It is important to note that this is not a one-to-one

comparison with [92], since their fit includes 34 parameters while ours has only 17.

Several features stand out. First, the bounds from the LHeC are stronger than those

from the joint EW fit. If added to a global analysis, the LHeC would be a major contrib-

utor. The FCC-eh bounds are even stronger than both the LHeC and the EIC in most
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Table 4.9. Marginalized 95% confidence level bounds on Wilson coefficients

in the 17-dimensional fit assuming Λ = 1 TeV, along with the corresponding

effective UV scales in TeV. The combined EIC fit of D4, ∆D4, P4, and ∆P4,

the joint LHeC and FCC-eh fits, and the marginalized bounds and UV scales

from the 34-dimensional fits of EW, diboson, Higgs, and top data [92] are

shown.

Joint EIC Joint LHeC Joint FCCeh EW diboson, Higgs, and top data
CφD [-3.8, 3.8] [-0.019, 0.019] [-0.013, 0.013] [-1.6, 0.81]
Λ

CφD
0.51 7.2 8.8 0.91

CφWB [-9.9, 9.9] [-0.098, 0.098] [-0.034, 0.034] [-0.36, 0.73]
Λ

CφWB
0.32 3.2 5.4 1.4

Cφq
(1) [-38., 38.] [-0.40, 0.40] [-0.39, 0.39] [-0.27, 0.18]
Λ

Cφq
(1) 0.16 1.6 1.6 2.1

Cφq
(3) [-4.1, 4.1] [-0.11, 0.11] [-0.031, 0.031] [-0.11, 0.012]
Λ

Cφq
(3) 0.49 3.1 5.7 4.1

Cφu [-38., 38.] [-0.51, 0.51] [-0.45, 0.45] [-0.63, 0.25]
Λ

Cφu
0.16 1.4 1.5 1.5

Cφd [-84., 84.] [-0.82, 0.82] [-0.71, 0.71] [-0.91, 0.13]
Λ

Cφd
0.11 1.1 1.2 1.4

Cφℓ
(1)

[-18., 18.] [-0.094, 0.094] [-0.060, 0.060] [-0.19, 0.41]
Λ

Cφℓ

(1) 0.23 3.3 4.1 1.8

Cφℓ
(3)

[-4.1, 4.1] [-0.060, 0.060] [-0.022, 0.022] [-0.13, 0.055]
Λ

Cφℓ

(3) 0.49 4.1 6.7 3.3

Cφe [-5.7, 5.7] [-0.16, 0.16] [-0.046, 0.046] [-0.41, 0.79]
Λ

Cφe
0.42 2.5 4.6 1.3

Cℓℓ [-7.7, 7.7] [-0.039, 0.039] [-0.026, 0.026] [-0.084, 0.02]
Λ

Cℓℓ

0.36 5.1 6.2 4.4
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Figure 4.11. Correlation matrix of the 17d joint LHeC fit of Wilson coefficients.
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Figure 4.12. The same as in Figure 4.11 but for FCC-eh.
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cases. Second, the ffV operators are only weakly correlated with the four-fermion oper-

ators, which justifies treating them separately in some analyses. Third, the EIC bounds

barely reach 0.5 TeV and remain much weaker than those from the LHeC or the EW fits.

Two-dimensional projections of selected Wilson coefficients are shown in Figures 13

and 14. These include both non-marginalized and marginalized fits at 95 percent confi-

dence level. The EW fits are taken from [92] for comparison. In most cases, the LHeC

provides stronger bounds than the EW data. The FCC-eh pushes them even further.

The EW fits show tight correlations and degeneracies, but these are largely resolved when

using DIS data from the LHeC or FCC-eh. On the other hand, the EIC fits are by far

the weakest and contribute little to probing the ffV parameter space.

4.6. Coda

This chapter explored the potential of the EIC, LHeC, and FCC-eh to probe BSM

physics using the SMEFT framework. We focused on NC DIS cross sections at the LHeC

and FCC-eh, and PV observables at the EIC, following the general strategy used in earlier

studies. Our analysis included the full set of dimension-6 operators that can modify the

DIS amplitude, namely the semi-leptonic four-fermion operators and the vertex corrections

to fermion couplings with neutral EW gauge bosons.

We examined a wide range of machine configurations, varying in energy, beam polar-

ization, and lepton species. The results show that the EIC can reach effective scales up to

3 TeV, the LHeC up to 13 TeV, its joint runs up to 14 TeV, and the FCC-eh up to 18 TeV.

No single configuration gives full coverage of the SMEFT parameter space. Multiple runs

with different polarization and species setups are necessary. Most importantly, future DIS
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Figure 4.13. Marginalized 95% confidence level ellipses in the two-

parameter fits of CϕD and Cϕe (left) and C
(1)
ϕ` and Cϕe (right) at Λ = 1 TeV.

The joint EIC, LHeC, and FCC-eh fits are shown, along with the EWPO

fit adapted from [92].

data can lift the flat directions that limit EW precision fits. Among the three machines,

the LHeC and FCC-eh provide the strongest reach.
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CHAPTER 5

Transcendental Étude in e− Minor

Church Painter: Why should one always make people happy? It might be a good idea to

scare them once in a while.

Jöns: Then they’ll close their eyes and refuse to look.

Church Painter: They’ll look. A skull is more interesting than a naked woman.

Jöns: If you do scare them...

Church Painter: Then they think.

Jöns: And then?

Church Painter: They’ll become more scared.

Ingmar Bergman, The Seventh Seal

This chapter demonstrates how measuring single transverse-spin asymmetries at the

Future Circular Collider operating in the electron-positron mode can enhance the sensitiv-

ity to the electron Yukawa coupling. We show that using transversely polarized electron,

in both the bb and semi-leptonic WW final states, the significance can increase up to three

times compared to inclusive cross section methods. If positrons are also longitudinally

polarized even at just 30%, the significance and improve by a factor of five or more. The

method takes advantage of the quantum interference between the Higgs signal and the

continuum background, providing a more precise measurement. This approach is also

applicable to other WW and ZZ final states.



206

5.1. Prelude

The discovery of the Higgs boson marked a monumental milestone in our understand-

ing of the Standard Model (SM) and the mechanism by which elementary particles acquire

mass. However, despite over a decade of experimental progress, some of the most fun-

damental aspects of Higgs physics remain elusive, for example the coupling of the Higgs

boson to the electron, which in the SM is predicted to be proportional to the electron

mass and therefore vanishingly small. The electron Yukawa coupling, ye, is the smallest

among all SM fermion Yukawa couplings, with a value ySM
e =

√
2me/v ≈ 2.9×10−6, where

v is the Higgs vacuum expectation value. Probing this coupling directly would represent

one of the most stringent tests of the SM Higgs mechanism.

The current experimental bounds on ye are orders of magnitude above the SM ex-

pectation. The most recent limits, derived from Drell-Yan production processes at the

Large Hadron Collider (LHC), constrain |ye| ≤ 260|ySM
e | at 95% confidence level [124, 7].

Even with the full High-Luminosity LHC dataset, this bound is projected to improve to

no better than |ye| ≤ 120|ySM
e | [64]. The primary obstacle is that the Higgs coupling to

electrons enters the cross section quadratically and is heavily suppressed by the electron

mass, making it extremely challenging to isolate from large SM backgrounds.

The electron Yukawa coupling can be accessed more directly at future electron-positron

colliders operating near the Higgs resonance. The proposed Future Circular Collider

in electron-positron mode (FCC-ee) is a promising candidate for such measurements.

By running at
√
s = 125 GeV with a planned integrated luminosity of 10 ab−1, the

FCC-ee can produce Higgs bosons in the s-channel via electron-positron annihilation.

Several dedicated studies [106, 89, 88] have investigated the prospects of measuring ye at
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the FCC-ee, employing inclusive cross-section measurements and multivariate techniques.

The most complete analysis to date suggests that an upper bound of |ye| ≤ 1.6|ySM
e | could

be achievable, provided that exceptional control over beam energy spread and detector

resolution is maintained.

However, the inclusive cross-section approach suffers from intrinsic limitations. The

cross section for s-channel Higgs production is proportional to ye
2, further compounding

the suppression associated with the electron mass. Additionally, large backgrounds from

electroweak continuum processes challenge the statistical significance of such a measure-

ment. This motivated the search for alternative observables that could provide enhanced

sensitivity to ye.

A promising avenue lies in exploiting the spin degrees of freedom of the initial-state

electrons. Single transverse-spin asymmetries, well-studied in the context of deep-inelastic

scattering and quantum chromodynamics (QCD), exhibit a chiral suppression propor-

tional to the electron mass [139]. More importantly, these asymmetries arise from inter-

ference between the Higgs signal and the SM continuum background, leading to a depen-

dence linear in ye rather than quadratic. This crucial feature opens up a new strategy for

probing the electron Yukawa coupling.

The theoretical framework underpinning these asymmetries is rooted in the discrete

symmetries of the SM amplitudes. Transverse single-spin asymmetries are odd under

the combined transformation of parity and naive time reversal. In the processes consid-

ered here, namely e−e+ → bb and e−e+ → W−W+, the asymmetries emerge from the

imaginary part of the interference between the Higgs-mediated amplitude and the contin-

uum background. This imaginary part is generated primarily near the Higgs resonance



208

through Dyson resummation effects. As a result, the asymmetries exhibit a characteristic

dependence on the azimuthal angle between the transverse spin direction of the electron

and the final-state particles. Properly weighting the measured events with this angular

dependence allows the signal to be isolated from background contributions.

Our study builds upon these theoretical insights and systematically investigates the

potential of transverse spin asymmetries to probe the electron Yukawa coupling at the

FCC-ee. We consider two final states: the bb channel, which is clean and well-understood,

and the semi-leptonic W−W+ channel, which benefits from favorable kinematics and

reduced QCD background. For each process, we construct asymmetry observables under

various beam polarization configurations and assess their statistical significance. Our

analysis accounts for realistic experimental effects, including beam energy spread and

initial-state radiation, and incorporates optimized kinematic cuts to enhance sensitivity.

A key result of this analysis is that the use of transverse spin asymmetries significantly

improves the prospects of observing the electron Yukawa coupling at the FCC-ee. In the bb

channel, we find that the significance can be improved by a factor of five compared to the

inclusive cross-section analysis. In the semi-leptonic W−W+ channel, the improvement

reaches a factor of six, with the significance approaching the threshold for observation of

the SM electron Yukawa coupling. These results illustrate the power of spin asymmetries

as precision probes of fundamental SM parameters.

The broader theoretical implication of this work is that quantum interference effects,

long known to play a subtle role in collider observables, can be harnessed strategically to
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access otherwise inaccessible parameters. By coupling this approach with beam polariza-

tion, precision measurements at future colliders can extend beyond conventional limits,

probing the chiral structure of the SM with unprecedented sensitivity.

This chapter is organized as follows. In Section 5.2, we introduce the processes con-

sidered, outline our theoretical framework clearly and explicitly, and define all relevant

observables. Analytical expressions for the transverse-spin asymmetries are presented in

Section 5.3. In Section 5.4, we explain how beam energy spread and initial-state radiation

effects are incorporated into our analysis. Our primary sensitivity results and numerical

estimates are provided and discussed in detail in Section 5.5. We conclude in Section 5.6.

5.2. Structure of the cross section

We consider the following processes of interest:

e−(pa) + e+(pb)→ b(p1) + b(p2),(5.1)

e−(pa) + e+(pb)→ W (p12) +W (p34)→ `(p1) + ν(p2) + j(p3) + j(p4).(5.2)

We refer to these processes simply as the bb and WW processes, respectively. Analytical

calculations are carried out with FeynArts [111] and FeynCalc [146, 145, 144, 138] using

the unitary SM model. The only modification we introduce is the generalized projectors

for the spinors [43]:

uaua = (/pa +me)Pa, vbvb = (/pb −me)Pb,(5.3)
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Here, the generalized projector for a particle/antiparticle in a spin state λ having the spin

4-vector s is given by

P±(λ, s) =
1± λγ5/s

2
.(5.4)

Then we have Pa = P+(λa, sa) and Pb = P−(λb, sb). The electron and positron spin vectors

are given respectively by sa = (0, 1, 0, 0) and sb = 1
me

(|pb|, Ebp̂b), where we use bold-face

font to denote 3-vectors. The latter can also be expressed in terms of the incoming

momenta as sb = capa + cbpb, where

ca = − 2me

E
√
E2 − 4m2

e

, cb = − 2m2
e − E2

meE
√
E2 − 4m2

e

,(5.5)

so that p2
a = p2

b = m2
e, s

2
a = s2

b = −1, pa ·sa = pb ·sb = 0, sa ·sb = 0, and pa ·sb =
E
√
E2−4m2

e

2me
.

Here, E denotes the center-of-mass (c.m.) energy.

Once we derive the squared amplitude, the cross section is obtained by

σ = F

∫
dLIPS |A|2,(5.6)

where F = 1/(2E2) is the flux factor in the small-me approximation and |A|2 is the

squared amplitude with the spin sum over the outgoing fermions. The Lorentz-invariant

phase space (LIPS) is given by

∫
dLIPS =

1

32π2

∫
dΩ(5.7)
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for the bb process and

∫
dLIPS =

1

2(4π)8E2

∫ E
0

dm12 2m12

∫ E−m12

0

dm34 2m34

√
λ(E2,m2

12,m
2
34)

×
∫

dΩ12

∫
dΩ1

∫
dΩ3(5.8)

for the WW process. Here, m12(34) is the invariant mass of the W boson that decays into

the lepton-neutrino pair (jets).

Let us detail the geometries of the bb and WW processes and provide the expressions

for various 4-momenta involved. Figures 5.1 and 5.2 depict said geometries for the bb and

WW processes, respectively. In the latter, the momenta with asterisk (circle) are the ones

as measured in the rest frame of the W boson that decays into the lepton-neutrino pair

(jets). We emphasize that the momenta p1 and p2 for the bb process and p12 and p34 are

not restricted to the xz plane just because the drawings indicate so; that is, these vectors

have nontrivial azimuthal angles ϕ and ϕ12, respectively.

The 4-momenta for the external particles in the bb process are given by pi = (Ei,pi)

for i = a, b, 1, 2, where

Ea/b =
E2 +m2

a/b −m2
b/a

2E
, |pa/b| =

√
λ(E2,m2

a,m
2
b)

2E
, p̂a/b = ±(0, 0, 1),(5.9)

E1/2 =
E2 +m2

1/2 −m2
2/1

2E
, |p1/2| =

√
λ(E2,m2

1,m
2
2)

2E
, p̂1/2 = ±(sθcϕ, sθsϕ, cθ).(5.10)

where ma = mb = me, m1 = m2 = mb, and s and c are the sine and cosine functions of

the angle denoted in the subscript, respectively.
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Figure 5.1. The collision of a transversely-polarized electron beam with a

longitudinally-polarized positron beam for the bb process in the center-of-

mass frame of the incoming particles. Note that the vectors pi for i = 1, 2

are not restricted to the xz plane.

The components of the 4-momenta relevant to the WW process are given similarly by

Ea/b =
E2 +m2

a/b −m2
b/a

2E
, |pa/b| =

√
λ(E2,m2

a,m
2
b)

2E
, p̂a/b = ±(0, 0, 1),(5.11)

E12/34 =
E2 +m2

12/34 −m2
34/12

2E
,(5.12)

|p12/34| =
√
λ(E2,m2

12,m
2
34)

2E
, p̂12/34 = ±(sθ12cϕ12 , sθ12sϕ12 , cθ12),(5.13)

E∗12 = m12, p∗12 = 0,(5.14)

E∗1/2 =
m2

12 +m2
1/2 −m2

2/1

2m12

,(5.15)

|p∗1/2| =
√
λ(m2

12,m
2
1,m

2
2)

2m12

, p̂∗1/2 = ±(sθ1cϕ1 , sθ1sϕ1 , cθ1),(5.16)

E◦34 = m34, p◦34 = 0,(5.17)
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Figure 5.2. The collision of a transversely-polarized electron beam with a

longitudinally-polarized positron beam for the WW process in the center-

of-mass frame of the incoming particles on the left. On the right, we

draw the decays of the W bosons into a lepton-neutrino pair or two jets

in their respective center-of-mass frames. Note that the vectors pi for

i = 12, 34, 1, 2, 3, 4 are not restricted to the xz plane.

E◦3/4 =
m2

34 +m2
3/4 −m2

4/3

2m34

,(5.18)

|p◦3/4| =
√
λ(m2

34,m
2
3,m

2
4)

2m34

, p̂◦3/4 = ±(sθ3cϕ3 , sθ3sϕ3 , cθ3).(5.19)

where ma = mb = me and m1 = m2 = m3 = m4 = 0. The pi for i = 1, 2, 3, 4 can then be

obtained with a Lorentz boost from their respective frames into the c.m. frame of pa and

pb. For the “12” system, we have

p∗12 = Λ12p12 = B12R12,yR12,zp12,(5.20)
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where

B12 =



γ12 0 0 −γ12β12

0 1 0 0

0 0 1 0

−γ12β12 0 0 γ12


,(5.21)

R12,y =



1 0 0 0

0 cθ12 0 −sθ12

0 0 1 0

0 sθ12 0 cθ12


,(5.22)

R12,z =



1 0 0 0

0 cϕ12 sϕ12 0

0 −sϕ12 cϕ12 0

0 0 0 1


,(5.23)

which we can solve for γ12 and β12 to find

γ12 =
E12

m12

, β12 =
|p12|
E12

.(5.24)

For the “34” system, we have

p◦34 = Λ34p34 = B34R34,yR34,zp34,(5.25)
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where

B34 =



γ34 0 0 −γ34β34

0 1 0 0

0 0 1 0

−γ34β34 0 0 γ34


, R34,y = R12,y, R34,z = R12,z,(5.26)

which we can solve for γ34 and β34 to find

γ34 =
E34

m34

, β34 = −|p34|
E34

.(5.27)

This allows us to write p1/2 = Λ−1
12 p

∗
1/2 and p3/4 = Λ−1

34 p
◦
3/4. Finally, we expand each

fermion momentum with respect to the corresponding fermion mass as

pi = p
(0)
i +m2

i p
(2)
i(5.28)

for i = a, b, 1, 2 for the bb process and i = a, b for the WW process. Next, we present

an intuitive discussion on the derivation of many-particle LIPS. Our intention is not to

state that this is how we derive the LIPS, but rather to provide a generalizable way to

construct the many-particle LIPS from scratch iteratively.

We note that our expressions are consistent with the general formula

LIPSn =
1

2(4π)2n−3

E2n−4

Γ(n)Γ(n− 1)
(5.29)

after integration for the case of massless outgoing particles. We also confirm that our

numbers for the unpolarized cross sections for the background bb and WW processes in

the absence of any cuts match our MadGraph [24] simulations, as well as the relevant
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numbers quoted in Table 1 of [88], verifying not only our expressions for the LIPS but

also for the 4-momenta.

For the bb process, we keep the mass of the b quark to first order and for the WW

process, we take the outgoing fermions to be massless. For both, we keep the mass of

the electron to first order. We keep the vertex factors in closed form so as to distinguish

between the fermion masses that derive from the equation of motion and from the Yukawa

couplings.

Our observable is the polarization asymmetry, A = N/D, where N is the differences

between cross-section measurements with distinct incoming beam polarizations, which

are denoted by σλaλb where λa and λb can take on values +1, 0, and −1, and D is the

sum of said cross-section measurements. We investigate various polarization asymmetries

constructed as follows:

• The double-polarization asymmetry (DP):

N =
1

4
(σ++ − σ+− − σ−+ + σ−−),(5.30)

D =
1

4
(σ++ + σ+− + σ−+ + σ−−).(5.31)

• The single-polarization asymmetry with an unpolarized positron beam, λb = 0

(SP0):

N =
1

2
(σ+0 − σ−0),(5.32)

D =
1

2
(σ+0 + σ−0).(5.33)
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• The single-polarization asymmetry with a left-handed positron beam, λb = +1

(SP+):

N =
1

2
(σ++ − σ−+),(5.34)

D =
1

2
(σ++ + σ−+).(5.35)

• The single-polarization asymmetry with a right-handed positron beam, λb = −1

(SP−):

N =
1

2
(σ+− − σ−−),(5.36)

D =
1

2
(σ+− + σ−−).(5.37)

We note that the angular weight functions sin(ϕ) and ± sin(ϕ12) are introduced to the

phase space whilst we form the numerator of the asymmetry of the bb and WW processes,

respectively, where the sign of the latter is opposite to the sign of the electric charge of

the outgoing lepton, `∓. To see this, we need to understand the analytical expressions for

the numerators of the asymmetries, which is what we do next.

5.3. Analytical calculations

We start with the bb process. In general, we write

N = F

∫
dLIPS w

∑
c

N c,(5.38)

D = F

∫
dLIPS

∑
c

Dc,(5.39)
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where w is a weight function and the summation runs over all the interference channels.

For the bb process, we have c ∈ {h, γ, Z, hγ, hZ, γZ}. To avoid clutter, we present the

expressions only for the primary observable of interest, which is the SP− asymmetry. We

have

Nh = 0,(5.40)

Nγ = −6E3∆γ
2me sin(2θ) cos(ϕ)Cbbγ

2Ceeγ
2,(5.41)

NZ = −3E3me sin(θ) cos(ϕ)(∆i
Z

2 + ∆r
Z

2)CL
eeZ(CL

eeZ + CR
eeZ)

× (cos(θ)(CL
bbZ

2 + CR
bbZ

2) + CL
bbZ

2 − CR
bbZ

2),(5.42)

Nhγ = 12E3mb∆γ sin(θ)CbbhCbbγCeehCeeγ(sin(ϕ)∆i
h + cos(ϕ)∆r

h),(5.43)

NhZ = 6E3mb sin(θ)CbbhCeehC
L
eeZ(CL

bbZ + CR
bbZ)

× (sin(ϕ)(∆i
h∆

r
Z −∆r

h∆
i
Z) + cos(ϕ)(∆i

h∆
i
Z + ∆r

h∆
r
Z)),(5.44)

NγZ = −3E3∆γme sin(θ)CbbγCeeγ(cos(θ)(CL
bbZ + CR

bbZ) + CL
bbZ − CR

bbZ)

× (sin(ϕ)∆i
Z(CR

eeZ − CL
eeZ) + cos(ϕ)∆r

Z(3CL
eeZ + CR

eeZ)),(5.45)

and

Dh = 3E4Cbbh
2Ceeh

2(∆i
h

2 + ∆r
h

2),(5.46)

Dγ =
3

2
E4∆γ

2(cos(2θ) + 3)Cbbγ
2Ceeγ

2,(5.47)

DZ =
3

4
E4(∆i

Z
2 + ∆r

Z
2)CL

eeZ
2(4 cos(θ)(CL

bbZ − CR
bbZ)(CL

bbZ + CR
bbZ)

+ (cos(2θ) + 3)(CL
bbZ

2 + CR
bbZ

2)),(5.48)
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Dhγ = 24E2mb∆γme cos(θ)CbbhCbbγCeehCeeγ∆
r
h,(5.49)

DhZ = 6E2mbme cos(θ)CbbhCeeh(∆
i
h∆

i
Z + ∆r

h∆
r
Z)(CL

bbZ + CR
bbZ)(CL

eeZ + CR
eeZ),(5.50)

DγZ =
3

2
E4∆γCbbγCeeγ∆

r
ZC

L
eeZ

× (4 cos(θ)(CL
bbZ − CR

bbZ) + (cos(2θ) + 3)(CL
bbZ + CR

bbZ)).(5.51)

Here, ∆h, ∆γ, and ∆Z are the propagators, given by

∆h =
1

E2 −m2
h + imhΓh

, ∆γ =
1

E2
, ∆Z =

1

E2 −m2
Z + imZΓZ

,(5.52)

∆r/i are the real/imaginary parts of said propagators, and numerous C factors are the

coupling strengths of indicated interactions in the subscripts.

We are interested in isolating the electron Yukawa coupling, denoted by Ceeh, in (5.40)-

(5.45) near the Higgs resonance. With small ∆r
h and small ∆i

Z , we see that all the channels

go like cos(ϕ), except for the Higgs-Z boson interference, which is proportional to sin(ϕ)

due to the coupling of the imaginary part of the Higgs propagator to the real part of the

Z-boson propagator. This channel can be isolated with the weight function w = sin(ϕ).

We investigate the on-shell WW production to have a decent understanding of the

full, more complicated WW process in regards to determining a proper weight function.

Thus, the process of interest is now

e−(pa) + e+(pb)→ W (p1) +W (p2).(5.53)

At tree level, this process takes places via three s-channel diagrams with the Higgs, photon,

and the Z-boson emission, as well as a t-channel diagram with a neutrino exchange. Here,
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the pi (i = a, b, 1, 2) have components

Ea/b =
E2 +m2

a/b −m2
b/a

2E
, |pa/b| =

√
λ(E2,m2

a,m
2
b)

2E
, p̂a/b = ±(0, 0, 1),(5.54)

E1/2 =
E2 +m2

1/2 −m2
2/1

2E
, |p1/2| =

√
λ(E2,m2

1,m
2
2)

2E
, p̂1/2 = ±(sθcϕ, sθsϕ, cθ),(5.55)

where ma = mb = me and m1 = m2 = mW . We focus on the numerators of the various

asymmetries of interest. We write

N = F

∫
dLIPS

∑
c

N c,(5.56)

where c = h, γ, Z, ν, hγ, hZ, hν, γZ, γν, Zν. To avoid clutter, we present the expressions

only for the primary observable of interest, which is the SP+ asymmetry. We have

Nh = 0,(5.57)

Nγ =
1

4m4
W

(E∆γ
2me sin(2θ) cos(ϕ)(E2 − 4mW

2)

× (−4E2mW
2 + 12mW

4 + E4)Ceeγ
2(−CγWW

2)),(5.58)

NZ =
1

8m4
W

(Eme sin(2θ) cos(ϕ)(28E2mW
4 − 8E4mW

2 − 48mW
6 + E6)

× CZWW
2(∆i

Z
2 + ∆r

Z
2)(−CR

eeZ)(CL
eeZ + CR

eeZ)),(5.59)

N ν = 0,(5.60)

Nhγ =
1

4m4
W

(E2∆γ sin(θ)
√
E2 − 4mW

2(E4 − 12mW
4)CeehCeeγ

× ChWW (−CγWW )(cos(ϕ)∆r
h − sin(ϕ)∆i

h)),(5.61)

NhZ =
1

4m4
W

(E2 sin(θ)
√
E2 − 4mW

2(E4 − 12mW
4)(−Ceeh)
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× ChWWCZWWC
R
eeZ(sin(ϕ)(∆r

h∆
i
Z −∆i

h∆
r
Z) + cos(ϕ)(∆i

h∆
i
Z + ∆r

h∆
r
Z))),(5.62)

Nhν = 0,(5.63)

NγZ =
1

8m4
W

(E∆γme sin(2θ)(28E2mW
4 − 8E4mW

2 − 48mW
6 + E6)Ceeγ

× (−CγWW )CZWW (sin(ϕ)∆i
Z(CR

eeZ − CL
eeZ) + cos(ϕ)∆r

Z(CL
eeZ + 3CR

eeZ))),(5.64)

Nγν =
1

16m4
W

(E∆γ∆νme sin(θ) cos(ϕ)CeeγCγWW (E
√
E2 − 4mW

2

× (− cos(2θ)(−6E2mW
2 + 8mW

4 + E4)− 2E2mW
2 + 16mW

4

+ E4)− 4 cos(θ)mW
2(−10E2mW

2 + 24mW
4 + E4))Cff ′W

2),(5.65)

NZν =
1

16m4
W

(E∆νme sin(θ)CZWW (4 cos(θ)mW
2(−10E2mW

2 + 24mW
4 + E4)

+ E
√
E2 − 4mW

2(cos(2θ)(−6E2mW
2 + 8mW

4 + E4) + 2E2mW
2

− 16mW
4 − E4))Cff ′W

2(−CR
eeZ)(sin(ϕ)∆i

Z + cos(ϕ)∆r
Z)).(5.66)

Here, ∆h, ∆γ, ∆Z , and ∆ν are the propagators given by

∆h =
1

E2 −m2
h + imhΓh

, ∆γ =
1

E2
,(5.67)

∆Z =
1

E2 −m2
Z + imZΓZ

, ∆ν =
1

(pa − p1)2
,(5.68)

and ∆r/i are the real/imaginary parts of said denominators. Numerous C factors denote

the coupling strengths of interactions indicated in the subscripts and are given in the

appendix. One should be scrupulous with the collider energy here because now we cannot

simply set E = mh because of the two outgoing W bosons. Thus, what we have here

serves only as a crude estimation of the bigger picture. Nevertheless, we observe that in
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all these expressions, w(ϕ) = sin(ϕ) is again a good weight function that will isolate the

electron Yukawa coupling, Ceeh, near the Higgs resonance, i.e. with negligible ∆r
h. Be

that as it may, this choice of the angular weight does not perfectly isolate the Higgs-Z

boson interference as in the case of the bb process; namely, we now have contributions

from the Higgs-photon and Higgs-neutrino interference amplitudes, as well. One could

try to find a weight function that would eliminate said contributions; however, it is a

nontrivial task due to the cos(θ) term in the denominator of the neutrino propagator.

Even in the case where the hν interference could be removed, we still observe that the

hγ and hZ channels have identical dependence on θ. This means that any attempt to

exterminate the hγ interference by introducing an angular weight that also depends on

θ would annihilate the hZ interference, as well. As we observe later, the chosen weight

function when generalized to the full, more involved WW process serves it purpose nearly

perfectly.

5.4. Dilution of the signal

To make a realistic estimate of the potential significance at an FCC, especially for a

study that needs the beam collision energy to be tuned near the Higgs resonance, it is

important to include the effects of beam energy spread and initial-state radiation. We

account for the beam-spreading (BS) and initial-state-radiation (ISR) effects with the

following convolution:

σ(Ecoll) =

∫ ∞
−∞

dÊ dL(Ecoll, Ê , δ)
dÊ

∫ 1

0

dx f(x, Ê)σ(
√
xÊ),(5.69)



223

where the BS is characterized by a relativistic Voigtian function [130]

dL(Ecoll, Ê , δ)
dÊ

=
1√

2πδ2
exp

[
−(Ê − Ecoll)

2

2δ2

]
.(5.70)

Here, Ecoll is the collider energy and δ is the c.m. energy spread. In the meantime, we

use the Jadach-Ward-Was ISR function [120, 121] for its popularity in similar studies

[106, 81]:

f(x, Ê) = exp

[
βe
4

+
α

π

(
−1

2
+
π2

3

)]
exp(−γβe)
Γ(1 + βe)

×βe(1− x)βe−1

[
1 +

βe
2
− 1

2
(1− x)2

]
,(5.71)

with γ being the Euler-Mascheroni constant and

βe =
2α

π

[
ln

(
Ê2

m2
e

)
− 1

]
.(5.72)

We carry out numerical integrations using Vegas [133, 132]. For the BS convolution,

we perform the integration from Êmin to Êmax by transforming the integral to one over the

unit interval via the following change of variables:

Ê =
√

2δF̂ + Ecoll, F̂ = tan(ψ̂),(5.73)

ψ̂ = 2 arctan(Ĝ), Ĝ = (Ĝmax − Ĝmin)vÊ + Ĝmin,(5.74)

where vÊ ∈ [0, 1] and

Ĝmax/min = tan

(
ψ̂max/min

2

)
,(5.75)
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ψ̂max/min = arctan(F̂max/min),(5.76)

F̂max/min =
Êmax/min − Ecoll√

2δ
.(5.77)

These changes of variables introduce the Jacobian

JÊ =
[√

2δ
] [

sec(ψ̂)2
] [ 2

Ĝ2 + 1

] [
Ĝmax − Ĝmin

]
.(5.78)

Here, we assume Êmin = 110 GeV and Êmax = 140 GeV. Our analysis shows that these

limits are practically equivalent to integrating Ê over the entire real line, for the integrands

are highly peaked around the Higgs mass.

As for the ISR convolution, we perform the following change of variables to stabilize

the Monte Carlo integration routine:

x = 1− e−αxu, u = tan(y), y =
π

2
vx,(5.79)

where vx ∈ [0, 1]. This introduces the Jacobian

Jx =
[
αxe

−αxu
] [

sec(y)2
] [π

2

]
.(5.80)

Our analysis shows that αx = 4.5 yields the highest stability by essentially flattening the

ISR function to provide uniformity as a means of importance sampling.
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5.5. Sensitivity estimates

The experimental reconstruction of the asymmetry is given by

Aexp =
1

Pe−Pe+

NN

ND

(5.81)

when both incoming beams are polarized and

Aexp =
1

Pe−

NN

ND

(5.82)

when only the electron beam is polarized. Here, Pe∓ is the electron/positron beam polar-

ization reach at the collider, and NN = ηLN and ND = ηLD are the event counts, where

η is the acceptance/efficiency and L is the integrated luminosity. In the limit of small

asymmetry, the error in Aexp is given by

δAexp =
δPe−

Pe−
Aexp ⊕ δPe+

Pe+
Aexp ⊕ 1

Pe−Pe+

1√
ND

(5.83)

when both beams are polarized and

δAexp =
δPe−

Pe−
Aexp ⊕ 1

Pe−

1√
ND

(5.84)

when the positron beam is unpolarized. The significance is then defined as S = Aexp/δAexp.

We assume Pe− = 80% and Pe+ = 30% [19, 40], and 3% relative uncertainties in the

beam polarization reaches, as well as L = 10 ab−1 and η = 80% (100%) for the bb (WW )

process in accordance with [88]. We assume the input scheme {GF ,mW ,mZ}. We have

GF = 1.1663787× 10−5 GeV−2,(5.85)
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mh = 125 GeV, Γh = 4.1× 10−3 GeV,(5.86)

mW = 80.379 GeV, ΓW = 2.085 GeV,(5.87)

mZ = 91.1876 GeV, ΓZ = 2.4952 GeV,(5.88)

me = 0.511× 10−3 GeV, mb = 3.105 GeV,(5.89)

and the derived parameters are

α = GF

 π
√

2m2
W

(
1− m2

W

m2
Z

)
−1

, e =
√

4πα,(5.90)

cW =
mW

mZ

, sW =
√

1− c2
W ,(5.91)

gfL =
T f3 −Qfs

2
W

sW cW
, gfR = −QfsW

cW
.(5.92)

The coupling strengths are given as follows:

Cffh = − emf

2sWmW

,(5.93)

Cffγ = −eQf , CL
ffZ = egfL, CR

ffZ = egfR, Cff ′W =
e√
2sW

,(5.94)

ChWW =
emW

sW
, CγWW = −e, CZWW =

ecW
sW

.(5.95)

The Cabibbo-Kobayashi-Maskawa matrix is taken to be the identity. The width parameter

in the BS function is set to the Higgs decay width:

δ = Γh.(5.96)
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The collider energy is set to the Higgs mass:

Ecoll = mh.(5.97)

Now we assume only an invariant-mass cut xÊ2 > m2
inv,cut, which we refer to as the

level-0 cut, denoted by C0:

C0 : minv,cut = 120 GeV.(5.98)

In the absence of any other cuts, we obtain the significance values presented in Table 5.1.

For the WW process, we note that there are two different WW processes, depending on

the sign of the electric charge of the outgoing lepton. We have e−e+ → WW → `−ν`uidi

and e−e+ → WW → `+ν`uidi. We assume that the outgoing lepton could be any of

e∓, µ∓, and τ∓, and we restrict ourselves to the first two quark generations, namely

i = 1, 2. We form the observables separately for each of these processes by taking six

copies of each to account for three lepton and two quark generations whilst forming the

event counts NN and ND. Subsequently, we use (5.83) or (5.84) with the resultant value

of experimentally constructed asymmetry. Then, we compute the significances separately

for the two processes, combining them in quadrature at the end.

In Table 5.1, we also present the reference values of significance computed using the

unpolarized signal and background cross-section values as

Sref =
S√
B

=
ηLσ(e−e+ → h→ X)√
ηLσbkg(e−e+ → X)

,(5.99)

where X is bb for the bb process and WW → `νjj for the WW process.
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Table 5.1. The sensitivity estimates for the double-polarization and various

single-polarization asymmetries, along with the reference observable, are

obtained using the level-0 cut C0, an integrated luminosity of L = 10 ab−1,

and beam polarization values of Pe− = 80% and Pe+ = 30% at the collider.

Observable e−e+ → bb
e−e+ → WW → `νjj

`− `+ combined

DP 0.27 0.31 0.31 0.44

SP0 0.19 0.38 0.37 0.53

SP+ 0.11 1.7 1.6 2.4

SP− 0.37 0.054 0.046 0.070

Reference 0.11 0.37 0.37 0.53

From [88], one can also estimate the significance of said processes using the unpolarized

cross-section values in the absence of any cuts as follows. The cross-section values for the

irreducible background processes e−e+ → bb and e−e+ → WW → `νjj with including BS

and ISR effects are obtained to be 15 pb and 15 fb, respectively. We emphasize that the

reported values in said work are 19 pb and 23 fb, respectively, without the ISR effects.

In the meantime, the corresponding Higgs decay cross-section values are 164 ab and 26.5

ab, respectively. This leads to a significance of

S =
S√
B

=
(80%)(10 ab−1)(164 ab)√

(80%)(10 ab−1)(15 pb)
= 0.12(5.100)
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for the bb process and

S =
S√
B

=
(100%)(10 ab−1)(26.5 ab)√

(100%)(10 ab−1)(15 fb)
= 0.68(5.101)

for the WW process. Therefore, we remark that in the absence of any cuts, with the SP−

(SP+) asymmetry as our primary observable for the bb (WW ) process, we can obtain a

significance of 3.1 (3.5) times what can be inferred from [88].

Next, we consider cuts on the phase space on top of the invariant-mass cut, which we

refer to as the level-1 cuts. Following [88], we impose

C1 : C0 and 5◦ < θ < 175◦(5.102)

for the bb process and

C1 : C0 and Ej1,j2 < 52, 45 GeV, E` > 10 GeV,

Emiss > 20 GeV, m12 > 12 GeV(5.103)

for the WW process. With the level-1 cuts C1, our new sensitivity estimates are quoted

in Table 5.2. Note that at this point, we refrain from imposing any other cuts that might

upset the orthogonality of our weight functions with the interference channels not contain-

ing the Higgs field in the asymmetry numerator. We emphasize that the aforementioned

cuts do not affect the orthogonality of our precious weight functions as θ or Ej1,j2 , E`,

Emiss, and m12 are all independent of ϕ or ϕ12.

Next, we investigate additional cuts on the phase space for the observables of interest

without spoiling the orthogonality of our weight functions. We start with the polar angle
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Table 5.2. The sensitivity estimates for the double-polarization and various

single-polarization asymmetries, as well as for the reference observable, are

obtained using the level-1 cuts C1, an integrated luminosity of L = 10 ab−1,

and beam polarization reaches of Pe− = 80% and Pe+ = 30% at the collider.

Observable e−e+ → bb
e−e+ → WW → `νjj

`− `+ combined

DP 0.27 0.22 0.22 0.31

SP0 0.19 0.33 0.33 0.47

SP+ 0.11 1.4 1.4 2.0

SP− 0.38 0.086 0.083 0.12

Reference 0.11 0.32 0.32 0.45

θ in the bb process. The left panel of Figure 5.3 shows the dependence of the sensitivity of

the SP− asymmetry on the invariant-mass cut and the polar-angle cut. Here, θcut indicates

the percentage of the interval [0◦, 180◦] clipped symmetrically from both end points; to

illustrate, θcut = 20% means θ is integrated from 18◦ to 162◦. In the same figure, we also

indicate the point with the maximum sensitivity, 0.61, which occurs when θcut = 39% and

minv,cut = mh − Γh, which is the closest we approach the Higgs resonance. The left panel

of Figure 5.4 displays the dependence of the sensitivity of the SP− asymmetry on the

invariant-mass cut for θcut = 39% near the Higgs resonance. Once the invariant-mass cut

reaches the resonant energy, the sensitivity drops drastically because of the significantly

reduced number of event count.
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Figure 5.3. The dependence of the sensitivity estimate of the SP− (SP+)

asymmetry on the invariant-mass and polar-angle cuts for the bb (WW )

process is shown in the left (right) panel. The results are obtained using

the level-1 cuts C1, an integrated luminosity of L = 10 ab−1, and beam

polarization reaches of Pe− = 80% and Pe+ = 30% at the collider. The

green dot marks the highest sensitivity, achieved at minv,cut = mh − Γh.

In light of the bb process, one could argue if a cut on θ12 would be viable for the

WW process, as well, though the parallel may hardly seem perfect at a first glance

because of the t-channel neutrino diagram. On the right panel of Figure 5.3, we show the

dependence of the sensitivity of the SP+ asymmetry on the invariant-mass cut and the

polar-angle cut. Here, θ12,cut has the same meaning as θcut. In the same figure, we also

indicate the point with the maximum sensitivity, 3.1, which occurs when θ12,cut = 28%

and minv,cut = mh − Γh. In the right panel of Figure 5.4, we display the dependence of
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the significance of the SP+ asymmetry on the invariant-mass cut for θ12,cut = 28% near

the Higgs resonance. The observed behavior is identical to the case of the bb process.

Figure 5.4. The left (right) panel shows how the sensitivity of the SP−

(SP+) asymmetry varies with the invariant-mass cut when the polar-angle

cut is fixed at its optimal value, θcut = 39% (θ12,cut = 28%), for the bb

(WW ) process. The results are based on the level-1 cuts C1, an integrated

luminosity of L = 10 ab−1, and beam polarization levels of Pe− = 80% and

Pe+ = 30% at the collider.

In Figure 5.5, we display the contribution of each channel to the numerator and

denominator of all the asymmetries under consideration for the WW process, summed

over the three generations of `± and two generations of quark jets, to have a better

understanding of the wild differences in the sensitivity estimates amongst observables. The

black bars indicate the DP asymmetry, red SP0, blue SP+, and green SP−, respectively,

with the level-0 cuts C0, whereas the lighter shades in the foreground are the corresponding

values after the phase-space, or level-1, cuts C1. The channels not shown contribute by an
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amount 0.005 or less in shown units. Note that the numbers for the reference observable

are just the D values of the DP asymmetry.

Figure 5.5. The left (right) panel shows the contributions of interference

channels to the numerator (denominator) of the SP+ asymmetry in the

WW process. Results are shown for the level-0 and level-1 cuts, C0 and C1,

represented by dark and light shading, respectively. Channels contributing

less than 0.005 in the displayed units are omitted.

From Figure 5.5, we observe that due to the absence of aggressive competition be-

tween the channels with and without the neutrino exchange, the SP+ asymmetry yields

a remarkably high significance value. In this figure, we also see that the negligible con-

tribution of the neutrino channels in the numerator renders the polar-angle cut viable for

the WW process.

In Table 5.3, we present our sensitivity estimates for the bb and WW processes with

the level-1 cuts C1 plus the best polar-angle cuts at minv,cut = mh − (10 MeV), which we

refer to as the level-2 cuts, denoted by C2:

C2 : C1 and minv,cut = mh − (10 MeV) and best polar-angle cut.(5.104)



234

Table 5.3. Sensitivity estimates for the double-polarization and various

single-polarization asymmetries, along with the reference observable, are

shown with the corresponding optimal polar-angle cuts. The results are

based on the level-2 cuts C2, an integrated luminosity of L = 10 ab−1, and

beam polarization values of Pe− = 80% and Pe+ = 30% at the collider.

Observable e−e+ → bb θcut [%]
e−e+ → WW → `νjj

`− `+ combined θ12,cut [%]

DP 0.41 39 0.31 0.31 0.44 22

SP0 0.30 33 0.58 0.55 0.80 44

SP+ 0.17 44 2.1 2.0 2.9 28

SP− 0.58 39 0.24 0.22 0.33 67

Reference 0.16 6 0.45 0.45 0.64 6

Our results are summarized on the top and bottom panels of Figure 5.6 for the bb and

WW process, respectively. The black bars indicate the DP asymmetry, red SP0, blue SP+,

green SP−, and brown the reference observable. The darkest shades in the background

are the values obtained with phase-space cuts and the best polar-angle cuts, the lighter

shades in the foreground no cuts, and the lightest shades in between the phase-space cuts

only. The solid yellow lines represent the significance values quoted in [88] for the relevant

processes with the BS and ISR effects on top of multivariate analysis.

In Figure 5.7, we picture the dependence of the sensitivity estimates of the asymmetry

observables SP− and SP+ for the bb and WW processes on the left and right panels,
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Figure 5.6. Sensitivity estimates for the double-polarization and various

single-polarization asymmetries, as well as the reference observable, are

shown using the specified invariant-mass cuts at all three cut levels. The

results assume an integrated luminosity of L = 10 ab−1 and beam polar-

ization reaches of Pe− = 80% and Pe+ = 30% at the collider. The phase-

space cuts are 5◦ < θ < 175◦ for the bb channel, and Ej1,j2 < 52, 45 GeV,

E` > 10 GeV, Emiss > 20 GeV, and m12 > 12 GeV for the WW channels.

The corresponding optimal polar-angle cuts are listed in Table 5.3.
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respectively, on the c.m. energy spread, δ, and the integrated luminosity, L, with the

level-2 cuts C2.

Figure 5.7. The left (right) panel shows how the sensitivity of the SP−

(SP+) asymmetry depends on the center-of-mass energy spread and the

integrated luminosity for the bb (WW ) process. Results are obtained using

the level-2 cuts C2 and beam polarization values of Pe− = 80% and Pe+ =

30%. The green dot marks the baseline choice of δ = Γh and L = 10 ab−1.

5.6. Coda

In this chapter, we explored how transverse-spin asymmetries measured at a future

FCC-ee can significantly improve sensitivity to the electron Yukawa coupling compared to

traditional, inclusive methods. The electron Yukawa coupling, being the smallest in the

SM, comes with unique challenges due to its extremely small predicted value. Directly

probing such a tiny quantity demands creative, high-precision experimental strategies.
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The approach investigated here uses the quantum interference between the Higgs-mediated

amplitude and continuum background processes, allowing sensitivity to scale linearly with

the electron Yukawa coupling, rather than quadratically, thus greatly improving measure-

ment potential.

We have shown that transverse-spin asymmetries use this quantum interference to

isolate the Higgs-related effects from the substantial backgrounds present in the bb and

semi-leptonic WW final states. For the WW channel, we found that sensitivity can

be improved by nearly a factor of six compared to a conventional inclusive cross-section

measurement. Even in the more experimentally challenging bb final state, the gain reaches

a factor of five, demonstrating the generality and robustness of our method.

A particularly important result of our analysis is the significant boost in sensitivity

achieved using single transverse-spin asymmetries, where only the electron beam is trans-

versely polarized. By carefully exploring optimal phase-space cuts and angular weighting,

we showed that SP asymmetries consistently deliver the highest sensitivity improvements.

Although double-polarized asymmetries can further enhance sensitivity, it is the SP asym-

metry that primarily drives our most substantial gains. Thus, our results strongly suggest

experimental efforts at FCC-ee should prioritize single transverse-spin polarization, along-

side the precision in angular measurements and phase-space cuts thoroughly explored.

However, achieving such precision at an FCC-ee would involve demanding experimen-

tal requirements. High beam polarization, ultra-precise beam energy calibration, and

strict control of energy spread and initial-state radiation effects are essential. We care-

fully included these factors in our sensitivity estimates, demonstrating that even moderate

reductions in luminosity or slight increases in beam energy spread still allow substantial
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sensitivity gains compared to conventional approaches. This robustness highlights the

practical feasibility of our method.

Long story short, transverse-spin asymmetries not only enhance sensitivity to the

electron Yukawa coupling but also introduce a new dimension to precision Higgs physics,

enabling detailed studies otherwise unreachable. Beyond the numerical improvement, our

results clearly show the powerful synergy between collider polarization capabilities and

subtle quantum interference effects. If experimentally realized, this measurement strategy

could directly confirm the SM prediction for the electron Yukawa coupling, providing

crucial insights into one of the theory’s most elusive parameters.

The techniques developed here are widely applicable, extending beyond the specific

channels studied. Future experimental analyses at FCC-ee could adapt this method to

other diboson final states, such as fully leptonic or fully hadronic decays, thereby further

consolidating the electron Yukawa coupling measurement. Ultimately, this approach po-

sitions transverse-spin asymmetries as essential tools in future collider physics, setting the

stage for unprecedented precision in understanding the Higgs boson and its interactions.
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CHAPTER 6

CP -odd to Joy

There is this concept called “moment”. You don’t run into it on the bus or at the

movies. No one fights anyone over moment. We had this guy in class, who insisted he

didn’t believe in moment. I hate moment. It ruins my day.

Oğuz Atay, The Disconnected

We study the sensitivity of the high-luminosity Large Hadron Collider (HL-LHC)

to previously unexplored CP -odd dimension-8 operators in the Standard Model Effective

Field Theory. Focusing on neutral-current Drell–Yan production in association with a real

jet, we consider semi-leptonic four-fermion operators involving gluon field strength tensors.

These operators do not interfere with the Standard Model in inclusive observables at

leading order, but contribute to specific angular structures. We exploit the Collins–Soper

moments A6 and A7, which are CP -odd and sensitive to such effects, and perform binned

analyses in dilepton invariant mass and transverse momentum. Using projected HL-LHC

luminosity, we extract constraints on the relevant Wilson coefficients through single and

multi-parameter fits. We find that effective scales up to 9 TeV can be probed in single-

parameter fits, while simultaneous fits to all relevant operators yield weaker but nontrivial

bounds at the TeV scale.
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6.1. Prelude

A key goal of precision collider phenomenology is to constrain possible effects of new

physics through subtle deviations from the Standard Model (SM) predictions. The Stan-

dard Model Effective Field Theory (SMEFT) provides a systematic framework for this

purpose, parametrizing potential new physics through higher-dimensional operators sup-

pressed by the scale of new physics. While much of the existing SMEFT literature has

focused on dimension-6 operators, several classes of dimension-8 operators remain unex-

plored and may carry unique information about possible ultraviolet (UV) completions of

the SM.

One such class involves semi-leptonic four-fermion operators with gluonic field-strength

insertions. These operators first appear at dimension-8 and do not interfere with the

SM amplitudes in inclusive observables but can contribute significantly to differential

distributions. Previous studies have shown that neutral-current Drell-Yan (DY) produc-

tion, particularly in the high transverse momentum regime, is sensitive to these gluonic

dimension-8 effects. Specifically, [45] demonstrated that the doubly-differential DY dis-

tribution in dilepton invariant mass and transverse momentum can probe CP -even semi-

leptonic dimension-8 operators involving a gluon field strength tensor. Their analysis

revealed that the transverse momentum distribution carries a distinct sensitivity to these

operators, offering a valuable diagnostic tool to distinguish between different UV scenar-

ios.

However, said study was limited to CP -even operators. The CP -odd counterparts

remain uncharted. These CP -odd dimension-8 operators arise naturally in many UV

scenarios, including those with nontrivial CP -violating dynamics, and can potentially
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leave measurable imprints in DY production in association with a real jet (DYj). Their

contributions manifest in specific angular and momentum distributions, providing com-

plementary handles to their CP -even partners.

The motivation for the present work is to extend the existing analysis to include CP -

odd dimension-8 semi-leptonic operators in the DYj process. This channel is particularly

suited for such studies, as the real jet emission allows direct access to the gluon field

strength tensor in the hard scattering process. Furthermore, the analytical control over

the tree level 2 → 3 matrix elements enables us to systematically include the effects of

these operators and assess their impact on kinematic distributions relevant for current

and future measurements at the Large Hadron Collider (LHC).

By constructing the complete leading-order amplitudes for both SM and SMEFT

contributions, and performing a detailed numerical analysis, this work aims to quan-

tify the sensitivity of the high-luminosity Large Hadron Collider (HL-LHC) to CP -odd

dimension-8 effects in the DYj production. This effort not only fills a gap in the SMEFT

phenomenology landscape but also enhances our ability to diagnose the nature of possible

new physics in the event of future deviations from SM predictions.

This chapter is organized as follows. In Section 6.2, we pave the path to the cross

section, detailing the process, theoretical calculations, and kinematics. We review the

Collins-Soper (CS) frame in Section 6.3. In Section 6.4, we revisit the SMEFT formalism

with the operators relevant to our study. The CS moments for the DY production cross

section are defined in Section 6.5. Section 6.6 details our numerical calculations, setting

up the scene for the HL-LHC simulations in Section 6.7. We present the fit results of the

SMEFT parameters in Section 6.8. In Section 6.9, we conclude.
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6.2. Structure of the cross section

We are interested in the hadronic process pp→ jV → je−e+ at the LHC at TeV ener-

gies with both incoming beams unpolarized. In what follows, we use e and ` interchangably

to denote the outgoing lepton. The underlying partonic processes, pr + pr′ → j + e−+ e+

for partons pr and pr′ , consist of pair annihilation,

qi(pa) + qi(pb)→ g(p1) + e−(p2) + e+(p3),(6.1)

and Compton scattering,

qi(pa) + g(pb)→ qi(p1) + e−(p2) + e+(p3),(6.2)

qi(pa) + g(pb)→ qi(p1) + e−(p2) + e+(p3).(6.3)

The tree-level Feynman diagrams are illustrated in Fig. 6.1. Here, V is a neutral elec-

troweak (EW) gauge boson.

We obtain the SM amplitudes using FeynArts [111] and FeynCalc [146, 145, 144,

138] first and add the SMEFT amplitudes later by hand. We denote the propagator

denominators by

Dγ =
1

m``
2
, DZ =

1

m``
2 −mZ

2
, Ds =

1

ŝ
=

1

mjV
2
, Dt =

1

t̂
, Du =

1

û
,(6.4)

where ŝ = (pa + pb)
2 = (p1 + p23)2 = mjV

2, t̂ = (pa − p1)2, and û = (pa − p23)2 such

that ŝ + t̂ + û = mjV
2 + t̂ + û = m``

2. Here, mjV is the invariant mass of the jV

system and m`` is that of the `−`+ system, and we eliminate one Mandelstam variable
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Figure 6.1. The tree-level Feynman diagrams describing the underlying par-

tonic processes.

via û = m``
2 −mjV

2 − t̂. We have the following elementary dots:

pi
2 = 0, i = a, b, 1, 2, 3; p23

2 = m``
2,(6.5)

pa · pb =
ŝ

2
=
mjV

2

2
, pa · p1 = − t̂

2
, pa · p23 = − û−m``

2

2
,(6.6)

pb · p1 = − û
2
, pb · p23 = − t̂−m``

2

2
,(6.7)

p1 · p23 =
ŝ−m``

2

2
=
mjV

2 −m``
2

2
,(6.8)

p2 · p3 =
m``

2

2
.(6.9)
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Since the center-of-mass (c.m.) energy is at a TeV level, we assume massless fermions.

The gluon polarization sum is

∑
s

ε∗µs (k)ενs(k) = −gµν .(6.10)

The color simplification is

T abcT
a
cb = tr(T aT a) = CACF = N × N2 − 1

2N
= 4.(6.11)

In the squared amplitude calculation, we have some extra factors, depending on whether

the incoming state is a quark or a gluon. The extra factor 1/(2N) is for an incoming

quark, where 1/2 is for spin-averaging and 1/N is for color-averaging, and the extra

factor 1/(2(N2 − 1)) is for the color-averaging of an incoming gluon, where 1/2 is for

polarization-averaging and 1/(N2 − 1) is for color-averaging.

The hadronic cross section is given by

σ =

Nf∑
i=−Nf

Nf∑
j=−Nf

∫
dxa dxb fi(xa)fj(xb)σ

ij,(6.12)

where the quark flavor numbers are (d, u, s, c, b) = (1, 2, 3, 4, 5), the antiquarks get a minus

sign, the gluon flavor is simply 0, and

σij = F

∫
dLIPS |Aij|2(6.13)

describes the partonic cross section. Here,

F =
1

4
√

(pa · pb)2 − (mamb)2
=

1

2ŝ
=

1

2mjV
2

(6.14)
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is the flux factor, |Aij|2 is the unpolarized squared amplitude for partonic process pi + pj,

and dLIPS is the 3-particle Lorentz-invariant phase space (LIPS):

∫
dLIPS3 =

[
1

(2π)3n−4

]
n=3

∫
dm23

2

×
[
∇(E2,m23

2,m1
2)

8E2

∫
dΩ•

] [
∇(m23

2,m2
2,m3

2)

8m23
2

∫
dΩ◦

]
,(6.15)

where ∇(x, y, z) =
√
x2 + y2 + z2 − 2(xy + yz + zx) is the square root of the Källén

function, E =
√
ŝ is the available energy, the angles Ω• = (θ•, ϕ•) are the spherical

angles of the particle “23” in the rest frame of the total incoming momentum P and

the angles Ω◦ = (θ◦, ϕ◦) are those of the particle 2 in the rest frame of the particle

“23”, partitioning the partonic process as pr(pa) + pr′(pb) → j(p1) + V (p23) followed by

V (p23)→ e−(p2) + e+(p3). The frames are discussed in greater detail in the next section.

Here, the integration limits of m23 are given by the requirements λ(E2,m23
2,m1

2) > 0 and

λ(m23
2,m2

2,m3
2) > 0. Applying to our case, i.e. with E =

√
ŝ = mjV , m1 = m2 = m3 = 0

and m23 = m``, we obtain

∫
dLIPS3 =

1

2048π5

∫ mjV
2

0

dm``
2

∫
dΩ•

∫
dΩ◦

(
1− m``

2

mjV
2

)
.(6.16)

We note that our expression agrees with the general formula [128]:

LIPSn =
1

2(4π)2n−3

E2n−4

Γ(n)Γ(n− 1)
.(6.17)
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For the partonic subprocess pr(pa) + pr′(pb)→ j(p1) + V (p23) in the partonic c.m. frame,

the momentum components, p• = (E•,p•), are explicitly given by

E•a/b =
E2 +ma/b

2 −mb/a
2

2E
, |p•a/b| =

∇(E2,ma
2,mb

2)

2E
, p̂•a/b = ±(0, 0, 1),(6.18)

E•23/1 =
E2 +m23/1

2 −m1/23
2

2E
,(6.19)

|p•23/1| =
∇(E2,m23

2,m1
2)

2E
, p̂•23/1 = ±(sθ•cϕ• , sθ•sϕ• , cθ•),(6.20)

and for the subsequent leptonic decay V (p23) → `−(p2) + `+(p3) in the rest frame of the

EW gauge boson, the momentum components, p◦ = (E◦,p◦), are explicitly given by

E◦23 = m23, p◦23 = 0,(6.21)

E◦2/3 =
m23

2 +m2/3
2 −m3/2

2

2m23

,(6.22)

|p◦2/3| =
∇(m23

2,m2
2,m3

2)

2m23

, p̂◦2/3 = ±(sθ◦cϕ◦ , sθ◦sϕ◦ , cθ◦).(6.23)

with E =
√
ŝ = mjV , ma = mb = m1 = m2 = m3 = 0, and m23 = m``. The two

frames are connected by a Lorentz transformation, Λ◦•, deriving from p◦23 = Λ◦•p•23, with

Λ◦• = BRyRz, where Rz is an azimuthal rotation by ϕ•, Ry is a polar rotation by θ•,

and B is a boost along the z axis. By expressing all the momenta in either one of the

frames, we also confirm the symmetry requirements of the LIPS. With sij = (pi + pj)
2

for i, j = 1, 2, 3, we must have sij integrated over the LIPS giving the same result for all

i 6= j; simile, we must have pa · pi and pb · pi for i = 1, 2, 3 integrated over the LIPS giving
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the same result. We find

∫
dLIPS3 [s12, s13, s23] =

mjV
4

768π3
,(6.24)

and

∫
dLIPS3 [pa · p1, pa · p2, pa · p3, pb · p1, pb · p2, pb · p3] =

mjV
4

1536π3
.(6.25)

6.3. Collins-Soper or: how I learned to stop worrying and love the Frame

With all the momenta expressed in either of the frames presented at the end of the

previous section, it is just a cute exercise of bringing all the momenta into a single frame

and computing the hadronic cross section; however, we are not going to work with all

the angular variables presented in the previous section. To be more precise, the spherical

angles Ω◦ are essentially replaced by the CS angles [73, 14], Ω?, but for the leading

subprocess, we want to work with the invariant mass of the jV pair, mjV , and the rapidity,

y, and transverse momentum, p>, of the V = `−`+ system as measured in the lab frame,

i.e. the hadronic c.m. frame.

In the lab frame, we have

P �a/b =

√
s

2
(1, 0, 0,±1), p�a/b = xa/bP

�
a/b, p�23 = (EV , p>, 0, pz).(6.26)

In accordance with [14], we assume that V is emitted with a positive x component of the

momentum and it is equal to p>. We also assume that the jV pair is emitted in the xz

plane of lab frame, which is still true in the partonic c.m. frame because the two frames

are related by a Lorentz boost along the beam axis.
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In the CS frame, we have

p?2/3 =
m``

2
(1,±sθ?cϕ? ,±sθ?sϕ? ,±cθ?),(6.27)

p?23 = m``(1,0).(6.28)

The transformation from the lab frame to the CS frame is given by a longitudinal boost

along the beam axis to make pz = 0, followed by a transverse one to make p> = 0 [14]:

Λ?� = Λ⊥Λ‖,(6.29)

where

Λ‖ =



γ‖ 0 0 −γ‖β‖

0 1 0 0

0 0 1 0

−γ‖β‖ 0 0 γ‖


, Λ⊥ =



γ⊥ −γ⊥β⊥ 0 0

−γ⊥β⊥ γ⊥ 0 0

0 0 1 0

0 0 0 1


,(6.30)

with

β‖ =
pz
EV

, γ‖ =
1√

1− β2
‖

, β⊥ =
p>√

m``
2 + p>2

, γ⊥ =
1√

1− β2
⊥
.(6.31)

Using this, we can write, e.g., P ?
a/b = Λ?�P �a/b. Note that if we compute p�2/3 = Λ�?p?2/3 =

Λ?�−1p?2/3, we confirm the well-known relation between the CS polar angle, lepton/antilep-

ton energies and longitudinal momentum components measured in the lab frame, and the
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invariant mass and transverse momentum of the V = `−`+ system, which reads

cθ? =
2[(p�2)3(p�3)0 − (p�2)0(p�3)3]

m``

√
m``

2 + p>2
.(6.32)

The rapidity of the V = `−`+ system is defined as

y =
1

2
ln

(
EV + pz
EV − pz

)
.(6.33)

For the jV pair, we have the usual expression,

yjV =
1

2
ln

(
(p�1 + p�23)0 + (p�1 + p�23)3

(p�1 + p�23)0 − (p�1 + p�23)3

)
=

1

2
ln

(
(p�a + p�b)

0 + (p�a + p�b)
3

(p�a + p�b)
0 − (p�a + p�b)

3

)
=

1

2
ln

(
xa
xb

)
,(6.34)

or

xa
xb

= e2yjV .(6.35)

With p�a/b = xa/bP
�
a/b, we also have

xaxbs = mjV
2.(6.36)

Combining the two, we obtain

xa/b =
mjV√
s
e±yjV ,(6.37)
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which is not Lorentz-invariant but as long as we define xa/b, Pa/b, mjV , and yjV consis-

tently, we can write pa/b = xa/bPa/b in any frame.

So far, the differential variables of the hadronic cross section are xa, xb, m``, θ
•, ϕ•,

θ?, and ϕ?. Here, ϕ• is immaterial and dropped (but still contributes a factor of 2π in

the phase space integration), and θ? and ϕ? are the CS angles. Now, we want to perform

a change of variables from (xa, xb, θ
•) to (mjV , y, p>).

Note the following. In the parton c.m. frame, we have

p•a/b =
mjV

2
(1, 0, 0,±1),(6.38)

p•23/1 = (E•23,±|p•23|sθ• , 0,±|p•23|cθ•).(6.39)

Here, the components of the 4-momenta of the outgoing particles are found from earlier

to be

E•23/1 =
mjV

2 ±m``
2

2mjV

,(6.40)

|p•23| =
mjV

2 −m``
2

2mjV

.(6.41)

The transformation between the lab frame and the partonic c.m. frame is given by

Λ�• =



γab 0 0 −γabβab

0 1 0 0

0 0 1 0

−γabβab 0 0 γab


,(6.42)
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with

βab = −xa − xb
xa + xb

, γab =
1√

1− βab2
.(6.43)

Since the lab frame and the partonic c.m. frame are related by a z-boost, we must have

|p•23|sθ• = p>.(6.44)

This tells us that

0 < p> < |p•23|,(6.45)

or

0 < p> <
mjV

2 −m``
2

2mjV

.(6.46)

We also obtain

cθ• = ±

√
1− 4mjV

2p>2

(mjV
2 −m``

2)2
,(6.47)

where the + sign is for 0 < θ• < π
2

and the − sign is when π
2
< θ• < π. Now consider the

V momentum in the partonic c.m. frame and boost it into the lab frame via p�23 = Λ�•p•23

and compute y with the components obtained after the boost. We obtain

y =
1

2
ln

(
F+

F−
xa
xb

)
,(6.48)
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where

F± = mjV
2 +m``

2 ± cθ•(mjV
2 −m``

2).(6.49)

Together with xaxbs = mjV
2, we arrive at

xa/b =

√
F∓

F±
e±y

mjV√
s
.(6.50)

Noting that 0 < xa/b < 1, we obtain

−1

2
ln

(
F−

F+

s

mjV
2

)
< y <

1

2
ln

(
F+

F−
s

mjV
2

)
.(6.51)

We can compute the Jacobian of the transformation easily to find

J =

∣∣∣∣det

(
∂(xa, xb, cθ•)

∂(mjV , y, p>)

)∣∣∣∣ =
8mjV

3p>

s(mjV
2 −m``

2)
√

(mjV
2 −m``

2)2 − 4mjV
2p>2

,(6.52)

which is independent of the range of θ•. At the end of the day, the hadronic cross section

is given by

σ(s) =

Nf∑
q=1

[2π]

∫ √s
0

dmjV

∫ mjV

0

dm``

∫ mjV
2−m``

2

2mjV

0

dp>

∫ 1
2

ln

(
F+

F−
s

mjV
2

)
− 1

2
ln

(
F−
F+

s
mjV

2

) dy

∫
dΩ?

×
[

1

2048π5
(2m``)

(
1− m``

2

mjV
2

)][
1

2mjV
2

]
J

×
{
fqq(xa, xb)|Aqq|2 + fqg(xa, xb)|Aqg|2 + fqg(xa, xb)|Aqg|2

}
,(6.53)

where [2π] is the ϕ• integral,
[

1
2048π5 (2m``)

(
1− m``

2

mjV
2

)]
comes from the LIPS derived in

the partonic c.m. frame, and
[

1
2mjV

2

]
is the flux factor. As the story unfolds, the order
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of integration matters in terms of the efficiency of the numerical integrations. Experi-

mentally, we are interested in m`` and p>, so that’s how we pick our bins. We are given

m`` ∈ [m``min,m``max] and p> ∈ [p>min, p>max] and we integrate m`` and p> over these

intervals, whilst we stay true to the integration limits of the other variables. One way

to achieve this is to impose cuts or tacking in a factor of step function; however, the

efficiency shows up when we have other cuts, as well. In a Monte-Carlo (MC) simulation,

when we require say 1M sampling points, the integrator would omit a large portion of it

and we would have to require more and more points to achieve a lower variance, which

would increase the run time by insane amounts. Thus, we want to write down the m``

and p> integrals as the two outermost integrals to pump up the efficiency. We then haven

∫ √s
0

dmjV

∫ mjV

0

dm``

∫ mjV
2−m``

2

2mjV

0

dp> →

∫ √s
0

dm``

∫ s−m``
2

2
√
s

0

dp>

∫ √s
p>+
√
p>2+m``

2

dmjV .(6.54)

We can impose custom limits for m`` and p> integrals, which makes sure that the MC

integration uses a lot bigger portion of the desired sampling points.

As a sanity check, we note that the amplitudeless cross-section integrals agree; that is

to say, we have

∫
dxa dxb dLIPS3 F =∫ 1

0

dxa

∫ 1

0

dxb

∫ √xaxbs
0

dm``

∫ 1

−1

dcθ•

∫ π

0

dθ?
∫ 2π

0

dϕ?

× (2π)

(
1

2048π5

)
(2m``)

(
1− m``

2

xaxbs

)
sin(θ?)

(
1

2xaxbs

)
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=

∫ √s
0

dm``

∫ s−m``
2

2
√

s

0

dp>

∫ √s
p>+
√
p>2+m``

2

dmjV

×
∫ 1

2
log

(
F+

F−
s

mjV
2

)
− 1

2
log

(
F−
F+

s
mjV

2

) dy

∫ π

0

dθ?
∫ 2π

0

dϕ?

× (2π)

(
1

2048π5

)
(2m``)

(
1− m``

2

mjV
2

)
sin(θ?)J

(
1

2mjV
2

)
=

1

512π3
.(6.55)

Essentially, these are the cross-section integrals without the amplitudes or the parton

distribution functions (PDFs). Note that in the original expression, we have cθ• running

from −1 to 1 and we split this integral into two, by emphasizing the sign of the variable,

when we switch to the new variables. This means, we need to carry out the integrals with

the new variables twice, one with sgn = 1 and one with sgn = −1, where sgn is the sign

in front in (6.47).

Furthermore, the symmetry requirements are confirmed; that is, we have

∫
dxa dxb dLIPS3 F [s12, s13, s23] =

∫ √s
0

dmjV

∫ mjV

0

dm``

∫ mjV
2−m``

2

2mjV

0

dp>

∫ 1
2

log

(
F+

F−
s

mjV
2

)
− 1

2
log

(
F−
F+

s
mjV

2

) dy

∫ π

0

dθ?
∫ 2π

0

dϕ?

× (2π)

(
1

2048π5

)
(2m``)

(
1− m``

2

mjV
2

)
sin(θ?)J

(
1

2mjV
2

)
[s12, s13, s23]

=
s

6144π3
,(6.56)

and

∫
dxa dxb dLIPS3 F [pa · p1, pa · p2, pa · p3, pb · p1, pb · p2, pb · p3]
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=

∫ √s
0

dmjV

∫ mjV

0

dm``

∫ mjV
2−m``

2

2mjV

0

dp>

∫ 1
2

log

(
F+

F−
s

mjV
2

)
− 1

2
log

(
F−
F+

s
mjV

2

) dy

∫ π

0

dθ?
∫ 2π

0

dϕ?

× (2π)

(
1

2048π5

)
(2m``)

(
1− m``

2

mjV
2

)
sin(θ?)J

(
1

2mjV
2

)
× [pa · p1, pa · p2, pa · p3, pb · p1, pb · p2, pb · p3]

=
s

12288π3
.(6.57)

As for the momenta, we just write them in some c.m. frame, whichever is the easiest,

relate the frames by boosts, and express the components in terms of xa, xb, m``, θ
•, θ?,

and ϕ?. We take care of the change of variables only during the numerical integration—we

just want to see the CS angular structures of the cross section, and θ? and ϕ? do not mix

with other variables, so all the change of variables happen inside the structure coefficients,

or the moments. Ergo, for analytical purposes, all we want is to express the unpolarized

squared amplitude in terms of CS angles. Below, we summarize all the momenta:

p•a =
mjV

2
(1, 0, 0, 1),(6.58)

p•b =
mjV

2
(1, 0, 0,−1),(6.59)

p•23 =

(
mjV

2 +m``
2

2mjV

,
mjV

2 −m``
2

2mjV

(sθ• , 0, cθ•)

)
,(6.60)

p•1 =

(
mjV

2 −m``
2

2mjV

,−mjV
2 −m``

2

2mjV

(sθ• , 0, cθ•)

)
,(6.61)

with

p?a = Λ?�Λ�•p•a,(6.62)
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p?b = Λ?�Λ�•p•b ,(6.63)

p?23 = m``(1,0),(6.64)

p?1 = Λ?�Λ�•p•1,(6.65)

p?2 =
m``

2
(1, (sθ?cϕ? , sθ?sϕ? , cθ?)),(6.66)

p?3 =
m``

2
(1,−(sθ?cϕ? , sθ?sϕ? , cθ?)).(6.67)

The Lorentz transformation matrices are as given earlier. As for the components of the

EW vector boson in the lab frame, we calculate p�23 = Λ�•p•23 to obtain

EV =
(mjV

2 +m``
2)(xa + xb) + (mjV

2 −m``
2)(xa − xb)cθ•

4mjV
√
xaxb

,(6.68)

p> =
(mjV

2 −m``
2)sθ•

2mjV

,(6.69)

pz =
(mjV

2 +m``
2)(xa − xb) + (mjV

2 −m``
2)(xa + xb)cθ•

4mjV
√
xaxb

.(6.70)

6.4. SMEFT formalism

The SMEFT is a model-independent extension of the SM Lagrangian. In this frame-

work, we build operators O
(n)
k of mass dimension n > 4 and introduce Wilson coefficients

C
(n)
k as the effective strength of the interaction at a UV scale beyond accessible collider

reach:

LSMEFT = LSM +
∑
n>4

1

Λn−4

∑
k

C
(n)
k O

(n)
k .(6.71)
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In this study, we focus on the case n = 8 and restrict ourselves to the leading-order

SMEFT effects, namely we consider only the SM-SMEFT interference at the amplitude

level and linearize our observables with respect to the SMEFT parameters.

The dimension-8 SMEFT operators of interest are presented in Table 6.1 [140, 134].

We inlucde the corresponding sibling operators that involve the dual field strength only

for completeness. In Table 6.1, ` and q are left-handed SU(2) doublets and e, u, and d

Table 6.1. Dimension-8 four-fermion operators with a gluon field that con-

tribute to the Drell-Yan transverse momentum spectrum classified accord-

ing to their CP signature.

CP -even CP -odd

Õ
(1)

`2q2g (`γµ`)(qγνT aq)G̃a
µν O

(1)

`2q2g (`γµ`)(qγνT aq)Ga
µν

Õ
(3)

`2q2g (`τ iγµ`)(qτ iγνT aq)G̃a
µν O

(3)

`2q2g (`τ iγµ`)(qτ iγνT aq)Ga
µν

Õe2u2g (eγµe)(uγνT au)G̃a
µν Oe2u2g (eγµe)(uγνT au)Ga

µν

Õe2d2g (eγµe)(dγνT ad)G̃a
µν Oe2d2g (eγµe)(dγνT ad)Ga

µν

Õ`2u2g (`γµ`)(uγνT au)G̃a
µν O`2u2g (`γµ`)(uγνT au)Ga

µν

Õ`2d2g (`γµ`)(dγνT ad)G̃a
µν O`2d2g (`γµ`)(dγνT ad)Ga

µν

Õq2e2g (eγµe)(qγνT aq)G̃a
µν Oq2e2g (eγµe)(qγνT aq)Ga

µν

are right-handed singlets; in what follows, we switch back to the usual notation that says

` (q) is a Dirac lepton (quark) that appears in the partonic processes. Note that we are

not introducing any operator that affects the ffV vertices, thus we just borrow the usual

SM vertices for the SM amplitude and focus on the aforementioned SMEFT operators

for the SMEFT amplitude. To derive the Feynman rules, we assume the convention
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∂µ → −ipµ, outgoing momenta, and multiplication by +i, which are all consistent with

the sign convention of FeynArts. Note that the SMEFT operators have the gluon field

strength tensor, which can be taken of the form

Ga
µν = ∂µg

a
ν − ∂νgaµ(6.72)

for all practical purposes, for the nonabelian term gives us two gluons, which is not of

interest. We have

Ga
µν = −ipgµgaν + ipgνg

a
µ = −i(pgµgνρ − pgνgµρ)gaρ(6.73)

in the momentum space, where pg is the gluon momentum. Noting that G̃a
µν = 1

2
εµναβG

aαβ,

we obtain the vertex factors as follows:

V ρabc

`2 u2

d2
g

=


(C

(1)

`2q2g ∓ C
(3)

`2q2g)[γ
µPL]`[γ

νPL]q + C
e2 u2

d2
g
[γµPR]`[γ

νPR]q

+C
`2 u2

d2
g
[γµPL]`[γ

νPR]q + Cq2e2g[γ
µPR]`[γ

νPL]q


× T abc(pgµgνρ − pgνgµρ)

+


(C̃

(1)

`2q2g ∓ C̃
(3)

`2q2g)[γ
µPL]`[γ

νPL]q + C̃
e2 u2

d2
g
[γµPR]`[γ

νPR]q

+C̃
`2 u2

d2
g
[γµPL]`[γ

νPR]q + C̃q2e2g[γ
µPR]`[γ

νPL]q


× T abc(pgαgβρ − pgβgαρ)

1

2
εµναβ,(6.74)

where we have now considered the cases q = u or d separately because there is a sign

difference in the first term of each type of interaction.
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6.5. Collins-Soper moments

The differential cross section can be parametrized in terms of the CS moments as [15]

dσ

dΩ? =
3σ

16π

[
1 + cθ?

2 +
7∑

m=0

AmYm(Ω?)

]
,(6.75)

where Ω? = (θ?, ϕ?) are the CS angles, the Ym are just orthogonal combos of the spherical

harmonics Y 0
1 , Y 1

1 ± Y −1
1 , Y 0

2 , Y 1
2 ± Y −1

2 , and Y 2
2 ± Y −2

2 , namely

Y0 =
1

2
(1− 3cθ?

2), Y1 = s2θ?cϕ? , Y2 =
1

2
sθ?

2c2ϕ? , Y3 = sθ?cϕ? , Y4 = cθ? ,(6.76)

Y5 = sθ?
2s2ϕ? , Y6 = s2θ?sϕ? , Y7 = sθ?sϕ? ,(6.77)

and the Am are the CS moments. Using the orthogonality of the spherical harmonics, we

obtain

A0 =
20

3
〈Y0〉+

2

3
, A1 = 5〈Y1〉, A2 = 20〈Y2〉, A3 = 4〈Y3〉, A4 = 4〈Y4〉,(6.78)

A5 = 5〈Y5〉, A6 = 5〈Y6〉, A7 = 4〈Y7〉,(6.79)

where we have defined

〈Ym〉 =

∫
Ym dσ

σ
.(6.80)

We note the following.

• We do not obtain novel angular structures. We get them only for the derivative

operators involving the lepton current, so the said derivatives can turn into lepton

momenta, giving us additional factors of sines and cosines of the CS angles. In
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our case, we have the gluon momentum coming into the game, which can be

rewritten in terms of the lepton-pair momentum at best, which doesn’t contain

any angles.

• The Lam-Tung relation [131] A0 = A2 is satisfied.

• The moments A5, A6, and A7 are nonzero only for final states with two or more

jets within the SM, and in our case they are generated by the SMEFT operators

of interest.

6.6. Numerical analysis

The coupling strengths are given by

Cffγ = −eQf , C
L/R
ffZ = egL/Rf , Cqqg = −gs,(6.81)

where

gLf =
T3f − sW 2Qf

sW cW
, gRf =

−sW 2Qf

sW cW
,(6.82)

with T3`− = T3di = −1/2 and T3ui = 1/2. We employ the input scheme {GF , sW
2,mZ}.

We have

GF = 1.1663787× 10−5 GeV−2, sW = 0.23113, mZ = 91.1876 GeV,(6.83)

and the derived parameters are

cW =
√

1− s2
W , α =

GF s
2
W c

2
Wm

2
Z

√
2

π
, e =

√
4πα,(6.84)
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mW =

√√√√m2
Z

2
+

√
m4
Z

4
− απm2

Z

GF

√
2
.(6.85)

As for the strong coupling, we need 1-loop running αs, which has a closed-form solution;

however, to be consistent with the PDF set chosen, we call αs from the PDF set on the

fly.

We use the NNPDF3.1 NLO [32] PDFs through LHAPDF [59] on Python. For the

numerical routines, the Vegas module [133, 132] is employed.

We cross-validate our SM results with independent tools. For this purpose, MadGraph

[24] is a great choice for snake-lovers and MCFM [60] for old-schoolers. Benchmark values

agree within 0.5% among these packages.

The hadronic cross section can be written as

σ = σSM +
∑
i

Ciσi +
∑
i

C̃iσ̃i.(6.86)

Let’s define the Z point as the SM cross section integrated around the Z point, 76 <

m`` < 106 GeV and denote it by σZSM. Now we can just keep the SM part or activate

the Wilson coefficients one at a time by setting Ci = 1 or C̃i = 1 (on top of turning off

the SM part, so we have a pure SMEFT contribution characterized by some Ci or C̃i),

and plot the cross section at invariant mass bins beyond the Z point as a function of p>,

normalized with respect to the Z-point cross section. We call this the ratio to the peak

and denote it by σk/σ
Z
SM, where σk is any one of σSM, σi, and σ̃i. In Figures 6.2 and 6.3,

we plot the ratios to the peak for the invariant mass bins [170, 350] GeV and [350, 1000]

GeV in conjunction with the p> bins [50, 100], [100, 150], . . . , [950, 1000] GeV. In these
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Figure 6.2. SM cross section and SMEFT corrections characterized by Wil-

son coefficients of interest as functions of dilepton transverse momentum

for 170 < m`` < 350 GeV, normalized with the SM cross section at the

Z-peak.

figures, the black lines are the SM parts and the color lines are the SMEFT corrections.

The solid color lines are the Wilson coefficients corresponding to the CP -even operators

and the dashed ones are those corresponding to the CP -odd operators. We have a c.m.

energy of
√
s = 13 TeV, we set Λ = 2 TeV, and we enhance the SMEFT contributions σ̃i

by a factor of 102 and σi by 104. We avoid a log-log plot to display the SMEFT corrections
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Figure 6.3. The same as in Figure 6.2 but for 350 < m`` < 1000 GeV.

with signs. The numerical integration of the SM part and the high-p> SMEFT corrections

can be performed with 40000 points in 1-2 second, while the low-p> SMEFT corrections

are essentially noise for the integrator with bad statistics. As for the physics going on in

these plots, we observe the following:

• The SMEFT corrections are meaningful for higher p> values.
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• The SMEFT corrections characterized by Wilson coefficients corresponding to

the CP -even operators are significantly larger compared to the CP -odd opera-

tors. This makes sense because the SM Drell-Yan cross section is an CP -even

observable (because the phase space and the squared amplitude are CP -even,

σ ∼
∫
|A|2 dLIPS)) and the CP -even operators are expected to contribute to the

cross section (because the SM-SMEFT interference amplitude is also CP -even,

σ ∼
∫

re(A∗SMASMEFT) dLIPS). The CP -odd operators are not fully activated

until a CP -odd observable joins the game.

• The SMEFT corrections characterized by the operators involving the interaction

of two left-handed currents have the greatest sensitivity to p>.

Next, we investigate the SMEFT corrections to the CS moments as functions of m`` and

p>. In doing this, we note that any given CS moment is essentially the ratio of two cross-

section section integrals, one with a particular angular structure and one with unit weight,

both of which can be written as an SM part plus some correction linearly propotional to

a Wilson coefficient:

A =

∫
Y dσ

σ
=
N (0) + CN (1)

D(0) + CD(1)
,(6.87)

where A is a CS moment, Y is the corresponding angular structure, and C is some Wilson

coefficient, which needs linearizing so as to write

A = A(0) + CA(1).(6.88)
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Now we focus on our observables of interest, namely the CS moments A6 and A7, and

in Figures 6.4 and 6.5, we present the plots demonstrating A(1) across the same m`` and

p> bins as in the previous figures (because the SM part of these moments are analytically

zero). The colors correspond to the same Wilson coefficient. We note that the SMEFT
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Figure 6.4. SMEFT contributions to A6 characterized by Wilson coefficients

of interest as functions of dilepton transverse momentum at the dilepton

invariant mass bins of 170 < m`` < 350 GeV and 350 < m`` < 1000 GeV.

contributions to A5 are all proportional to ΓZ . We recall that we must activate the

decay width of the Z boson only near the Z point, e.g. 76 < m`` < 106 GeV, and for

higher bins, these contributions are practically zero. Therefore, even though the angular

structure corresponding to A5 is also CP -odd, it is negligible in the dilepton invariant

masses assumed in our analysis.

6.7. HL-LHC simulation

In this section, we crunch in the numbers to simulate high-luminosity LHC (HL-LHC)

following [45]. We set the collider energy to
√
s = 14 TeV and assume the integrated
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Figure 6.5. The same as in Figure 6.4 but for A7.

luminosity to be L = 3 ab−1. We assume the input scheme {GF , sW
2,mZ}. We employ

all the CMS cuts [60] in our calculations:

• Leading electron: p> > 25 GeV

• Subleading electron: p> > 20 GeV

• Both electrons: |η| < 2.4

• Jet: p> > 30 GeV, |y| < 2.4

• Jet-electron separation: ∆Rje > 0.4 for all jet-electron pairs

• Dilepton system: p> > 100 GeV, |y| < 2.4

Given two particle momenta k and k′, we have

k> = kx
2 + ky

2, ηk =
1

2
log

(
|k|+ kz
|k| − kz

)
,(6.89)

yk =
1

2
log

(
Ek + kz
Ek − kz

)
, φk = arctan

(
ky
kx

)
,(6.90)

∆ηkk′ = ηk − ηk′ , ∆φkk′ = φk − φk′ , ∆Rkk′ =
√

∆ηkk′2 + ∆φkk′2.(6.91)
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We note that even though our process of interest is pp→ je−e+, i.e. we have an electron

and a positron pair coming out, the CMS language is to refer to these particles simply

as electrons. We note that all these cuts are required to correctly generate statistical

uncertainties.

We assume two types of bins: coarse and fine. The coarse bins presented in Table 6.2

have relative statistical uncertainties smaller than 5% in cross section, whereas the fine

bins presented in Table 6.3 have relative statistical uncertainties smaller than 10%.

6.8. Fits of Wilson coefficients on HL-LHC pseudodata

Following [45], we assume uncorrelated statistical, uncorrelated systematic, and cor-

related systematic uncertainties on the experimental side, and correlated PDF and un-

correlated scale uncertainties on the theoretical side when we build the error matrix, E :

E = Eexp + EPDF + Escale.(6.92)

Let’s discuss statistical uncertainties. The CS moments are defined by

Am = Nm

∫
Ym dσ

σ
=: Nm〈Ym〉, m = 6, 7,(6.93)

where Ym is some angular structure and Nm is some numerical factor, N6 = 5 and N7 = 4.

We now derive the formula for the statistical uncertainties in Am, denoted δAstat
m . We have

Am = Nm〈Ym〉 = Nm

[
1

N

N∑
E=1

Ym,E

]
,(6.94)
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Table 6.2. Coarse bins used in our HL-LHC simulations.

m`` [GeV] p> [GeV]

[300, 360] [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200,

210, 220, 230, 250, 270, 290, 310, 330, 360, 380, 410,

440, 490, 570, 7000]

[360, 450] [100, 110, 120, 130, 140, 150, 160, 170, 180, 200, 230,

250, 270, 290, 310, 330, 350, 370, 400, 440, 490, 580,

7000]

[450, 600] [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 210,

230, 250, 270, 290, 320, 340, 360, 390, 430, 480, 580,

7000]

[600, 800] [100, 110, 120, 130, 150, 170, 200, 220, 250, 290, 320,

360, 420, 520, 7000]

[800, 1100] [100, 110, 120, 150, 170, 200, 230, 270, 330, 430, 7000]

[1100, 1500] [100, 200, 290, 7000]

[1500, 2000] [100, 7000]

[2000, 2600] [100, 7000]

where E is the event number and N = σL is the total number of events. This gives us

Var[Am] = Cov[Am, Am] = Cov

[
Nm

N

∑
E

Ym,E,
Nm

N

∑
E′

Ym,E′

]

=
Nm

2

N2

∑
E,E′

Cov[Ym,E, Ym,E′ ].(6.95)
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Table 6.3. Fine bins used in our HL-LHC simulations.

m`` [GeV] p> [GeV]

[300, 360] [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200,

210, 220, 230, 250, 270, 290, 310, 330, 350, 370, 400,

420, 440, 470, 500, 530, 560, 600, 660, 760, 7000]

[360, 450] [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200,

210, 220, 240, 260, 290, 310, 330, 350, 370, 390, 410,

440, 470, 500, 530, 560, 610, 670, 770, 7000]

[450, 600] [100, 110, 120, 130, 140, 150, 160, 190, 210, 230, 250,

270, 290, 320, 340, 370, 390, 420, 460, 490, 520, 550,

580, 620, 680, 780, 7000]

[600, 800] [100, 110, 120, 130, 150, 170, 200, 220, 240, 260, 280,

310, 340, 380, 410, 440, 470, 510, 550, 620, 730, 7000]

[800, 1100] [100, 110, 120, 140, 160, 180, 200, 220, 250, 270, 300,

330, 360, 410, 460, 540, 660, 7000]

[1100, 1500] [100, 130, 160, 190, 230, 270, 320, 400, 520, 7000]

[1500, 2000] [100, 210, 330, 7000]

[2000, 2600] [100, 7000]

Assuming that the {Ym,E}NE=1 are independent and identically distributed (so the cross

terms vanish), we obtain

Var[Am] =
Nm

2

N2

∑
E

Cov[Ym,E, Ym,E′ ] =
Nm

2

N2

∑
E

Var[Ym,E]
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=
Nm

2

N2
×N Var[Ym] =

Nm
2

N
Var[Ym],(6.96)

and hence

δAstat
m =

Nm√
N

δYm,(6.97)

where

δYm =
√
〈Ym2〉 − 〈Ym〉2.(6.98)

Here, we have defined

〈Ym2〉 =

∫
Ym

2 dσ

σ
.(6.99)

Bin by bin, we compute statistical uncertainties and we use the minimum of 5% (10%)

relative uncertainty in Am for the coarse (fine) bins or the one we compute as describe

here. We note that a relative uncertainty from the cross section in the denominator reflects

back as a relative uncertainty in the CS moment. As for the systematics, we assume 1%

uncorrelated and 2% correlated systematic uncertainties in the cross section and hence

in the CS moments. In the pseudodata generation (to create statistics), we use only the

experimental uncertainties, i.e. uncorrelated statistical (stat), uncorrelated systematic

(usys), and correlated systematic uncertainties (csys):

Am,b = ASM
m,b + rb δA

stat
m,b ⊕ δA

usys
m,b + r′ δAcsys

m,b ,(6.100)
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bin by bin, b, for a given pseudoexperiment. Here, rb, r
′ ∼ N (0, 1) are unit normal

variates and while the uncorrelated uncertainties are generated with a different random

number for each bin, the correlated ones are generated with a single random number for

a given pseudoexperiment so all the bins feel this shift uniformly.

Next, let us discuss the theoretical uncertainties. We start with PDF uncertainties.

For replica-based PDF sets, the correlated PDF uncertainty matrix is built such that the

bb′ entry reads

(EPDF)bb′ =
1

NPDF

NPDF∑
mem=0

(
ASM
m,mem − ASM

m,0

)
b

(
ASM
m,mem − ASM

m,0

)
b′
,(6.101)

where ASM
m,0(mem) is the SM CS moment Am evaluated at the PDF set member 0 (mem)

and NPDF = 100. The central value corresponds to the PDF member 0. On top of the

PDF uncertainties, we also consider variations in renormalization and factorization scales,

µR and µF , respectively. We introduce uncorrelated scale uncertainties according to

1

2
≤ µR,F

µ0

≤ 2,
1

2
≤ µR
µF
≤ 2,(6.102)

where we have defined

µ0 =
√
p>2 +m``

2.(6.103)

Assuming steps of 1/2, we evaluate the CS moments are various scales, Am,s,

(µR, µF ) =

(
1

2
,
1

2

)
µ0, (µR, µF ) =

(
1

2
, 1

)
µ0, (µR, µF ) =

(
1

2
,
3

2

)
µ0, . . . ,(6.104)

(µR, µF ) =

(
2,

3

2

)
µ0, (µR, µF ) = (2, 2)µ0(6.105)
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that satisfiy 1
2
≤ µR

µF
≤ 2, so we have 12 possibilities. Then, we find the largest variation

within this range and form a symmetric scale uncertainty using this largest variation at

each bin:

δAscale
m = max {|Am,s − Am,s′ |}12

s,s′=1 .(6.106)

The central value corresponds to (µR, µF ) = (1, 1)µ0.

It is important to remark that said errors are borrowed from the cross-section analysis

of our main reference for the present work, namely [45]. In the current study, our observ-

ables of interest are A6 and A7, whose SM predictions are zero. Noting that pseudodata

and hence the error matrix is generated using uncertainties based on SM predictions, we

see that all the uncertainties are zero here, except for the uncorrelated statistical uncer-

tainties. To be more precise, the SM predictions for A6 and A7 are zero, and therefore

there cannot be any relative systematic uncertainties (1% or 2% of zero is zero); PDF and

scale variations do not touch parity, and therefore PDF and scale uncertainties are zero.

Even the term 〈Ym〉 in δAstat
m is zero. Therefore, the error matrix consists of uncorrelated

statistical uncertainties only:

E = diag
{
δAstat

b
2
}Nbin

b=1
.(6.107)

where we now suppress the CS moment index m to keep the discussion general. In

Figures 6.6 and 6.7, we present the error budget plots. Here, we plot the bin-by-bin

statistical uncertainties by the black line and the SMEFT contribution to the observables

characterized by the indicated Wilson coefficient by the color lines. The bins are sorted
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first in increasing order of m`` and then within each m`` bin, in increasing order of p>.

This explains the waves.
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Figure 6.6. The error budget plot for the observable A6. The SM value for

this observable is zero. The black line is the statistical uncertainty. We

also present the SMEFT corrections characterized by Wilson coefficients of

interest to compare to the size of the uncertainty.
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Figure 6.7. The same as in Figure 6.6 but for A7.

For the statistical analysis, we define a standard χ2 function:

χ2 =

Nbin∑
b=1

Nbin∑
b′=1

(
Â− A

)
b
Hbb′

(
Â− A

)
b′
,(6.108)
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where H = E −1 is the inverse uncertainty matrix, Â is the SMEFT observable, namely

our linearized SMEFT expression for the CS moments A6 or A7, and A is the pseudodata,

which are of the form

Âb = ASM
b +

NW∑
w=1

CwA
(w)
b =

7∑
w=1

CwA
(w)
b ,(6.109)

Ab = ASM
b + rb δA

stat
b = rb δA

stat
b .(6.110)

The χ2 function can be expressed in the form

χ2 = k0 +
7∑

w=1

k1,wCw +
7∑

w=1

7∑
w′=1

k2,ww′CwCw′ = k0 + k1 ·C + C · k2C.(6.111)

The vanishing gradient of this expression gives us the values of the Wilson coefficients

that minimize the χ2 function,

∇χ2(C) = 0,(6.112)

and the Hessian evaluated at these values give us the Fisher information matrix,

F =
1

2
∇∇χ2(C).(6.113)

Here, all the derivatives are with respect to the SMEFT parameters. With the quadratic

form of the χ2 function presented above, we obtain

C =
1

2
k−1

2 k1,(6.114)
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and

F = k2.(6.115)

Since real data is not available yet and since our analysis strongly relies on pseudodata,

we run multiple pseudoexperiments to generate statistics. Since our observable is linear

in SMEFT parameters, the Fisher matrix is constant and we manage to avoid averaging

over pseudoexperiments.

We present the nonmarginalized 2-sigma bounds in Figure 6.8, the corresponding

effective scales in Figure 6.9, the marginalized 2-sigma bounds in Figure 6.10, and the

corresponding effective scales in Figure 6.11. From these figures, we note the following:

• The A6 fits yield weaker bounds on the Wilson coefficients of interest compared

to the A7 fits. The reason is the competition between the size of the SMEFT

corrections to the observables and the anticipated statistical uncertainties, which

is the only source of uncertainty in this study.

• The combined fit results resemble the A7 fits because of its dominance.

• The fine binning leads to bounds twice as strong as the coarse binning.

• In 1d fits, we can obtain effective scales up to 9 TeV. These scales are computed

using the 2-sigma bounds on Wilson coefficients as Λ/C
1/4
w , with Λ = 1 TeV.

• Once we activate all the Wilson coefficients (so as to perform a 7d fit), we see that

the allowed intervals grow dramatically. This signals strong interplay between

the SMEFT parameters.

• In the 7d fit, the fine binning still leads to stronger bounds but the ratio is now

slightly less than 2.
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We present representative confidence ellipses in Figures 6.12 and 6.13. Each figure

contain four plots. On the top row, we present the case of coarse (left) and fine (bins) in

the nonmarginalized fit, and on the bottom row, we have the corresponding marginalized

ellipses. From these figures, we note the following:

• The remarks from the bound plots apply.

• The A6 and A7 fit results are complementary, namely they yield distinct correla-

tions.

• The nonmarginalized ellipses, namely the confidence ellipses of 2d fits yield nearly

flat directions, i.e. ellipses elongated wildly.

• The confidence ellipses projected from the 7d fit do not display flat directions,

which can be explained by the interplay between the SMEFT parameters.

Finally, the correlation matrices are presented in Figures 6.14–6.16.

6.9. Coda

In this study, we have studied the CP -odd dimension-8 SMEFT operators of semi-

leptonic four-fermion interactions coupled to the gluon field strength tensor. The interfer-

ence of the amplitudes arising from these operators with the SM terms generate CP -odd

observables. To investigate the effects of said operators, we considered the DY production

with a single jet at the HL-LHC. We used the anticipated dilepton invariant mass and

transverse momentum bins at the CMS, together with the detector cuts. Our observables

of interest were the CP -odd CS moments, A5, A6, and A7, which are zero at tree level or

with a single jet at the SM. However, since A5 is linear in the Z-boson decay width, it was

negligible at the energy levels considered, we carried out the fitting for A6 and A7. Using
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Figure 6.8. 95% CL bounds of CP -odd Wilson coefficients from single-

parameter fits at Λ = 1 TeV for the observables A6 and A7, as well as the

combined fit assuming independence, with coarse (top) and fine (bottom)

bins.
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Figure 6.9. Effective UV cut-off scales, Λ/C
1/4
w , corresponding to the non-

marginalized 95% CL bounds given in Figure 6.8.
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parameter fits at Λ = 1 TeV for the observables A6 and A7, as well as the

combined fit assuming independence, with coarse (top) and fine (bottom)

bins.
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Figure 6.11. Effective UV cut-off scales, Λ/C1/4, corresponding to the

marginalized 95% CL bounds given in Figure 6.10.
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Figure 6.12. Nonmarginalized (top) and marginalized (bottom) 95% CL

ellipses for the Wilson coefficients C
(1)

`2q2g and C`2u2g at the HL-LHC for

coarse (left) and fine (right) bins from the fits using the observable A6 and

A7, as well as the joint fit.
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Figure 6.13. The same as in Figure 6.12 but for C`2u2g and Ce2u2g.

simulated HL-LHC data with a collider energy of 14 TeV and an integrated luminosity of

3 ab−1, we performed a comprehensive analysis for the fits of the SMEFT parameters.



284

C
q2

e2
g

C
e2

d2
g

C
e2

u2
g

C
ℓ2

d2
g

C
ℓ2

u2
g

C
ℓ2

q2
g

(3
)

C
ℓ2

q2
g

(1
)

Cq2e2g

Ce2d2g

Ce2u2g

Cℓ2d2g

Cℓ2u2g

C
ℓ2q2g
(3)

C
ℓ2q2g
(1)

A6, coarse bins, Λ  1 TeV

-0.0013 -0.61 0.64 -0.23 0.25 -0.29 1.0

-0.13 0.48 -0.62 -0.54 -0.034 1.0 -0.29

0.67 -0.24 0.25 0.30 1.0 -0.034 0.25

0.80 0.33 0.54 1. 0.30 -0.54 -0.23

0.55 -0.16 1.0 0.54 0.25 -0.62 0.64

0.36 1. -0.16 0.33 -0.24 0.48 -0.61

1.0 0.36 0.55 0.80 0.67 -0.13 -0.0013

C
q2

e2
g

C
e2

d2
g

C
e2

u2
g

C
ℓ2

d2
g

C
ℓ2

u2
g

C
ℓ2

q2
g

(3
)

C
ℓ2

q2
g

(1
)

Cq2e2g

Ce2d2g

Ce2u2g

Cℓ2d2g

Cℓ2u2g

C
ℓ2q2g
(3)

C
ℓ2q2g
(1)

A6, fine bins, Λ  1 TeV

0.29 0.13 0.81 -0.22 -0.045 0.11 1.0

0.58 0.76 -0.28 -0.83 0.46 1.0 0.11

0.67 0.044 -0.28 -0.23 1.0 0.46 -0.045

-0.11 -0.41 0.31 1.0 -0.23 -0.83 -0.22

0.25 0.029 1.0 0.31 -0.28 -0.28 0.81

0.60 1.0 0.029 -0.41 0.044 0.76 0.13

1. 0.60 0.25 -0.11 0.67 0.58 0.29

Figure 6.14. Correlation matrix for the fits of A6 with coarse (left) and fine

(right) bins.
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Figure 6.15. The same as in Figure 6.14 but for A7.
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Figure 6.16. The same as in Figure 6.14 but for the joint fit of A6 and A7.

The single-parameter fits yielded bounds at the order of O(0.01), translating into ef-

fective UV scales reaching up to approximately 8 TeV with coarse binning and 9 TeV with

fine binning. However, when all seven Wilson coefficients were activated simultaneously,

these constraints weakened significantly, namely by two to three orders of magnitude,

bringing the effective scales down to about 1.5 TeV for the coarse binning and 2 TeV with

the fine binning. This substantial shift implies strong interplay among the SMEFT oper-

ators. Despite this weakening, our study clearly highlights the capability and importance

of using angular observables at the HL-LHC to probe CP -odd dimension-8 operators.

These results set concrete benchmarks, motivating further detailed investigations into

subtle signals of CP -violating new physics.
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CHAPTER 7

Conclusion

I think I could stand anything, any suffering, only to be able to say and to repeat to

myself every moment, “I exist.” In thousands of agonies, I exist. I’m tormented on the

rack, but I exist! Though I sit alone in a pillar, I exist! I see the sun, and if I don’t see

the sun, I know it’s there. And there’s a whole life in that, in knowing that the sun is

there.

Fyodor Dostoyevsky, The Brothers Karamazov

7.1. Summary of work and findings

This thesis was written in the service of a clear question. Can future colliders, through

the tools of precision phenomenology, offer new ways to constrain physics beyond the

Standard Model (SM)? That question shaped each project, each calculation, and each

decision in the chapters that followed. The analyses were grounded in the projected

capabilities of machines of tomorrow still under construction or under consideration. The

aim was to understand what these colliders could realistically probe, and how far they

could extend current theoretical frameworks when paired with well-defined observables.

Each chapter served a distinct purpose. Together, they contribute to a broader picture

of how future collider programs can support precision tests of the SM and guide new

physics searches.
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Chapter 3 focused on the Electron-Ion Collider and examined whether it could access

new physics scenarios that are otherwise difficult to probe. By studying neutral-current

(NC) parity-violating observables, we showed that the Electron-Ion Collider (EIC) has

the potential to lift degeneracies in the parameter space left open by NC Drell-Yan (DY)

process at the Large Hadron Collider (LHC). This required a careful treatment of beam

polarization and luminosity uncertainties, which were included as fit parameters for the

first time in this context. The study confirmed that with moderate energies and high con-

trol over initial states, the EIC could provide access to unique directions in the Standard

Model Effective Field Theory (SMEFT) parameter space.

Chapter 4 extended that effort. The operator set was expanded, next-to-leading order

corrections from quantum chromodynamics (QCD) were included, and two additional

machines, the Large Hadron-electron Collider (LHeC) and the Future Circular Collider

(FCC), were incorporated into the analysis. Each collider brings access to a distinct

kinematic regime. The central aim was to test whether these machines, when treated

collectively, can explore the SMEFT parameter space in a complementary way. The

result is promising. Their differences in energy and kinematic coverage offer a route

to reducing parameter degeneracies and imposing stronger bounds on several SMEFT

parameters relevant to NC deep inelastic scattering. The interplay with global fits based

on electroweak (EW) precision observables is nontrivial. These future lepton-hadron

colliders are positioned to resolve flat directions that persist in the global fits with Higgs,

top, diboson, and Z-pole measurements. In that sense, they can clarify the underlying

structure of new physics constraints and expand the reach of precision phenomenology.
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Chapter 5 shifted gears and introduced a new observable in electron-positron collisions

at the FCC. The focus was on transverse spin asymmetries and their potential to improve

sensitivity to the electron Yukawa coupling. This quantity is notoriously small, and no

direct measurement has yet been made. The asymmetries proposed in this study provide

a clean and statistically enhanced signal, grounded in expected detector capabilities and

polarization configurations. Although this analysis was carried out outside the SMEFT

formalism, the overall purpose remained aligned with the rest of the thesis, namely finding

observables at future colliders that can isolate small, theoretically clean effects.

Chapter 6 returned to the SMEFT but moved into less explored territory. We studied

DY production with an associated jet and investigated CP-violating gluonic operators

at dimension eight. This region of parameter space has not received much attention, in

part because it lies outside the dominant directions constrained by inclusive processes.

Our study showed that with carefully chosen observables, particularly dilepton angular

distributions, it is possible to achieve meaningful sensitivity. The backbone analysis is

complete. Work continues on matching to ultraviolet models, along with potential connec-

tions to spin-2 extensions. These are still being explored with care, but the path forward

is now concrete.

Across four chapters, we investigated the potential reach of the EIC, LHeC, FCC, and

the high-luminosity LHC. It proposed observables tailored to the structure and strengths

of each machine. We introduced methods for resolving degeneracies in global SMEFT

fits. We expanded the parameter space considered in precision collider studies. These

contributions were not guided by abstraction. They were shaped by collider realities and

theoretical clarity. At the end of the day, taxpayers’ money is well spent.
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7.2. Contributions and perspective

This thesis led to several publications:

• R. Boughezal, A. Emmert, T. Kutz, S. Mantry, M. Nycz, F. Petriello, K. Simsek,

D. Wiegand, X. Zheng

Neutral-current electroweak physics and SMEFT studies at the EIC

Phys. Rev. D 106 (2022) 016006, arXiv:2204.07557

• C. Bissolotti, R. Boughezal, K. Simsek

SMEFT probes in future precision DIS experiments

Phys. Rev. D 108 (2023) 075007, arXiv:2306.05564

• R. Boughezal, F. Petriello, K. Simsek

Transverse spin asymmetries and the electron Yukawa coupling at an FCC-ee

Phys. Rev. D 110 (2024) 075026, arXiv:2407.12975

We also contributed to:

• Electron Ion Collider for High Energy Physics, Snowmass 2021 White Paper,

arXiv:2203.13199.

• SMEFT analysis with LHeC, FCC-eh, and EIC DIS pseudodata, DIS2023 Pro-

ceedings, arXiv:2307.09459

Work continues on the DY plus jet process. The backbone analysis is complete. Further

development is ongoing.

The focus of this thesis has been precision and collider phenomenology as tools for

exploring new physics. The methods developed are not confined to the examples studied.

They offer a modular and transparent approach to interpreting the capabilities of future
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machines. The emphasis throughout has been on theoretical consistency, experimental

feasibility, and numerical reproducibility. The computational infrastructure created in

the process, ranging from simulation and fit pipelines to integration routines and analysis

frameworks, is general and can be adapted to future problems.

One of the main goals of this thesis has been to understand what we can say about

new physics when we haven’t seen any new particles yet. So far, experiments at the LHC

and elsewhere have not found direct evidence of particles beyond the SM (BSM). This

could mean new physics is either too heavy to produce with current colliders or too weakly

coupled to stand out in the data. But just because we do not see new particles does not

mean there is nothing there. Heavy particles can still leave indirect effects by slightly

changing the behavior of known processes.

This is where SMEFT comes in. It gives us a way to describe how unknown heavy

physics would show up as small deviations from SM predictions. These deviations are

captured by a set of parameters called Wilson coefficients. Each coefficient tells us how

strongly a certain type of new interaction could affect measurable quantities. By putting

limits on these coefficients, we are not just testing one model at a time, we are testing

broad classes of possible theories all at once. That is what makes SMEFT a powerful

tool. It gives us a model-independent way to look for signs of new physics, even if the

new particles themselves are out of reach.

These efforts are part of a broader research direction that I plan to continue. The core

objective remains the same: identify clean observables, develop realistic predictions, and

constrain physics beyond the SM through precision.
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7.3. Outlook and Future Directions

The next steps in my research will extend the work presented here. The central focus

will include precision calculations for top-quark observables, resummation techniques,

and the development of global parton distribution functions (PDFs). These projects are

conceptually aligned with the work in this thesis. They continue the same logic, structure,

and purpose.

My early work explored rare top-quark decays and BSM models. The PhD years

added a deep engagement with SMEFT, collider physics, and QCD and EW precision.

The growth that followed was shaped by the opportunity to work with and learn from

some of the most brilliant particle physicists who guide the field. That collaboration

sharpened my thinking, expanded my tools, and deepened my understanding of precision

phenomenology.

The technical components are ready. The work in this thesis provided extensive expe-

rience in Monte-Carlo routines, statistical analysis, uncertainty quantification, and theo-

retical interpretation. I developed and maintained several computational frameworks, all

structured for modularity and reproducibility. These are now being adapted to include

resummation techniques and higher-order corrections at hadron colliders.

A related direction is the development of new PDF fitting strategies, especially in

kinematic regions relevant for Run II and III of the LHC. This includes examining the

interplay between PDF uncertainties and SMEFT parameter extractions. As shown in
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Chapters 3 and 4, this interference is not negligible. I plan to contribute to fitting proce-

dures that integrate new physics parametrizations and precision constraints more system-

atically. These goals will also involve resummation improvements, modified factorization

theorems, and potentially new parameter bases.

My first steps in particle physics were in BSM scenarios. I studied rare processes

involving the top quark and searched for signals of extra dimensional models. That

early work pulled together ideas from many corners and taught me how to move be-

tween frameworks. Over the years, my focus shifted toward EW fits, gluon operators, and

collider-specific SMEFT observables. Precision and collider physics became the founda-

tion. Along the way, I learned how to build simulations, design computational workflows,

and connect theoretical calculations with the kinds of observables collider experiments

can access. The next steps will build on this foundation. Resummation for top physics,

as well as and global PDF fits, will be part of the next chapter of my life. So will improved

uncertainty treatment and closer integration between theoretical inputs and experimental

constraints. In that sense, the circle closes. But maybe it was never a circle. Maybe it

has always been a helix, moving forward.
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