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ABSTRACT

PRECISION PHENOMENOLOGY AND NEW PHYSICS PROBES AT FUTURE
COLLIDERS

KAAN SIMSEK

This thesis explores how future colliders can be used to study physics beyond the Standard
Model through precision observables. Most of the work is set within the Standard Model
Effective Field Theory (SMEFT), but the broader focus is on collider-specific questions:
what can realistically be measured, how far current designs can reach, and which theoret-
ical parameters are actually testable in controlled environments. Four main directions are
developed. First, we study neutral-current parity-violating observables at the Electron-
Ion Collider and show that they can lift degeneracies introduced by Drell-Yan processes at
the LHC in the semi-leptonic four-fermion operator subspace of the SMEFT framework.
Second, we extend the analysis to include the complete set of SMEFT operators that
modify the neutral-current deep inelastic scattering amplitude at leading order, next-to-
leading order QCD corrections, and two additional machines, the Large Hadron-electron
Collider and the Future Circular Collider. The results demonstrate how these colliders,

with their complementary energy ranges, can resolve parameter degeneracies in global



fits and impose tighter bounds on new physics effects. Third, we shift focus to electron-
positron collisions and introduce a novel observable at the Future Circular Collider that
improves sensitivity to the electron Yukawa coupling, the smallest in the Standard Model,
by a factor of five to six. Finally, we return to the SMEFT and examine Drell-Yan pro-
duction with an associated jet, identifying observables that are sensitive to C'P-violating
gluonic operators at dimension eight. We focus on Collins-Soper angular moments that
vanish in the Standard Model at leading order but become nonzero in the presence of
the SMEFT operators of interest due to their C'P-odd structure. All analyses are tied
to realistic experimental conditions, including polarization effects, luminosity estimates,
and systematic uncertainties. The methods developed here prioritize reproducibility, com-
putational transparency, and applicability to actual collider programs. Together, these
results show how precision and collider phenomenology can be used not only to refine the

Standard Model but also to push its limits.
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for amplitude generation, numerical routines, and statistical analysis workflows. Chapter



presents an analysis of neutral-current deep inelastic scattering (DIS) at the Electron-
Ion Collider. Chapter [] extends this study to higher-energy DIS processes at the Large
Hadron-electron Collider and Future Circular Collider, incorporating next-to-leading or-
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CHAPTER 1

Introduction

It was the best of times, it was the worst of times, it was the age of wisdom, it was the
age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the
season of Light, it was the season of Darkness, it was the spring of hope, it was the
winter of despair, we had everything before us, we had nothing before us, we were all
going direct to Heaven, we were all going direct the other way—in short, the period was
so far like the present period, that some of its noisiest authorities insisted on its being

received, for good or for evil, in the superlative degree of comparison only.

Charles Dickens, A Tale of Two Cities

1.1. Position at the time

Particle physics stands at a crossroads in the quest to uncover physics beyond the
Standard Model (BSM). The Standard Model (SM) has been enormously successful in
describing known particles and their interactions, crescendoing with the discovery of the
Higgs boson in 2012 [5], [65]. As is the tragic fate of all that possess transcendent beauty,
it suffers from certain shortcomings. It does not explain dark matter, neutrino masses, or
the baryon asymmetry, and it leaves many theoretical questions open. No new particles
have been conclusively observed at the Large Hadron Collider (LHC) beyond the Higgs

particle, despite the LHC’s impressive energy reach. A canonical depiction of resonant
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particle production across collider energies is shown in Figure [I.1], highlighting both the

discoveries of the past and the unknown terrain ahead.

event count

MLHC A
collider energy
Figure 1.1. An illustrative sketch of the event count corresponding to the
total ete™ — hadrons cross section as a function of the center-of-mass en-
ergy. Resonances corresponding to known particles, such as the p, J/1,
T, Z, and Higgs bosons, appear as Breit-Wigner peaks due to poles in
the scattering amplitude. While these are visible in clean initial states like

et

e~ collisions, not all particles necessarily appear as bumps. Broad widths,
suppressed couplings, or incompatible quantum numbers may obscure reso-
nances, motivating complementary search strategies beyond bump hunting.

The dashed curve suggests potential future resonances at higher energy

scales, such as those accessible at future colliders.
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The absence of clear new signals suggests that any new physics may either be very
heavy, and we are talking about energy scales beyond the LHC’s direct reach, or very
weakly coupled, which means it must be hiding subtly within precise measurements. In
either case, precision phenomenology, namely making extremely accurate predictions and
measurements of SM processes, becomes a powerful approach to indirectly probe new
physics. By comparing high-precision experimental results with equally precise theoreti-
cal predictions, we can detect tiny deviations caused by heavy new particles, even if these
particles cannot be produced on-shell. This strategy of indirect discovery through preci-
sion measurements has a long and successful history. For example, precision electroweak
(EW) data predicted the top quark mass before its discovery and indicated a light Higgs
boson. Today, with the energy frontier pushing against practical limits, the precision
frontier is more important than ever for exploring BSM effects.

A robust theoretical framework supports this precision program. The Standard Model
Effective Field Theory (SMEFT) has emerged as a universal language to describe poten-
tial new physics in a model-independent way. In the SMEFT, one upgrades the SM
Lagrangian with higher-dimensional operators that might reflect the effects of heavy new
particles as subtle shifts in SM interactions. Each operator comes with a Wilson coeffi-
cient capturing the strength of the new physics contribution. If new physics lies at an
ultraviolet (UV) scale A well above observed particle masses, as well as current collider
reaches, its low-energy effects can be organized on powers of 1/A. The leading deviations
appear as dimension-6 operators, which are suppressed by 1/A?, which can modify cross
sections, decay rates, and asymmetry observables at colliders. Crucially, the SMEFT pro-

vides a systematic way to globally fit many different measurements for evidence of new



33

physics within a consistent theoretical framework, rather than invoking new particles.
This has motivated a global effort to reanalyze collider data through the SMEFT lens. So
far, global fits to precision observables, including LEP /SLD EW measurements and LHC
Run 1/2 data, have found no significant deviations, but they have highlighted specific
directions in the multidimensional parameter space that are weakly constrained due to
overlapping effects of different operators. These flat directions, or degeneracies, in current
data leave room for new physics at the TeV scale. Resolving them is a key motivation
for both theoretical work and future experiments. Improvements in precision and vari-
ety of measurements, especially using new collider facilities, are hoped to tighten these
constraints and provide clues of BSM physics. In this context, future colliders are being
designed not only to extend the energy frontier, but also to deliver huge data samples and
cleaner environments needed for ultraprecise tests of the SM.

Over the next decades, an array of new collider projects are planned or proposed to
push the precision frontier. Each comes with unique strengths for exploring different as-
pects of high-energy physics. In this chapter, we survey the landscape of relevant future
colliders and their physics goals, focusing on those facilities that play a role in later chap-
ters of this thesis, namely the Electron-Ion Collider (EIC), the Large Hadron-electron Col-
lider (LHeC), the Future Circular Collider (FCC) running in the electron-hadron mode or
the electron-positron mode, and the high-luminosity LHC (HL-LHC) upgrade. We outline
the motivations and design parameters of each of these machines, namely their intended
physics outcomes, collision types, energies, luminosities, and timelines. We then review
how precision measurements at these colliders can be used in SMEFT studies to probe

new physics. In doing so, we summarize existing studies in the literature that project
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the sensitivity of these experiments to BSM effects via SMEFT fits. This sets the stage
for the detailed investigations presented in subsequent chapters. In short, this chapter
aims to explain why precision collider phenomenology matters, what future facilities are
on the horizon and what features they bring, and how these features and capabilities can
be utilized, often in complementary ways, to search for new physics with unprecedented

sensitivity.
1.2. Future collider facilities for precision physics
1.2.1. Electron-Ion Collider

The EIC will be a new facility at Brookhaven National Lab (BNL) in the United States
(U.S.), designed primarily to explore the quark and gluon structure of nucleons and nuclei
with unprecedented detail [154), 12, 10]. It will collide electron beams with beams of
protons or heavier ions, such as nuclei of helium, gold, or uranium. A key motivation
for the EIC is to create three-dimensional “snapshots” of nucleons, mapping how quarks
and gluons carry momentum and spin inside the proton, thereby addressing fundamental
questions of quantum chromodynamics (QCD), such as the origin of the proton spin
and mass. In 2020, the U.S. Department of Energy approved the EIC project, with the
constructed beginning at the end of 2025, just when the Relativistic Heavy Ion Collider
(RHIC) completes its scientific program, and operations starting in the early 2030s. This
will be the first new high-energy collider built in the U.S. in decades, and it represents a
cornerstone of the nuclear physics community’s long-term plan [1J.

From an accelerator standpoint, the EIC involves a polarized electron beam, poten-

tially 85% polarized at source and with nearly 70% polarization in the storage ring on
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average, colliding with polarized proton or ion beams. For protons, a similar polariza-
tion reach of about 70% is planned. The electron beam energy will be tunable up to 18
GeV, and proton beam energies up to 275 GeV, allowing for a range of center-of-mass
(c.m.) energies from roughly 20 to 140 GeV. These energies sit between fixed-target deep
inelastic scattering (DIS) experiments of the past and the Hadron-Elektron-Ringanlage
(HERA), which reached approximately 320 GeV with 27.6 GeV electrons and 920 GeV
protons [127]. The EIC’s design luminosity is extremely high for an electron-hadron col-
lider, up to 10** cm=2-s~! (or about 300 fb™! per year), which is orders of magnitude
beyond HERA's typical range of 103! to 1032 cm~2 - s7!. Such luminosity, combined with
polarization of both beams, will enable precision EW measurements in addition to its
QCD program. The collider will utilize the existing RHIC tunnel, with a circumference
of 3.9 km (Figure , for the hadron ring and add a new electron storaging of the same
size, implementing advanced techniques like energy recovery, spin rotators, and strong
focusing to achieve the desired performance.

While the EIC’s primary mission is to study QCD phenomenology, such as parton dis-
tribution functions (PDFs) at small Bjorken-z, the gluon saturation regime, and the spin
structure of nucleons, it also provides an opportunity for BSM searches via precision EW
observables. Because it will collide electrons with protons or ions at moderate energies,
the EIC is ideal for measuring parity-violating (PV) asymmetries in DIS cross section. In
neutral-current (NC) DIS; the photon-Z boson interference causes a small difference in
cross section when the electron’s helicity is flipped. The EIC can measure this asymmetry,
which in the SM is directly related to the running weak mixing angle, sin®(fy), and to

the electron and quark NC couplings. A high-precision measurement of the weak mixing
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Figure 1.2. The Electron-Ton Collider (EIC) will be constructed at
Brookhaven National Laboratory, utilizing the existing Relativistic Heavy
Ion Collider (RHIC) infrastructure. The schematic shows the integration
of the new EIC ring with the existing RHIC tunnel.

Image credit Tiffany Bowman/Brookhaven National Laboratory, from

https://www.bnl.gov /newsroom/news.php?a=121805.

angle at low momentum transfer is a goal of the EIC’s EW program. Moreover, these PV
DIS measurements are sensitive to certain SMEFT operators, specifically semi-leptonic

four-fermion operators that describe the contact interaction of lepton and quark currents.
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The EIC’s true power, namely high luminosity, polarized beams, and a clean event en-
vironment with no color contamination and well-defined initial states, allows it to probe
these effects ruthlessly. In addition, the EIC will measure electron-nucleus scattering, pro-
viding new tests of EW nuclear effects and potentially probing novel physics in nuclear
matter. Overall, although the EIC is a machine designed to study hadron structure first
and foremost, its high precision makes it a versatile facility where precision SM tests can
reveal BSM signals. The knowledge of proton structure gained, for example in the form
of improved PDFs, will also be invaluable for interpreting searches at the LHC and future

colliders [56].

1.2.2. Large Hadron-electron Collider

The LHeC is a proposed upgrade to the LHC that will add a high-energy electron beam
to enable electron-proton and electron-ion collisions using one of the LHC’s proton beams
[56, 11]. The core idea is to maximize the reuse of existing infrastructure, namely the 27-
km LHC tunnel and beams (Figure , by augmenting it with a new electron accelerator.
The LHeC would open up to a TeV-scale DIS program. With a 60-GeV electron beam
colliding with a 7-TeV proton beam, the c.m. energy would reach about 1.3 TeV [57],
which is substentially higher than HERA’s 320 GeV. In addition, the LHeC aims for
a luminosity around 103% cm~=2 - s7! in its baseline design, which is about 100 times
HERA’s. This is expected to lead to enormous DIS data samples. The combined power
of the LHeC’s energy and luminosity would push the kinematic region in Bjorken-z and

momentum transfer to new extremes, allowing exploration of proton’s structure down to

x ~ 107% and up to momentum transfers Q ~ 10° GeV, an order of magnitude beyond
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what LHC measurements currently constrain. From a physics standpoint, the LHeC is
motivated both as a precision adjunct to the LHC, providing better PDF's, especially at
high x and high @, and novel ways to study the Higgs, top quark, and EW bosons, and
as a discovery machine in its own right, able to observe phenomena such as heavy flavor
excitation in the proton, rare QCD parton dynamics, or even new particles produced in
e~ p collisions.

The LHeC design has evolved to favor a linac-ring configuration, in which a new
linear accelerator supplies an electron beam to collide with one of the proton beams
circulating in the LHC. The baseline setup features an energy-recovery linac (ERL), which
is essentually two superconducting linacs, each about 1 km long, arranged in a racetrack
shape tangential to the LHC ring. Electrons would make three passes through each linac
to reach 60 GeV before colliding with protons at one of the LHC interaction points [56].
After the collision, the electrons would be decelerated in the same linacs to recover energy.
This ERL approach allows for a large number of electrons to be delivered steadily over
time, achieving both high beam current and continuous operation without excessive power
demands. The same electron accelerator could later be repurposed for other projects such
as the Future Circular Collider running in the electron-hadron mode, as discussed below.
The electron beam could be polarized, up to nearly 80% at source, although the baseline
LHeC design does not require polarization for its core program. The 7-TeV protons in
the LHC are not polarized, so LHeC would mainly measure unpolarized e~ p and rely on
electron polarization for any asymmetry measurements. One nice feature of the linac-
ring scheme is that it could operate simultaneously with the nominal LHC pp program

by using one of the LHC’s beam interaction points without disrupting the others. In
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Figure 1.3. Proposed layout of the Large Hadron-electron Collider (LHeC)
in the Geneva basin, overlaid on the existing LHC (light blue) and SPS (dark
blue) tunnels [56]. The yellow racetrack indicates the baseline design for the
LHeC, with two alternative configurations shown in orange. Also indicated
is the location of the high-luminosity LHC (HL-LHC), which would share

the LHC ring with the LHeC.
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principle, the LHeC could quietly slip into the HL-LHC’s schedule, offering e™p collisions
without interrupting pp operations. After the HL-LHC program is complete, the LHeC
could even continue as a dedicated facility on its own. This staging flexibility is a selling
point of the project.

From a physics perspective, the LHeC would serve multiple roles. First, it would
dramatically improve the knowledge of proton structures. With its high reach in momen-
tum transfer and wide x range, it would pin down PDFs, especially the gluon and quark
distributions at small z, with high precision. This has direct benefits for interpreting
LHC results, for instance, reducing PDF uncertainties in precision measurements of the
W mass and Higgs production. Second, the LHeC offers a unique environment to study
the Higgs boson. Higgs production in ep primarily occurs via vector-boson fusion, e.g. W
exchange from the electron scattering on the proton, and can produce a Higgs boson plus
a final-state neutron or proton leftovers. Studies indicate that the LHeC could accumu-
late on the order of 10* to 10° Higgs events, enabling measurements of the h — bb decay
in a cleaner environment than pp due to the absence of huge QCD multijet background.
In fact, with sufficient luminosity (> 103" ecm™2 - s7!), the LHeC could act as a Higgs
factory in its own right, measuring couplings like the b quark Yukawa with percent-level
precision complementary to LHC or future e”e™ colliders. Third, the LHeC can probe
the top quark via single top production, e.g. e~ p — 1,tb, and even top pair production at
the highest energies. This provides an independent way of measuring the V};, element of
the Cabibbo-Kobayashi-Maskawa matrix and the top EW couplings. Finally, and most
importantly for this thesis, the LHeC would enable new physics searches through preci-

sion EW measurements. By studying processes like NC DIS at high momentum transfer,
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the LHeC would be sensitive to contact interactions of exchange of new heavy particles,
such as leptoquarks or Z’ bosons, that would manifest as deviations from SM predictions.
Semi-leptonic four-fermion SMEFT operators would also yield distinctive effects in e™p
scattering observables. Thanks to its high energy, the LHeC could improve upon existing
bounds from the LEP and even the LHC in many cases. For example, it could cleanly
measure Z boson couplings to quarks by observing the interference pattern of photon
and Z exchange in DIS, which helps break degeneracies that are difficult to resolve with
Z-pole data alone. In conclusion, although the LHeC has not yet been approved and
faces technical challenges, its potential impact on both SM measurements and indirect
new physics searches is extensive. It stands as a natural next step in the evolution of DIS

experiments, bringing the electron-proton probe to the energy scale of the TeV era.

1.2.3. Future Circular Collider in electron-hadron mode

The Future Circular Collider in the electron-hadron mode (FCC-eh) refers to an electron-
hadron collider utilizing the planned Future Circular Collider infrastructure. In the long-
term plan at CERN, the FCC would begin with an e"et collider (FCC-ee) and later
be followed by a 100-TeV proton-proton collider (FCC-hh) in the same 91-km tunnel
[56), 2] (Figure [1.4). Once the 100-TeV hadron machine is running, one can imagine
adding an electron beam similar to the LHeC’s to collide with the 50-TeV proton beam of
the Future Circular Collider in the hadron-hadron mode (FCC-hh). This is the FCC-eh
concept, essentially the big brother of the LHeC, which would extend e™p collisions to
unprecedented energies. With a 60-GeV electron beam on a 50-TeV proton beam, the c.m.

energy would reach about 3.5 TeV. This is almost three times higher than the LHeC and
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Figure 1.4. A schematic map showing a possible location for the Future
Circular Collider (FCC) in the Geneva region, illustrating its relation to

the existing LHC ring.

Image credit CERN, from https://home.cern/science/accelerators/future-

enlar-collid
an order of magnitude beyond HERA. The kinematic reach in DIS would correspondingly
extend to probes of quark structure with a resolution of 107° fm. Such collisions could

explore extremely small 2 values down to 10~7 or lower, and momentum transfers near

10* GeV.
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The design of FCC-eh would likely deploy the same ERL used for the LHeC. Indeed,
one proposal is a staged approach: Build the LHeC ERL during LHC operations, use it
as a full-energy injector for FCC-ee in the 2040s so as to avoid requiring a 100-km booster
ring, and then configure it as the e™p collider for FCC-hh in the 2070s. In this scenario,
the hardware from the LHeC basically gets recycled, namely the racetrack linacs would
first help FCC-ee and later serve FCC-eh. The conceptual similarity means that FCC-eh
would inherit the same general features as LHeC, namely a polarized electron beam (80%
or higher) in an ERL, multipass acceleration, and the possibility of concurrent running
with the pp program, so FCC-hh and FCC-eh data could be collected simultaneously. The
luminosity goal for FCC-eh is of order 10%* to 103* cm~2 - s~!. Achieving high luminosity
with a 50-TeV proton beam would require significant technical innovation but studies
indicate that a few 103 cm~2 - s ! is feasible in a dedicated e~p mode.

In terms of physics reach, FCC-eh would combine the virtues of LHeC, namely high
precision and a clean e~ p environment, with an extended energy range that even exceed
the HL-LHC’s Drell-Yan (DY) reach for certain interactions. It would further sharpen
our picture of the proton’s inner structure. When FCC-hh starts running, proton PDF's
will be a limiting systematic for many measurements and FCC-eh data would be crucial
to push those uncertainties well below the percent level. For Higgs physics, FCC-eh could
produce Higgs bosons via vector-boson fusion at several times the rate of LHeC, enabling
precision measurements of Higgs properties complementary to FCC-ee and FCC-hh. For
BSM searches, the FCC-eh could indirectly sense new physics scales of a few 10 TeV.
The FCC-eh would be particularly great at probing any lepton-quark contact interactions

or new resonance in the lepton-quark channel, since it extends the search for effects in
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e~ q — e q scattering well beyond the LHC’s kinematic range. It is important to note
that FCC-eh is a very forward-looking project. In the current timeline, it would likely
operate in the latter half of the 21st century, possibly after 2070, during FCC-hh’s run.
By then, the chance of seeing the first data may depend less on luminosity and more
on cardio, clean lungs, dietary discipline, good genetics, a bit of luck, and will to live.
Nonetheless, the electron-hadron mode features in strategic plans as part of the complete

physics program of the FCC.

1.2.4. Future Circular Collider in e e™ mode

The Future Circular Collider running in the electron-positron mode (FCC-ee) is a pro-
posed electron-positron collider that would serve as the first phase of CERN’s Future
Circular Collider project. It is conceived as a Higgs factory and a precision EW machine,
exploiting the relatively low mass of the Higgs, which makes an e~e™ collider viable at
those energies. The FCC-ee would be placed in a new circular tunnel about 91 km in
circumference, and it would operate at several c.m. energy values spanning the Z-boson
peak up to the ¢t threshold [116]. Specifically, the baseline includes runs at 91.2 GeV (the
Z pole), to produce an enormous sample of Z bosons, which is often called the Tera-Z
run for aiming at more than 10" Z decays, 160 GeV (the WV threshold) to measure the
W mass and width precisely with threshold scans and to collect 10% W pairs, 240 to 250
GeV (around the Higgsstrahlung maximum) to produce Higgs bosons in association with
Z bosons, maximizing the rate of Higgs production, and 340 to 365 GeV (around the ¢t
threshold) to study top quark pairs and measure the top mass and its EW couplings. In

practice, the machine could run at intermediate to extended energies up to around 365
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GeV; however, the four aforementioned ones are in focus. Due to the virtue of a circular
collider, having many bunches and contiunous collisions, the luminosity goal is extremely
high, at a level 0.5 to 1 x 1036 cm=2 - s7! at the Z pole. We expect roughly 5 x 10'? Z
bosons, 108 WW pairs, 10¢ Higgs bosons, and about 10° top quark pairs to be collected
in total. These numbers are many orders of magnitude beyond what was achieved at
LEP, and even beyond what the HL-LHC will produce for some of these particles. To
illustrate, 10° Higgs events is about 30 times the Higgs yield of the HL-LHC (and even
in a much cleaner environment), and 10'? Z bosons is six orders of magnitude beyond
LEP’s Z samples. This statistical power alone renders FCC-ee so appealing because we
are talking about statistical uncertainties at the per-mille to 107° level in some cases.

While the FCC-ee offers an exceptionally clean collision environment ideal for pre-
cision measurements, achieving longitudinal polarization of the incident beams remains
a challenge. Unlike linear colliders, the FCC-ee cannot sustain longitudinally polarized
beams in collisions due to depolarizing effects like beamstrahlung. Instead, polarization
is primarily used at lower energies for precise energy calibration, particularly near the
Z pole, via techniques developed at LEP. However, for most runs, the beams are effec-
tively unpolarized, limiting direct access to observables such as left-right asymmetries.
Nonetheless, indirect probes remain viable through final-state polarization and angular
distributions across various fermionic channels.

The physics program of FCC-ee is rich and directly targets precision tests of the SM at
the loop level, making it a potent tool to search for virtual effects of new physics. At the Z
pole, by analyzing the shapes of angular distributions and asymmetries of ete~ — ff for

a fermion f, FCC-ee will measure the weak mixing angle sin?(fy) to 10~° precision, the Z
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boson width and couplings to quarks and leptons with improvements of one to two orders
of magnitude over LEP. These measurements constrain EW SMEFT operators, such as
ones modifying Z couplings, at the per-mille level, corresponding to probing new physics
up to multi-TeV scales. Running at the W threshold, FCC-ee can determine the W mass
to an accuracy within 1 to 2 MeV, an order of magnitude better than today’s uncertainty;,
by analyzing the threshold cross section shape. At 240 GeV, the Higgs factory run will
nail down the Higgs boson’s couplings to gauge bosons and fermions with sub-percent
uncertainties in many cases. For example, the hZZ coupling strength can be measured
to 0.2%, hWW to 0.5%, the Higgs total width to a few percent, and rare decays like
h — p~pt observed with meaningful statistics. These Higgs measurements are of great
interest for SMEFT since any deviation from SM coupling values signals new physics.
One example is the k-framework or a global effective field theory (EFT) fit, which allows
coupling shifts to be translated into bounds on higher-dimensional operators. Finally, at
near 350 GeV, FCC-ee will study the top quark with great precision. By performing a
threshold scan of ee™ — tt, it can extract the top quark mass to about 10 MeV and
measure the top’s NC couplings much more cleanly than hadron colliders can. All these
high-precision observables provide indirect sensitivity to heavy new physics. In fact, it’s
estimated that FCC-ee data could detect the effects of new particles up to masses of order
A ~ 10 TeV or even higher, depending on the couplings [108]. For instance, deviations in
Higgs couplings at the 0.1% level would point to BSM states in the 1 to 10 TeV range in
many scenarios, and FCC-ee is exactly aimed at that level of precision. In summary, FCC-
ee would set a new benchmark for precision tests of the SM. If new physics is hiding just

beyond current reach, the FCC-ee’s ultra-high statistics and clean environment offer one
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of the best bets to find its footprints. Its operation, which is planned for about 15 years
starting in the late 2040s if approved, would also lay the groundwork for its successor,
namely the 100-TeV FCC-hh, by providing essential measurements and perhaps clues for

what that higher-energy machine should target.

1.2.5. High-luminosity upgrade of the Large Hadron Collider

The HL-LHC is the nearest-term major project and will be an integral part of the precision
frontier. The HL-LHC is not a new collider but an upgrade of the existing LHC at
CERN to significantly increase its luminosity. After around 2025, the LHC will undergo
its Long Shutdown 3, during which new high-field focusing magnets, crab cavities, and
other upgrades will be installed. The goal is to reach a peak luminosity about 5 to
7 x 103 ecm~? - 57!, which is roughly an order of magnitude beyond the LHC’s initial
design of 1 x 10** cm™2 - s7!. By operating through the 2030s, the HL-LHC aims to
deliver an integrated luminosity of about 3 to 4 ab™' to each of the major experiments
[3, 129]. This is a factor of 10 more data than the entire first 14 years, namely Runs 1
to 3, of the LHC running will ever have produced; for comparison, by the end of Run 3
in 2025, the LHC expects 300 to 400 fb™! per experiment. We expect HL-LHC collisions
to begin around 2029 and extending to 2040 [4].

The HL-LHC’s primary physics motivation is to significantly improve measurements
of processes that were either discovery channels or loosely measured in the first LHC runs.
For example, with 3 ab™! of data, the properties of the Higgs boson can be determined
much more precisely. The ATLAS and CMS experiments project uncertainties of order

2 to 5% on most Higgs couplings, to W, Z, b, and 7 to name a few, and around 10%
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for the top coupling and the Higgs self-coupling. These precision levels, though still an
order of magnitude above FCC-ee’s targets, will test the SM Higgs sector at the loop
level. In the top quark sector, rare processes like htt and Ztt will be accessible in large
numbers, allowing detailed tests of the Yukawa and EW couplings of the top quark.
EW gauge-boson processes, such as diboson production and vector-boson scattering, with
high statistics will probe the self-interactions of W and Z bosons, looking for deviations
that signal the beginning of new dynamics, such as the effects of a heavy resonance or
a nonlinear Higgs sector. The HL-LHC will also push further the direct search reach for
new particles, as well. Because cross sections fall steeply with mass, a tenfold increase in
luminosity typically improves the sensitivity to heavy resonances by up to 30% in mass
reach. Equally importantly, it enables searches for extremely rare processes, like flavor-
changing NC decays of top quarks or boosted Higgs decays into invisible particles, which
may have tiny branching fractions if induced by new physics.

One critical aspect of the HL-LHC is its challenging experimental environment. Higher
luminosity comes at the cost of much higher pile-up. On average, about 140 to 200 over-
lapping pp interactions will occur every beam crossing at design luminosity. This means
each recorded event is buried in debris from dozens of other proton collisions happening
simultaneously. The detectors are being upgraded with new trackers, high-granularity
calorimeters, and fast timing layers to cope with this by improving vertex separation
and timing to distinguish pile-up tracks. From a theoretical standpoint, predictions must
also be improved both in accuracy by means of higher-order QCD or EW calculations,

as well as in incorporating effects like multi-parton interactions, to match the reduced
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experimental uncertainties. The HL-LHC data will demand percent-level theoretical pre-
dictions for many key processes, which in turn justifies the use of frameworks like SMEFT
to consistently include potential new physics effects in those predictions.

In summary, the HL-LHC will extend the LHC’s precision reach in measuring the
familiar observables within the SM and searching for deviations. By the end of its run,
if the SM still holds with no significant deviations, we will have substantially tightened
the limits on many possible BSM scenarios. For instance, fits to the Higgs and EW data
from HL-LHC are expected to constrain certain dimension-6 SMEFT operator scales to
several TeV. However, there will remain blind spots and flat directions that only different
collision systems, like e"e™ or e p colliders, can address, due to the HL-LHC’s inherent
hadronic initial state and limited energy for some observables. This is why the previously
mentioned future colliders are seen as complementary. The HL-LHC sets the stage in
the 2020s and 30s with huge data on the Higgs, top, and EW bosons and its results will

inform and tighten the designs of those future machines.

1.3. SMEFT literature review

The SMEFT extends the SM Lagrangian with higher-dimensional operators built using
the existing SM fields without introducing any new particles, suppressed by powers of a
new-physics scale, A, which is assumed to be heavier than all SM particles and beyond
accessible collider energy. Coupling strength of these new interactions are referred to as
Wilson coefficients. In this section, we present an overview of the foundations and the

current state of the SMEFT.
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1.3.1. Early effective field theory foundations

The idea of parametrizing new heavy physics through an EFT dates back decades, having
its foundation in the principle that heavy degrees of freedom can be integrated out of the
low-energy theory [71), 26, 152]. The first systematic enumeration of higher-dimensional
operators was given by Buchmiiller and Wyler, who catalogued all dimension-6 terms
allowed by SM gauge symmetries [58]. This pioneering list contained redundancies due to
relations like equations of motion. Subsequent work clarified these issues and established
more convenient operator bases [27]. Prior to the LHC era, EFT techniques were already
employed to describe potential new physics in precision measurements. For instance, four-
fermion contact interactions and anomalous couplings were constrained in LEP, HERA,
and Tevatron data using effective operator frameworks [42], [41], [61]. These earlier works

laid the groundwork for the modern SMEFT program.

1.3.2. SMEFT operator bases and theoretical advances

With the advent of the LHC, the SMEFT has been developed into a systematic frame-
work. A complete, nonredundant operator basis up to dimension-6, the so-called Warsaw
basis, was established in 2010 [I10], building upon the earlier classifications. Alterna-
tive formulations or basis choices, for example the Higgs-centric “Higgs basis” and the
Strongly Interacting Light Higgs basis, have also been proposed, which are physically
equivalent to the Warsaw basis under proper field redefinitions [143), [99]. In recent years,
the operator catalog has been extended to even higher orders. Independent groups have
constructed the full set of dimension-8 SMEFT operators [140, 134], and efforts have

progressed toward enumerating operators at dimension 12 and beyond [113]. Systematic
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methods, such as Hilbert-series techniques, have been introduced to ensure all invariants
are accounted for at a given order [117, 118, 104, 105]. Together, these works provide
a structured foundation for the SMEFT as a general extension of the Standard Model.
Alongside the operator bases, significant work has gone into developing the theoreti-
cal toolkit for SMEFT. Complete Feynman rules for the SMEFT have been derived and
implemented in public codes [85], 86, 87, 54, [52], enabling automated calculations of pro-
cesses with dimension-6 effects. The consistency of the SMEFT framework has also been
investigated extensively. This includes studies of renormalization and operator mixing,
as well as constraints on the EFT parameter space coming from fundamental principles.
For example, theoretical bounds such as positivity constraints have been derived, which
restrict certain Wilson coefficients based on the requirement of a unitary, causal UV com-
pletion [31), 156, [84]. These constraints provide an important complementary guide to
the allowed SMEFT parameter space, beyond direct experimental limits. For a compre-

hensive review of the SMEFT formalism and its theoretical underpinnings, see [55].

1.3.3. Phenomenology with SMEFT

The SMEFT framework has been extensively used to interpret and constrain new physics
from experimental data. In the early applications, which took place around the LEP
and Tevatron era and the start of the LHC program, studies typically focused on one
sector or a limited set of processes at a time. For example, four-fermion interactions
and EW precision observables were studied with dimension-6 operators to set bounds
on contact interactions and anomalous couplings [112], [68]. Similarly, Higgs and gauge-

boson processes have been analyzed in an EFT context. The effects of higher-dimensional
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operators on Higgs boson decays, EW boson pair production, and triple gauge couplings
were examined by many groups [66), (94, 153, 115]. Low-energy measurements and flavor
physics provided additional complementary constraints on SMEFT coefficients in semi-
leptonic and meson decay processes [67, [100]. These targeted studies yielded the first
bounds on various Wilson coefficients, often under simplifying assumptions, such as one
operator switched on at a time, and demonstrated the feasibility of probing heavy new
physics indirectly.

As more data accumulated, especially after the Higgs discovery, the emphasis shifted to
global fits that combine information from multiple channels. By the end of LHC Run 1, the
first global SMEFT analyses appeared, incorporating Higgs, EW precision, and top-quark
measurements into a simultaneous fit [79), [114]. This effort intensified with Run 2. Several
comprehensive fits were performed, progressively including tens of independent Wilson
coefficients in the analysis [37, 109}, 29]. Such studies account for correlations between
observables and provide a consistent overall interpretation of new physics scales. In recent
years, global fits have reached even greater scope and sophistication [47, 44, 97 62].
Some analyses incorporate heavy flavor and low-energy data under combined frameworks
or impose flavor symmetry assumptions to manage the large operator set [93), [77]. Others
have integrated PDF uncertainties into the EFT fit, reflecting the interplay between new
physics and proton structure. These up-to-date fits constrain many dimension-6 operator
coefficients at the percent level or better, corresponding to new physics scales on the order
of multi-TeV, and represent a milestone in the SMEFT program’s maturity.

Recently, attention has also turned to effects beyond the leading dimension-6 order

in the SMEFT. In particular, studies have begun exploring the phenomenological impact



53

of dimension-8 operators and higher-order 1/A* contributions. Several works investigate
how dimension-8 terms, or equivalently, quadratic combinations of dimension-6 terms,
could affect LHC observables such as diboson productions, DY distributions, and Higgs
processes [15, 146, [70], 135}, [75]. These analyses aim to discern whether subtle deviations
could arise from neglected higher-dimensional effects, and to what extent current and
future experiments might be sensitive to them. While so far no significant deviations
attributable to dimension-8 operators have been detected, the inclusion of such terms
is crucial for consistent interpretation as experimental precision increases. The SMEFT
approach has now been adopted by the experimental community as well. To illustrate,
the CMS collaboration has released results of fits interpreted in the SMEFT framework

[149].

1.3.4. Projections for future colliders

Boughezal, Petriello, and Wiegand showed that the planned EIC can play an important
role in constraining SMEFT operators. In [47], they studied NC DIS at the EIC with po-
larized beams. They found that certain four-fermion operator combinations are accessible
at the EIC but practically invisible in LHC Drell-Yan measurements. Thanks to polar-
ization asymmetries and the clean leptonic initial state, the EIC can break degeneracies
among SMEFT Wilson coefficients that persist even after LEP and LHC data are com-
bined. Indeed, their fit projections showed the EIC probing new contact interactions at
scales comparable to or beyond the reach of high-invariant-mass LHC dilepton searches,

without suffering flat directions in parameter space. This demonstrates that precision
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DIS measurements, even at relatively low energy scales of just a few TeV, complement
high-energy colliders in constraining EFT parameters.

A Snowmass 2021 whitepaper by de Blas et al. (2022) performed global fits for future
collider scenarios [80]. They considered several run plans: combinations of future e*e™
Higgs factories (FCC-ee and the proposed Circular Electron-Positron Collider (CEPC) in
China), a high-energy muon collider, and the HL-LHC. For each scenario, they included
the relevant projected measurements and fit the expected precision on Wilson coeffi-
cients. For example, their Higgs+EW fit (updating the European Strategy study) showed
percent-level or better measurements of Higgs couplings would dramatically tighten the
bounds on certain coefficients. They also did a dedicated fit to four-fermion operators,
which is challenging at the LHC but would be probed cleanly by lepton colliders running at
the Z pole and above. Separately, they fit the top-quark sector using projected HL-LHC
and future lepton collider top data. The outcome was a broad view that future colliders
have complementary strengths: FCC-ee/CEPC excels in high-precision EW and Higgs
measurements, Muon Collider (with multi-TeV energy) could probe contact interactions
far beyond the LHC reach, and HL-LHC still plays a role in QCD-dominated processes.
In all cases, the fits were reported in terms of Wilson coefficient sensitivities or equivalent
coupling deviations, enabling comparison between scenarios.

A particularly comprehensive projection is the SMEFiT3.0 study by Celada et al. [63].
They updated the global data fit to include the latest Run 2 results for Higgs, top, and
diboson channels, then extrapolated to the HL-LHC at 14 TeV with 3 ab™! by scaling

uncertainties and central values appropriately. The addition of HL-LHC data is expected
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to significantly strengthen constraints on many coefficients, especially those affecting high-
pr tails. Furthermore, Celada et al. incorporated detailed FCC-ee projections at multiple
energies: the Z-pole, the WW threshold, the Higgs factory (240 GeV), and even tt
threshold and 365 GeV runs. Using optimal observable techniques for some channels, they
showed that FCC-ee data would push SMEFT sensitivity to the 1073 level in many cases,
effectively eliminating vast areas of parameter space or probing multi-TeV scales for new
physics. For example, FCC-ee’s precise measurements of the Z lineshape, asymmetries,
and W mass can improve constraints on four-fermion and EW operators by one to two
orders of magnitude beyond the capabilities of the HL-LHC. The study also examined
how these improvements could enhance the ability to distinguish between different UV
models, based on the characteristic patterns they induce in SMEFT coefficients. The
clear message is that future high-energy and high-precision colliders will sharpen SMEFT
tests of the SM dramatically, making full use of the EFT framework to search for new
physics.

*kk

In summary, a vast array of phenomenological studies [112), 103, 68, [66), 122}, 123, 20),
91, 199, 95|, 94, 153, 101}, 67, [79], 115, 100, 16, 18, 17, 37, 109, [78|, 29, 47, [44],
147, 119], 48|, 97, 137, 143, 90, 74, 93|, 114, 53, 150, 25, 92, [78| [29), 107, 98,
62, 15, 46, 97, 80, 125, B0, 45], B3] [39), 63| have firmly established the SMEFT as a
powerful and unifying framework to describe potential new physics in a model-independent
way. The continued refinement of this framework, both in theoretical consistency and in

confrontation with data, is a central component of modern particle physics research.
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1.4. Outline of the thesis

This thesis investigates how future colliders can constrain new physics through pre-
cision observables, primarily within the SMEFT framework. Each chapter addresses a
different angle of this broader goal, with a focus on collider-specific reach, theoretical

clarity, and realistic observables.

e Chapter 2. The Opening Repertoire introduces collider kinematics, the
SMEFT formalism, and statistical tools used throughout the thesis.

e Chapter [3 EIC Wide Shut studies PV DIS observables at the EIC and their
role in resolving parameter degeneracies in SMEFT fits.

e Chapter [4. DISentangling SMEFT: A Few Colliders More combines
SMEFT projections at the EIC, LHeC, and FCC-eh to test complementarity, in-
clude next-to-leading-order QCD corrections, and resolve flat directions in global
fits using EW observables.

° Chapter Transcendental Etude in e~ Minor introduces a novel transverse
spin asymmetry at the FCC-ee to significantly improve sensitivity to the electron
Yukawa coupling.

e Chapter [6 C'P-odd to Joy explores C P-violating dimension-8 gluonic opera-
tors via Collins-Soper angular moments in the DY production with an associated
jet.

e Chapter Conclusion summarizes the findings, contributions, and future

directions in precision collider phenomenology.
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CHAPTER 2

The Opening Repertoire

The only difference between screwing around and science is writing it down.
Adam Savage

This chapter outlines the theoretical foundations and methodological tools used through-
out this thesis. We begin with collider phenomenology, focusing on three main classes of
collisions: deep inelastic scattering, Drell-Yan production, and electron-positron annihi-
lation. These processes are central to precision measurements and new physics searches,
providing complementary access to the quantum chromodynamics and electroweak struc-
ture of the Standard Model. The discussion then moves on to an overview of the Standard
Model Effective Field Theory, which provides a systematic framework to parametrize de-
viations from Standard Model predictions. We then examine the kinematics of many-
particle final states and the construction of Lorentz-invariant phase space. Afterwards,
we summarize the statistical methods used to obtain bounds on new physics parameters.
Finally, we describe the computational frameworks used throughout this work, including
symbolic amplitude calculations, numerical integration routines, and statistical analysis

workflows.
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2.1. Collider phenomenology

We have three main classes of collisions that serve as the core tools of collider phe-
nomenology: deep inelastic scattering (DIS), Drell-Yan (DY) production, and electron-
positron (e~ e™) annihilation. They offer complementary views into the structure of matter
and the quantum chromodynamics (QCD) and electroweak (EW) interactions. Their full
theoretical treatment fills textbooks, and here we focus on the basics relevant to our

works.

2.1.1. Deep inelastic scattering

DIS involves the collision of a lepton ¢ with a hadron H, typically a proton or a light
nucleus, illustrated in Figure 2.1} At leading order, the lepton scatters off a single parton
inside the hadron via neutral or charged gauge-boson exchange, V' = v, Z, W. The scat-
tered lepton ¢ is detected, while the hadronic final state X is treated inclusively. In this
thesis, we focus on neutral-current (NC) DIS processed mediated by a photon or Z-boson
exchange.

A typical DIS process can be expressed as

(2.1) (k) + H(P) = C(K) + X.

Here, k, k', and P are the mometum of the incoming lepton, the scattered lepton, and

the incoming hadron, respectively. The underlying partonic process at leading order is

(2:2) (k) +q(p) — (k) + qr(p"),
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f/

V=0ZW

Figure 2.1. Schematic representation of a typical deep inelastic scattering
event. An incoming lepton, /¢, scatters off a parton inside the hadron, H,
via EW gauge-boson exchange, resulting in an outgoing lepton, ¢, and an
inclusive hadronic final state X. Throughout this thesis, blue lines indicate
leptons, orange lines denote quarks, magenta lines represent EW gauge
bosons, green lines represent gluons, and brown lines indicate scalar par-
ticles. This color scheme is used consistently throughout, and should be
particularly helpful for the synesthetically inclined. Feynman diagrams are

produced using Jaxodraw [3§].

with ¢ a quark or an antiquark inside the hadron. The Feynman diagram that represents
this process is pictured in Figure 2.2

Partonic and hadronic momenta are related by the Bjorken-z parameter, p = xP. The
standard notation for the momentum transfer is ¢ = k — k', with ¢> = —Q?. Some of the

fundamental kinematic relations relevant for DIS are given as follows:

xs Q5 Q> P-q_pq
2.3 -k’: -k/:— ]{;-k’/: . = -_— . = —_— —_— = — = .
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fl

q qr
Figure 2.2. The Feynman diagram for the underlying partonic process for

the DIS at leading order.

At leading order in massless approximation, these relations give us Q? = zys.
For the NC DIS, the matrix element has contributions from photon and Z-boson

exchanges,
(2.4) A=A, + Ay

Let us write down the amplitudes in the parametric form that we call the sleight of
hand. The sleight-of-hand parametrization tells us that the vertex factors are of the form
Vi = iy*(Cfpy Pr+ Cfy Pr) and the propagators of the form A{Y (k) = iNy” (k) Dy (k);
furthermore, when the propagator has the momentum that corresponds to one of the
d = s,t,u channels, we use the shorthand notation A{7,. Here, we call the C factors
the coupling strengths and the D terms the propagator denominators, which we keep in
the closed form until we actually plug in the numbers, which helps us keeping the input
scheme general, as well as keeping track of any mistakes in writing down the amplitude.
To illustrate the latter, if we ever see the factors CZ,% and C% 2 together with polar-

qqZ

ization factors (1 — A.) and (1 + ),) in an electron-quark (specifically not an antiquark)
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scattering, we understand that the quark-Z coupling must be actualy Cﬁlz. The propaga-

tor numerators, namely the N factors, are supposed to be evaluated immediately because

they contain Lorentz structures. For a massless gauge boson in general, we have

(2.5) Ny(k) = =g, V=14,

and for a massive gauge boson, we have

ni.v

(2.6) NI (k) = —g™ + V=2W

2
14

We assume unitary gauge because we work at tree level. It is beneficial to remark that
if the massive gauge boson ever couples to external, massless fermions, the momentum-
dependent term drops (because these terms give zero if we use the Dirac equation of
motion). For the propagator denominators, we may use the full Breit-Wigner form only
when we are certain that we assume a collider energy or an invariant-mass variable around
a specific resonance point, and this can take place only at the numerical step, so we avoid
having to carry around so many terms in our analytical expressions.

We take this opportunity also to introduce our convention for labeling external par-
ticles. Instead of deploying an index scheme such as 1 +2 — 3 +4 4 ..., we call the
incoming particles a and b, and then we call the leading particle 1, subleading particle 2,
subsubleading particle 3, and so on, namely for a collision, we have a+b — 1+2+4+3+. ...
For a decay, we drop b. Consequently, for a partonic process, we use the momenta p,,
Dy, P1, P2, P3, and so on, and in fact, we go on to denote any given process in terms of
momenta as p, +p, — p1+p2+ps+---. We elaborate more on the momenta later in this

chapter. Now, we write the underlying partonic processes for the DIS under consideration
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in a manner consistent with our convention for particle labeling as

(2.7) q(pa) + € (po) = q(p1) + € (p2),
(2.8) q4(pa) + € (pp) = alp1) + € (pa),
(2.9) q(pa) + € (po) = (1) + € (p2),
(2.10) (pa) + " (py) = @p1) + €™ (p2).

With our sleight-of-hand parametrization, we write the amplitudes as

(2.11) Aiem =Y i Vi ual [0V u] A,
V=~,Z

(2.12) At = > i[m Vi ua) [0,V v ALY
V=~,Z

(2.13) Aie = Y i[0aViy o[V A,
V=~,Z

(2.14) et = Z i[04V 01 ] [0 Voo va] Ay,
V=vy,2

where i = 1,2,3,4,5. Here, we assume the familiar Partice Data Group (PDG) particle
identification numbers, namely the quarks are numbers (d,u, s, ¢,b) = (1,2,3,4,5), anti-
quarks picks up a minus sign, and the gluon is 0. For the sake of completeness, we write
Agex = 0.

All Lorentz indices are written in the upstairs position. Since this work is purely
phenomenological, we never deal with Lorentz indices showing up more than twice in any
term, and raising/lowering would be superfluous. Aside from occasional SU(2) and SU(3)

indices on the respective generator and the gauge bosons, which are always explicit, we
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make no use of spinor, flavor, or other group-theoretical index structures. As a result, all
index contractions are unambigous.

We discuss the computation of squared amplitudes in the last section in this chapter,
when we describe our computational infrastructure. Now, we write the partonic cross

section as
(2.15) Git(8) = F / | A [2dLIPS, i =q,7,

and the hadronic cross section is given by

(2.16) wnes9)= Y0 [ Ao filan nr)ous(6),

i=—Ny

where Ny is the number of active flavors, fi(24, ur) is the parton distribution function
(PDF) evaluated at the Bjorken parameter z, and the factorization scale pup, F' is the
flux factor, and dLIPS is the differential Lorentz-invariant phase space (LIPS), which we
detail later in this chapter. We note that if any or both of the incoming beams, H or
e*, are polarized, then we can write a polarized cross section, or yet an observable based
on various polarization states of the two beams that eventually depends on various linear
combinations of polaried cross sections.

In processes involving hadrons in the initial state, such as the DIS process or the
DY production discussed in the next section, the QCD factorization theorem allows the
hadronic cross section to be expressed as a convolution of PDF's and perturbatively cal-

culable partonic cross sections [96], [72]. PDFs encapsulate nonperturbative information

about the momentum distribution of partons inside the hadron, while the partonic cross
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section describes the short-distance interaction and is computed using standard techniques
in perturbative QCD. This separation of scales is valid up to power-suppressed corrections

and forms the theoretical foundation for the expressions used throughout this thesis.

2.1.2. Drell-Yan production

V=y,Z,W

X

Figure 2.3. Schematic representation of Drell-Yan production in pro-
ton—proton collisions. A quark and an antiquark from the incoming protons
annihilate via an intermediate EW gauge boson, V' = ~, Z, W, which decays
into a lepton pair. Additional hadronic activity from the proton remnants
is denoted by X and treated inclusively. This is a general schematic; in our
analysis, we focus on neutral-current production and include a real jet in

the final state.

The DY process describes the production of an EW gauge boson in quark-antiquark
annihilation, followed by its decay into a lepton pair; in this thesis, we focus exclusively

on NC DY processes. At leading order, the partonic process is qg — v*/Z — £~ ¢*. The
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lepton pair kinematics offer precision access to EW parameters and are highly sensitive
to potential new physics contributions.
We study the DY production in association with a real jet (DY) and in which the

final leptonic product is an electron-positron pair. The process can be expressed as

(2.17) p(P.) +p(Py) = j(p1) + V(pas) — (1) + e (p2) + €t (ps),

where ps are the incoming protons, V' is the intermediate EW gauge boson that later
decays into the lepton pair. We take this opportunity to emphasize our notation for
larger processes that have more than four external states and that can be expressed as
chain events. The entire process can be considered as a 7V production, followed by the
decay V' — e~e™. Our labeling scheme is a + b — 1+ 2 + 3 for the process in the big
picture, but since V is the mother for particles 2 and 3, we find it appropriate to denote

it 23. The underlying partonic process at leading order is

(2.18) pi(pa) + i (p6) = j(p1) + Vpas) = j(p1) + € (p2) + € (p3),

where p; and p; could be a quark, an antiquark, or a gluon inside the protons. Since
the initial states of the hadronic process are identical, there is no way of knowing which
parton comes from which proton, which we take care of carefully when we write down the
hadronic cross section. With the real jet accompanying the electron-positron pair, the
Feynman diagrams depicted in Figure look more populated compared to a usual DY
production.

Partonic and hadronic momenta are related by the Bjorken-x parameters, p, = x, P,

and p, = zpP,. The standard quantities relevant to this process are the Mandelstam
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Figure 2.4. The Feynman diagrams for the underlying partonic process for

the Drell-Yan and jet production at leading order.

invariants of the 2 — 2 subprocess p;(pa) +p;(pp) = 7(p1)+V (pa3), namely § = (po +ps)?,
t = (po —p1)? and @ = (p, — po3)®. We denote the dilepton invariant mass by myy
such that mg?® = (p2 + p3)?. From momentum conservation, we notice that this quantity
is also the invariant mass of the EW gauge boson V', corresponding to the momentum
pa3, namely mg? = pos?. Speaking of invariant mass, we have one more, namely the
invariant mass of the jV system, denoted m;;. From momentum conservation, we note
that this is nothing but the Mandelstam-s parameter for the partonic process, namely
§ = (pa+ ) = (p1 + p23)* = my®. At the Large Hadron Collider, where the collider

energy is at the TeV scale, we assume massless fermions. In conjunction with this, we

note that the familiar relation involving the Mandelstam parameters holds true for the
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2 — 2 subprocess p;(pa) + p;(ps) = J(p1) + V(p23); to wit,
(2.19) SHT+0=ma®+mp>+mi2+ma3?=0+040—+ maos® = me>,

SO we can express U = My’ — mjv2 — ¢ to eliminate one Mandelstam parameter. Other
quantities relevant to the DY production are the dilepton transverse momentum, rapidity,
pseudorapidity, azimuthal angle, and beam separation, denoted pr, y, n, ¢, and AR,
respectively, which are all measured in the lab frame, namely the hadronic center-of-mass

(c.m.) frame. For particle momenta k and k', the standard definitions are

1 Ey+ k., 1 k| + k.,
2.20 kr = \/k2 + k2 = Zlog [ === = Zlog (1 —=
(2.20) T 2R uk 2Og(Ek_kz), R 20g<|k|_kz),

k
(221) ¢k = arctan (]{]_y> R ARkk’ = \/Ankzk’ + A¢kk’7

xT

where Angy = ni, — nw and Adpe = ¢ — o
For the NC DY production, the amplitude has contributions from photon and Z-boson

channels,

(2.22) A=A, + Az,

and the interference between these contributions plays a significant role in observables
like Apg, especially in the vicinity of the Z pole. Let us write down the amplitudes,
A;;, with the sleight-of-hand parametrization. Here, ¢ and j are parton flavors. With
Ny = 5, in principle we have 121 amplitudes. Since we have massless fermions and since
we focus exclusively on neutral current (so the flavor change is forbidden, up and charm

amplitudes are equal, and down, strange, and bottom amplitudes are identical), this
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number becomes 25. Furthermore, not all processes exist. The only nontrivial processes

are ij = 20,2 — 2,10,1 — 1,02,01,0 — 1,0 — 2, —11, —10, =22, —20. The sleight-of-hand

amplitudes are

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

i, VY P = 1K wo _p
il quv Ays qugua] [V 2y v3] Avrases

A=Y L i=1,2

V=n,2Z .
+1 [ﬂl Ve Aqu V:;:]VUG] [ﬂg V;M

w o _p
499 v V3] A o3Ey

[0,V AgsVE ug)[uaVYE

KV _xp
qqV qqg eVU3]AV23€1 ]
Ai—i - § ) L= ]-7 2

V=~,Z
= /P v TP VA KV xp
+i[Up Vg AguVogy ta] [UaViey v3] Ase]

il ‘/qZVAqSub] (s Velévv3]A%35§

AOi:Z , 1=1,2

V=~,Z
- [— 14 v a7 H b P
+1 [ul ‘/qquqt V;]unb] [u2 ‘/eeVU:s] AV235a

= /P v T VA By p
[0 Vifog Ags Vaguv1][W2 Ve, vs] Alrpsel

Avi= ) L i=1,2

V=~,7Z
+i[op V2 ApVE v][uaVE

Ky p
qqV qq9 v 3] Ayaseh

75 p v 7 I KV _xp
v [Ua ‘/qquqt VZ]qV ub] [uQ ‘/eeV U3] AV23‘€1

Ai= > , =12

V=~,Z
[ /v p 71K MY
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Here, 55:) is the gluon polarization vector corresponding to the momentum p; when the
gluon is incoming (outgoing), and we have a new vertex factor, Vi = iCuqgTay", and
multiple new propagators, Ay, and A7, The former is the quark propagator in the
indicated channel, d = s,t,u, namely A, = if/ d, where k is such that k% = d. The latter

is the good old EW gauge-boson propagator but now having the momentum po;.

Now, the partonic cross section is given by
(2.29) 0,;(8)=F / |A;;|? ALIPS,
and the hadronic cross section is obtained as

(2.30) os)= 3 % / Ao A2y fi(a, 112) f5 (20, )i (5).

i=—Nj j=—Nj

Adding the partonic cross section this way, weighted by the corresponding factors of
PDF's, makes sure that we remain blind as to which parton comes from which proton.
The angular analysis of the DY production typically takes place by expressing the

differential hadronic cross section in terms of spherical harmonics:

do 30

7
_ *2 *
o 16r |t T D AnYn(@)),

m=0

(2.31)

where Q* = (0%, ¢*) are the Collins-Soper (CS) angles [73], the Y,, are just some linear
combinations of the spherical harmonics Y, Y;' £ Y1, Y, YV} £ Y, !, and Y7 + Y, 2,

namely

1 1
(2.32) Yo = 5(1 —3cp:?), Y1 = sagecyr, Yo= 539*202¢*, Y3 = sgecpr, Yy = cor,
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(2.33) Vs = 59?800, Yo = SogeSpr, Y7 = SgrSyr,
with
(2.34) / A Y, Y, o G,

and the A,, are the CS moments. Here, s and ¢ are shorthand notations for the sine and
cosine of the angle given in the subscript, respectively. We note that the CS angles are
directly related to the lab momenta of the electron and the positron:

2p; /e’ + pr?

me(pe —peh)

2(p B¢ —pl B°)

Mg/ Mue® + pr2

where pt is the transverse momentum of the dilepton system, and E° and pfw are

(235) Co» =

Y

, " = arctan [

the energy and momentum components of the electron and positron, provided that the
jV system is produced in the zz plane in the lab frame. Using the orthogonality of the

spherical harmonics, we obtain

(236) A= S00) 42, A=BY), A=20(%), Ag=4(Yy), A=AV,
(2.37) A; =5(Ys), As=5(Ys), Ar=4(Y7),

with

(2.38) (V) = @.

In a proton-proton collision, the incoming quark typically carries a larger momentum frac-

tion than the antiquark, imparting a net boost to the intermediate gauge boson V' along
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the beam axis. Consequently, the CS polar angle 8* must be reconstructed experimentally

as
(2.39) Cor, = sign(pY)co-

to assign the correct direction [6l, 148], where p¥ is the 2 component of the lab momentum
of the EW gauge boson V. This ensures that the angular distributions reflect the true
kinematics of the process. Notably, the azimuthal angle ¢* does not require such an
adjustment. We use the reconstructed expression in our calculations of the expectation
values of the angular structures.

These angular coefficients, or the CS moments, encode the full angular structure of
the dilepton final state in the DY production. The moments A, through A; correspond
to spherical harmonics up to ¢ = 2, reflecting the spin-1 nature of the intermediate EW
boson in the Standard Model (SM) at leading order. In this picture, the lepton pair
is produced from an s-channel vector current, and the angular distribution reflects the
interference patterns of different helicity amplitudes. Specifically, Ay and A, are sensi-
tive to longitudinal and transverse polarizations, A; and As probe spin correlations and
parity-violating effects, and A, captures the forward-backward asymmetry. The remain-
ing coefficients A; through A; are zero at leading order in the SM but can be activated at
higher QCD orders, by C'P-odd and higher-dimensional SMEFT operators, or simply by
including additional jets in the final state at tree level (so the azimuthal symmetry of the
intermediate states jj...jV is broken). Notably, angular structures beyond ¢ = 2, such
as those corresponding to the B, harmonics [15], arise only through spin-2 interference

patterns and are a hallmark of dimension-8 SMEFT contributions, as these operators
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induce ¢ = 2 partial waves at the amplitude level, allowing for ¢ = 3 harmonics in the

squared amplitude.

2.1.3. Electron-positron annihilation

Electron-positron (e~e™) annihilation offers a clean theoretical and experimental environ-
ment, free from hadronic uncertainties such as PDFs. In this thesis, we study the bb and
semi-leptonically decaying W~W channels, namely e~et — bb and e et — W W+ —
lvjj. With these processes, we can probe EW interactions and quantum interference near
the Higgs resonance, providing an opportunity to access the electron Yukawa coupling.
The use of transversely polarized electron beams and longitudinally polarized positron
beams allows the construction of single and double spin asymmetries that are linearly sen-
sitive to the electron Yukawa coupling. These asymmetries emerge from the interference
between the Higgs-mediated signal amplitude and the SM background. In the bb final
state, the Higgs contribution interferes with the dominant EW production channels; in
the semi-leptonic WW final state, the interference arises between the Higgs and the con-
tinuum WW production processes. In both cases, the signal is enhanced through beam

polarization and the use of angular observables that isolate the relevant interference terms.

Among all possible Higgs decay modes and relevant background processes illustrated
in Figure , the bb and semi-leptonic WV channels are chosen due to their large branch-
ing ratios. These channels offer the best statistical reach while maintaining manageable
experimental complexity. Ref. [88] established the baseline sensitivity using unweighted

cross section measurements in these final states and noted that the use of polarized beams
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e v.Z,W e b e jg e T
_h _h _ﬁ_g _h
e v.Z,W e b e %«,g e T
e Z, W e q,c,b e T e v, Z, W
v.Z v.Z v, Z
e,v,
e Z,W e q,c,b e T e v, Z,W

Figure 2.5. Representative diagrams for Higgs production (top) and its de-
cay into EW bosons or fermions and gluons, alongside the dominant back-

ground processes (bottom). Adapted from Ref. [88].

could enhance the reach, particularly through interference effects involving the Higgs-
mediated amplitude. While that study did not employ polarization-sensitive observables
or optimized event weighting, it pointed out the opportunity for further improvement via
tailored asymmetries. This motivates our focus on constructing spin asymmetries that
are linearly sensitive to the electron Yukawa coupling.

These annihilation processes, due to their cleanliness and sensitivity to small couplings,
complement the hadronic probes discussed earlier and play a critical role in testing the
SM at sub-percent precision.

The processes of interest are

(2.40) ¢ (pa) + € (ps) = bp1) + b(p2),

(241) e (pa) + € (py) = W™ (pr2) + W (p3a) = € (p1) + Tulp2) + uyp(ps) + dg(pa),



74

(242) e (pa) + € (pp) = W (pra) + W (paa) = £7(p1) + ve(p2) + Ty(ps) + dy(pa).

e b e b
_h - V=y,7Z
e b e b
d
e w g
I/e
e 114 Uy
4
d
e w Uy
I/e
e W Uy
4

Figure 2.6. Leading-order Feynman diagrams for e"e* — bb (top) and

e et — W~-WT — lvjj (bottom two).

The leading-order Feynman diagrams within the SM are presented in Figure 2.6, Here,
¢ could be an electron, muon, or tau, and us (ds) represents an up (down) or charm

(strange) quark. In our work, we set the Cabibbo-Kobayashi-Maskawa matrix equal to
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identity. The sleight-of-hand amplitudes are

( )

1[0 Veenta) [W1 Vion Vo) Ans

(2.43) A=
+ Z 06 Veey a] [ Vi va] AT

\ V=+,Z J

for the bb process,

i[0pVeental [ Vi val [0V iy val Vi Ans Ay 10 AW 34

(2.44) A=19 + Z Dy Vieey Ul ulvff/WUQ][U3fo/WU4]V\EIZ//VJWA?/BSA%HA%M
V=~,2

+Z [@beUf/WAVtVfo/Wua] [U/IV f/WvQ] [U3V f/WU4] AWlZA%L?A

for the WW process if the lepton flying off has negative charge, and

( )

i[O Veental [V 1] [@aV ey 03l Vit Dns Ajy 10 A% 34

(2.45) A=19 + Z [0 Veertta) U2fo/wvl][U4fo/wv3]V\%;TWA%A%HA%M
_fyZ

_'_Z [@beyflwAuqu?/Wua] [UQV f/Wvl] [U4V f/Wvg]AWlQ AIP;I(;SAL

Ve

for the WW process if the lepton flying off has positive charge. Here, we have defined new
quantities. For the vertex factors, we have Vipw = iCrpwy* P, as the universal ff'W
coupling for leptons and quarks, Vs, = ¢Cyy, the fermion-Higgs vertex, which means
Cyp is essentially the Yukawa coupling of fermion f, V)i = iCrhwwg"” the coupling

of the Higgs particle to two W bosons, and V‘%‘f‘w = z'C’VWWSI’j‘l/’; s the triple EW
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gauge-boson interaction, with Sg‘;A = g™ (q—p)* + g"*p — k)* + g™ (k — q)”. As for the
propagators, A,q = i}/ d is the neutrino propagator for the d channel, namely k? = OZ,
Aps is the Higgs propagator in the s channel, A}/, is the propagator for V =+, Z in the s
channel, and A’;{,’lzm) is the W propagator with momentum pyz(34). We note that at the
SM, the Yukawa couplings are proportional to the mass of the fermion; however, in our
work, we keep it as Cyp, to distinguish it from the mass term deriving from the equation
of motion. We are interested in the squared amplitudes to the leading order in electron
mass. We expand squared amplitudes to leading order in bottom mass for the bb process
and we assume massless final states for the WW process.

We detail squared amplitude computations later in this chapter, and we emphasize
here an important aspect. We are interested in transversely polarized electrons and lon-
gitudinally polarized positrons. Since we are assuming massive initial states, this requires
careful use of generalized projectors [43]. In the computation of the squared amplitude,

we make use of the relations

(2.46) ux(p)ur(p) = (p + m)PL(S),

(2.47) oA (p)OA(p) = (p — m)P, ().

Here, Pf\c(S ) is the generalized projector for the particle/antiparticle spinors, given by

RPN

(2.48) Py (9) 5

where S* is the polarization 4-vector. We detail our analysis in the relevant chapter later

in the thesis.
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Now, the cross section is given by
(2.49) o(s) = F/ |A|* dLIPS,

for both of the bb and WW processes. We note that since we specify the polarization states
of the incoming beams explicitly by introducing the helicity signs A,,, for the incoming
electron/positron beam, the cross section is technically a function of A\, and A, through

the squared amplitude, a fact that we later exploit to define asymmetries.

2.2. The SMEFT formalism

The Standard Model Effective Field Theory (SMEFT) is a model-independent exten-
sion of the SM. In this framework, one constructs operators of mass dimension n > 4,
denoted O,(C"), deploying the existing SM particle spectrum. Each operator is introduced
with an effective coupling strength, C’lin), which are called Wilson coefficients. These ef-
fective couplings are defined at an ultraviolet cutoff scale, A. We assume that A is heavier
than all SM fields and beyond accessible collider energy. The SMEFT Lagrangian is given

schematically by

1 n n
(2.50) L=Lsu+) o= oo,
k

n>4
We note that the SMEFT operators modify the SM vertices in a gauge-invariant manner
and generate gauge-invariant amplitudes if it is a new interactions absent in the SM.
Gauge invariance is a fundamental symmetry of the SM, ensuring the consistency of the
theory and the preservation of key principles such as unitarity and renormalizability. In

the SMEFT framework, maintaining gauge invariance is essential because it guarantees
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that the extended theory respects the same underlying symmetry structure as the SM.
This constrains the possible forms of higher-dimensional operators. The construction of
gauge-invariant operators prevents the introduction of unphysical degrees of freedom and
maintains the predictive power of the SMEFT extension.

Let’s consider the operators that are relevant to our studies and that we use in our
works presented later in the thesis. We start with the DIS. At the parton level, the DIS
is represented by the interaction of a leptonic current with a quark current by exchanging
an EW gauge boson, which we assume to be neutral. Thus, there are operators in the
form (¢T'¢)(gl"q), where ¢ and q are Dirac fermions and I' and I are some Dirac matrices,
that could contribute to the amplitude. At high energies, we assume massless fermions,
which are then chiral eigenstates, and since the SM amplitude has definite chiral structure,
we can have only operators of the form (¢v*Px¢)(gv,Pyq) that conserve helicity, where
Px and Py are the chiral projections operators, P, or Pg. A fermionic field has mass
dimension 3/2, so such an operator would have dimension 6, so this is the lowest dimension
we can consider to extend our amplitudes to a new physics scenario. Thus, our dimension-

6 operators are of the form
(2.51) Oxy = (04" Px0)(q7, Py q)-

We call operators of this form semi-leptonic four-fermion operators. Now let ¢ and ¢
denote SU(2) left-handed doublets and e, u, and d denote SU(2) right-handed singlets.

In the Warsaw basis [110], there are seven such operators:

(2.52) Ol = (0@, 05 = ' 0O)(@r'9),
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(2.53) Op = ((y"0) (Wu), O = (€4"0)(dy,d),
(2.54) O, = (8Y"e)(@yuu),  Oca = (€7"e)(dy,d),
(2.55) Oge = (@"€)(@9),

where the 7! are the Pauli matrices. The corresponding vertex factors are of the form

(2.56) Vxy = iCxy [v" Px]e[yuylq,
where ¢ and ¢ indicate the leptonic and quark currents, and

(2.57) Oyt =CWFCY, Ol =Cuja. Cif = Coey Cpt = Ceuya

Lq >

for the up or down-like quarks. The SMEFT Feynman diagram for the underlying partonic

process of the DIS is painted in Figure 2.7]
4 4

q q
Figure 2.7. The SMEFT Feynman diagram for the underlying partonic pro-

cess of the DIS generated by the semi-leptonic four-fermion operators.

The corresponding amplitudes are

(2.58) Aie- =Y Cigy [ty Pxw] [ty Pru),
XY
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(2.59) Ai- =Y Ciy [ty Pxw][D,7" Pyruvi],
XY

(2.60) Ajer =Y Cley [057" Pxva] [t 7" Pyrug)
XY

(2.61) Alicr = Y Cly [0 Pxva] [0y Pruvi],
XY

where ¢ = 1,2,3,4,5 represent quark flavors d, u, s, ¢, b. We add these amplitudes
to the corresponding SM amplitudes given in Egs. —. At this point, we
emphasize that we assume flavor universality of the SMEFT operators. To illustrate, the
operator Og) could describe the electron-up quark coupling, as well as muon-strange quark
coupling. Furthermore, since we have NC interaction and since we are in the massless
limit, up and charm quarks, as well as down, strange, and bottom quarks are identical at
the amplitude level. This is the basis of our calculations for Chapter [3]

The next we can do is to consider the SMEFT corrections to the f fV vertices, where

V' is a neutral EW gauge boson. We expect these corrections to be of the form

(2.62) Vi = Visu (1 +) Ckvk> ,
k

where vy, is some SMEFT shift to the SM vertex factor characterized by the Wilson
coefficient C'y,. We note that these modifications respect gauge invariance and all the un-
derlying symmetries of the SM Lagrangian. In the Warsaw basis, there are 10 dimension-6

operators that cause this kind of a modification:

(2.63) Opwp = (P 0)W, B, Oup = (¢'Dup) (9" D"p),
(2:64) O = (i D*¢)(0r"0), O = (#li D *r o) (B 7'0),
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(2.65) Ope = (¢1i D "0)(@r"e),

(2.66) 0l) = (¢ Do) @r"q), OF) = (¢'i D *r'o)(ar"r'q),
(2.67) Opu = (p1i D)@ u),  Oga = (¢'i D "¢)(dy"d),
(2.68) Ow = ((4"0)(Iy"0),

where ¢ is the SU(2) scalar doublet, W/, and By, are SU(2) and U(1) gauge boson field
strength tensors, D, is the covariant derivative, and as is standard in this basis, £ and ¢
are SU(2) left-handed doublets and e, u, and d are right-handed singlets. The left-right

covariant derivative is such that
(2.69) ol B hp = pliD*¢ + h.c.,

where h.c. denotes the Hermitian conjugate. We are only interested in the Higgs vacuum
expectation value, v, from the scalar doublet and the gauge-boson coupling terms in the
covariant derivative. It might not be obvious at first glance how the operators without two
fermionic fields and a covariant derivative could possible modify the f fV vertices, and the
answer is via the input scheme. In the G, input scheme, also known as the {Gp, a, mz}
input scheme, we perform the transformation from the bare parameters {gs, g1, v}, where
g2 is the SU(2) coupling and ¢; is the U(1) coupling, and the operators Oy, Oge), Oyp,
and O,w p naturally contributes to said transformation, namely the first two to the Fermi
constant via the muon decay and the last three via the spontaneous symmetry breaking,

or the Higgs mechanism. We note that the SMEFT shifts to the ffV vertices scale as

v?/A?% whereas the semi-leptonic four-fermion operators scale as s/A?. Ref. [20] has the
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expressions Gg, mz, and « (or actually e = v/4ma) in terms of bare parameters go, g1,

and v, as well as the relevant Wilson coefficients:

4Gr 2 20, ACY

2.70 __2 400
v2 10t 10t
(2.71) my = Z(gf +93) + gp%n(gf +g3) + 57339192 Caws,
2
g192 VT g192
2.79 e=_—92 (1T NP ~ WB).
(2.72) \/g%Jrg%( ANgi+g3 7

We can then solve these three equations for the bare parameters g, g1, and v perturba-
tively, namely by assuming ¢ = ¢© + e¢'V), where ¢ is any of the bare parameters and

¢ = 1/A? and then borrow the ffV vertices in terms of the bare parameters from [85]:

2

91920°Cuow B
2.73 vE =VH {1——‘p},
( ) ffy eey,SM (912 + 922) A2

‘/e!éZ =
VL “{1 v’ ((912 + 92%) QCSZ) + (91 + 92%) 209(0?2) + 91 (91 — 92) 92 (91 + g2) C@WB) }
eeZ,SM (g14 _ 924) A2
v (1% + 92%) 2Cpe — 29192°CowB)

2.74 +VE “{1 . e 0 }
( ) #SM 2012 (12 + g22) A?

we
VuuZ -

v? <3 (1% + 92%) 20&1) -3 (g% + g2%) QCg(o%I) + 192 (92 — 3g1?) CngB) }
(912 = 392%) (1% + 92) A2

v? (40192°Cowp + 3 (91 + 922) 2Clou) }
4912 (912 + g2%) A2 7

VuI{LZ,SMM{ 1+

(2.75) —H/;ZZ,SMM{l +
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[
‘/ddZ_

v? (3 (91° + 92°) 20&) + 3 (91° + 92°) 20&? + 192 (3g1* + 92%) O@WB) }
(912 + 92%) (912 + 3g22) A2

v (3 (91 + 92*) *Cpa — 29192°Cow ) }
2012 (12 + g2%) A2 ’

Vd%lZ,SM# { 1+

(2.76) +Vd]§Z,SMM{1 -

where Vfl}v,SM are the corresponding SM couplings, for which we have considered left and
right-handed Z couplings explicitly separately. Now armed with these modification, we
can go back to the SM amplitudes and introduce these SMEFT contributions, which is
what we do in Chapter [, on top of introducing the more familiar semi-leptonic four-
fermion operators.

For the DY process accompanied by a single jet, we focus on one particular set of
operators, namely ones that can generate C'P-odd observables. The unpolarized SM
cross section is C'P-even, and the LIPS is C'P-even. If we consider our favorite class of
operators, namely the semi-leptonic four-fermion operators, coupled to the gluonic field
strength tensor, we can generate C'P-odd observables via SM-SMEFT interference. One
immediate example is the CS moments As, Ag, and A;. A four-fermion operator coupled
to a gluonic field strength tensor means a dimension-8 operator. Emphasizing the helicity

conservation in SM-SMEFT interference, we need operators of the form

(2.77) Oxvy = ((v" Px0)(@y" Py T q)Gy,.
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Such operators have nonzero contributions to the DYj amplitudes. In the Murphy ba-

sis [140], there are seven such operators:

(2.78) Ohlo, = (0@ T4 )Gl O = ((y'r'0) (@ TA7' )G

pvo 2q2g — pvo

(2.79) Opy2g = (0y"0) (E”y”TAu)G;‘V, Opgy = (Z’y“f)(?l’y”TAd)Gﬁw
(2.80) Ocruzg = (@7"e)(Wy" T )G, Ocgeg = (@) (dy' TAd)GY,,,
2351) Oty = ()@ TA0) G,

where ¢ and ¢ are SU(2) left-handed doublets, e, u, and d are right-handed singlets, G;‘V
is the gluon field strength tensor, the T4 are the SU(3) generators, and the 7/ are the
Pauli matrices. Since we want specifically one jet, we discard the nonabelian term in the

gluon field strength. Thus, the vertex factors are of the form
(2.82) VI = iCxy [y Px ey Prly T [(—0) (phg”” — pyg")] |
where p, is the gluon momentum, assumed outgoing from the vertex, and

(2.83) O =Clhly FORh Cri = Coijarg,  Chit = Corergr Ol = Coryy.

a*g’
The SMEFT Feynman diagram for the underlying partonic process of the DY is depicted
in Figure [2.8
The corresponding amplitudes are

(2.84) Aij =Y Cxyl[iay" Pxvs][@,n" Pral T (phg"” — plg"")eb.
XY
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q 8 q q q q
Figure 2.8. The SMEFT Feynman diagram for the underlying partonic pro-

cess of the Drell-Yan production with a jet, generated by the semi-leptonic

four-fermion operators coupled to a gluon field strength tensor.

Here, i,j = —2,—1,0,1,2 are the parton flavors @, d, ¢, d, and u. Technically, we go
from —Ny to Ny but even if we consider multiple generations, going from —2 to 2 is
sufficient because we consider only neutral current inteactions so flavor is conserved, and
we assume massless quarks, so up and charm amplitudes, as well as down, strange, and
bottom amplitudes are equivalent. Meanwhile, ¢; and g; are quark spinors depending on

the process, p, is the gluon momentum, and €/ is the gluon polarization. We have

(2.85) ij =2—2,1—1:q =u.,q; =T,y = p1,4 = €77,
(2.86) ij =20,10 : ¢ = uq,q; = U1, pg = —pp. €5 = €},
(2.87) ij = —=20,-10: ¢; = v1,§; = Vo, Py = —Db, ) = €},
(2.88) ij =—22,—11: ¢ = w, q; = Va, py = p1, 6" = €},
(2.89) ij = 02,01 : ¢; = wp, @; = U1,pg = —Pa, € = €h,
(2.90) ij =0—2,0-1:q =v1,q; =V, Py = —Pa,f = €h.

We add these amplitudes to the corresponding SM amplitudes given in Eqs. (2.23)—(2.28)).
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2.3. Particle momenta and many-particle Lorentz-invariant phase space

Consider a two-body decay in the form a — 1 + 2. In the rest frame of the decaying
particle, we know the expressions for the particle 4-momenta, which derives from a cute
exercise of taking dot products in conjunction with the conservation of momentum, p, =

2 2

p1 + p2, and the invariant masses, p> = m?2, p? = m?, and p3 = m3. If we write p =

(E, |p|p), where we use bold letters to denote the usual 3-momentum, we have

(2.91) E: =m,, p:=1(0,0,0),

m2 +m?,, — m2 2 2 m2
2 92 (] _ a 1/2 2/1 o . v(ma7m17m2)
(2.92) 1/2 = om 5 |P1/2| = om )
(2.93) ﬁI/2 = +nJ.

Here, the superscript bullet indicates that this is the rest frame of the mother particle,

and we have defined

(2.94) V(z,y,2) = VA=Y, 2)

as the square root of the Kallén function,

(2.95) MNz,y,2) = 2* +y* + 22 — 2(wy + yz + 22),

and n; is the spherical radial unit vector (with an arbitrary choice for the z* direction)

defined by the spherical angles of the leading particle 1,

(296) ’fll - (Selcgola 50, 59017 691)7
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where s and ¢ are the sine and cosine functions of the angles indicated in the subscript,
respectively. The quantity m,, which is the mass of particle a, is the available energy for

this decay. The geometry of the decay is illustrated in Figure [2.9

0 .
1 P
Pa
\/
Py ©1

Figure 2.9. The geometry of the 2-body decay in the rest frame of the

mother particle.

Next, consider a 2 — 2 scatter in the form a + b — 1 4+ 2. In the c.m. frame of
the ab system, we also know the expressions for the particle 4-momenta, which satisfy
Pa + Do = p1 + p2 and p? = m? for i = a,b,1,2. The momentum components are given by
E2+mj,, —my, V(E2,m2, m2)

28 O

. V(E?,m3, m3 R Lo
|p1/2| = 251 2), D12 = :i:’l’Ll.

(297) ;/b = ﬁa/b = :l:(ou 07 1)7

2& ’

Here, the superscript bullet now indicates the c.m. frame of the incoming particle, and
we note that by assuming the incoming particles to move along the 2z axis, we explicitly
assume that this is the first of a chain of processes, upon which we elaborate shortly in

this section. The quantity £, which is the invariant mass of the ab system, is the available
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energy for the final states, namely (p, + py)? = £%. Clearly, it is the Mandelstam-s
parameter of this 2 — 2 process. The geometry of the scattering is depicted in Figure

2.10

Figure 2.10. The geometry of the 2-body decay in the center-of-mass frame

of the incoming particles.

Let’s discuss what happens if we have a process of the form a +b — 1+ 2 4+ 3 or
a+b — 1+2+3+4. To illustrate the notation, we can give the processes p+p — j+e~ +e*
and e + et — (~ + U+ j+ 7 as examples. The former is a DY production with
a real jet emission accompanying the EW gauge boson V', which later decays into the
electron-positron pair. The latter is more intricate in the sense that we now have a lot
more possibilities; thus, we simplify the picture by focusing on an electron-positron pair
colliding to produce two W bosons, one of which decays into the lepton pair and the other
into two jets, which is one of the processes we study later in this thesis. A fine trick to

study these many-particle processes is to break them into known pieces, e.g. a 2 — 2
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scattering or a two-body decay, in a chain of subprocesses. Thus, the first example can
actually be rewritten as p+p — j+ V followed by V' — e~ +e™, and the second example
ase” +et — W~ + W followed by W~ — £~ +7 and W' — j + j, which we precisely
know how to tackle.

This brings us to the next topic, namely the many-particle LIPS. For a process with
two particles in the final state, e.g. @ - 1+ 2 and a + b — 1+ 2, the formula is well

known:

2 2 2
(2.99) /dLIPS2 _ VP mimy )/dﬂ;,

3272 P2

where P is the total incoming momentum in the relevant c.m. frame, i.e. P = p, for the
decay (so P? = m,?) or P = p® + p; for the scattering (so P? = £?), and Q} = (01, ¢1)
are the spherical angles of the leading particle in the said c.m. frame. Now we want a
formula for the many-particle LIPS, which we build up from scratch. To this end, we
can consider either a many-particle decay or a scattering with many particles in the final
states, which are equivalent for our purposes if we simply express the processes in terms
of particle momenta as P — p; + ... + p,. Each outgoing particle is massive with mass

m;. We have

(2.100) / dLIPS, = / {H (‘;ZZ (27) 6(p® — m?) e(pg))} (2m)* ot (P — Z pi) :

where ¢ is the Dirac delta function and 6 is the Heaviside step function. Now consider
the process P — p1 + pa + p3, so n = 3 explicitly, and break it into P — p; + po3 followed

by pag — p2 + p3. Let mog be the invariant mass corresponding to the momentum po3, i.e.
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Pas? = mas®. We have

1
/ ALIPS; — PR / d*pr d*padips d(pi® — mi®) 6(pY)

(2.101) x 8(pa® — my?) 0(pY) 0(ps® —ma?) 0(p3) 6*(P — p1 — p2 — p3).
Resolve an identity of the form
(2.102) 1= /d4Q dM? §(Q* — M?) & (Q — Zpk> ,

k

where () is a momentum equal to the sum of some other momenta, ), pj, and M is the

invariant mass corresponding to ). With QQ = pe3 and M = ms3, we obtain

1
/dLIP83 = W /d4p1 d4p2 d4p3 d4p23 dm232 5(2912 - m12) 9(19(1))
X 0(pa® — ma®) 0(p3) 6(ps® —mi®) 6(p§) 6*(P — p1 — p2 — p3)

(2.103) X 0(pas® — mas®) 0% (pas — p2 — ps3).

If we rearrange the terms, we get

1
/dLIPS3 = W/dm232

X /d4p1 d4p23 5(1912 - m12) (9(]9(1]) 5(29232 - m232) 54(P — M —pzs)

(2.104) X /d4p2 d'ps 0(pa® — ma?) 0(py) 0(ps® — m3?) O(p3) 6*(p2s — p2 — p3),
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which is nothing but the product of two 2-particle LIPSs convoluted over the invariant

mass of the particle that lives in the intermediate state at which we split the process,

/dLIPS?,[P — p1+Dp2+Dp3) = /dm232
X /dLIP82 [P — p1 + pos)
(2.105) « / ALTPSs [pss — ps + ps).
If we repeat the calculation for the 4-particle final state, P — p; + ps + p3 + pa, by first

breaking it into P — p1o + p34 followed by p1o — p1 + po and psy — p3 + ps, we find that

we need two invariant-mass integrals, corresponding to the two split points of the process:

/dLIPS4[P — p1+p2+ps+ ] = /dm122/dm342
X /dLIPSQ[P — D12 +p34]
X /dLIPSQ[Pm — p1+ Do)

(2106) X /dLIPSQ[p34 — p3+ p4].

This is a robust method of building the n-particle LIPS with a sleight of hand. Fur-
thermore, since each 2-particle LIPS is Lorentz-invariant on its own, we are at liberty to
evaluate each in any frame for which our hearts seek. As it turns out, the most convenient
frame is the c.m. frame of the total incoming momentum that provides the available en-
ergy for the process. To illustrate, in , for the first subprocess, we go to a frame

where P = 0, and p;» = 0 for the next one, and p3; = 0 for the last one. We already
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know the expression for the 2-particle LIPS. Each such LIPS goes like

V(i K, ¢ .

where the factor 8 in the denominator is merely for convenience, and the rest is just
figuring out the factors of 27 in the total phase space. After careful power counting,
we find this factor to be equal to 1/(27)3"~* for the n-particle LIPS. Namely, for the

3-particle LIPS for the process P — p; + pa3 — p1 + p2 + p3, we have

1
/dLIPSg = [W] _3/dm232

V(P?,my?, mas?) V (mas?, me?, ms?)
2.1 dQs dQs
( 08) X [ 8P2 / 1 8m232 / 210

where the solid angles are the spherical angles of the leading particles for each subprocess
and the superscripts bullet and circle denote the c.m. frame where P = 0 and ps3 = 0,

respectively. As for the 4-particle LIPS for the process P — pio + p3s — p1 + P2 + p3 + pa,

we have
1 V(P27m 27m 2) .
Jaues.= || [ amt oo [FE) fags
V(m122am127m22)/ v(m3427m327m42>/
2.109 dQs doz
( ) X |: 8m122 1 8m342 3 )

where this time the superscripts bullet, circle, and asterisk indicate the c.m. frame where
P =0, p1» = 0, and p3y = 0, respectively. The integration limits for the solid angles

are as usual, and the bounds of the invariant-mass integrals are obtained by requiring the
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nabla functions to be real or equivalently the Kallén functions to be positive. This can
be done for instance by using the Reduce command on Mathematica.

We have seen the power of splitting the process at convenient and perhaps physically
meaningful points to facilitate the phase-space calculations. One important take-home
message is that we can work in any frame for each subprocess to write down the momen-
tum. This frame is usually the rest frame of the mother if it is a decay or the c.m. frame
of the initial states if it is a 2 — 2 scattering. Once we start splitting our process, we
actually generate subprocesses that are nothing but 2-particle decays. For the final-state
particles of these processes, the explicit momenta are always given as discussed earlier:
the mother is at rest, the leading particle flies off in a direction defined by the familiar
spherical angles, and the subleading particles takes off in the opposite direction. We note
that since we are breaking our processes at intermediate states, the mother is always
massive with the corresponding invariant mass, not the on-shell mass. We also note that
whilst we can make simplifying assumptions such as letting the jet and the gauge boson
be emitted in the xz plane of the lab frame for the aforementioned DY j process so as to
eliminate one azimuthal angle (so its integration just contributes a factor of 27); however,
both states are intermediate, as the two W particles in the above-mentioned example of
the electron-positron collision, we cannot make this simplification.

Now we know how to write down the LIPS for any process and the particle momenta
explicitly. However, we have mentioned only the relevant c.m. frame for each subprocess.
We still need to bring all the momenta into one common frame, which is usually the lab
frame, i.e. the c.m. frame of the two protons in the said DYj process or the c.m. frame

of the electron-positron pair in the aforementioned example. The transformation takes
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place using a Lorentz matrix, A. Given the form of the momenta in the c.m. frame of
any given subprocess, we perform the Lorentz transformation as a rotation around some
z axis (to eliminate the azimuthal angle) followed by a rotation around the y axis of the
frame under consideration (to get rid of the polar angle so now we have a one-dimensional
motion) followed by a boost. This transformation is carried out with respect to the
intermediate particle at which we split the process. We illustrate this yet another robust
method of handling momenta later in the thesis, specifically designed for the process under
consideration.

Once we have the all momenta boosted into a single frame, there are certain sanity tests
that we can perform to verify our results. For instance, for the process a+b — 1+...+n,

we should be able to verify

(2.110) /dLIPSn (p1 +p)? = /dLIPSn (p1+ps)=-- = /dLIPSn (Pu_1 + Pn)?,
and

/dLIPSn Do P1 =" "= /dLIPSn Da * Pn
(2.111) = /dLIPSn Dy P = ---/dLIPSn Db * Dn,

when the initial-state particles have the same mass and the final-state particles have the
same mass. We call these the symmetry integrals, where the symmetry refers to the
permutation symmetry of the final states. The LIPS becomes essentially particle-blind if

all the final state particles have the same mass. If the initial-state particles have different
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masses, then the second relation breaks into two, namely the p, integrals are equal to one

number and the p;, integrals are equal to another.

2.4. Statistical analysis

Statistical analysis is, without exaggeration, half of the game we play here, and a basic
x? test statistics constitutes the backbone of our calculations. Let’s take our favorite
observable, Q, and consider a set of data points with Np bins, {Qb}é\[jl, each with a set
of uncertainties, {0Q1, 0 Qap, - - .}{)Vfl. These may be statistical uncertainties, systematical
uncertainties, uncertainties deriving from higher-order corrections, PDF uncertainties,
and renormalization and factorization scale uncertainties. Some days, all or only a subset
of these are correlated across bins. We discuss how to build the uncertainty matrix in
each study in the subsequent chapters of the thesis, whenever relevant, in great detail.
This section aims to guide the user what to do next once they have in their hands the
uncertainty matrix, denoted &.

We need a fit or model function to make predictions. At this point, we use the SMEFT

version of our observable, which looks like

Nw
(2.112) Q, = Qsnp + Z Cw Qb

w=1
after linearization, where Qg is the SM value at the b*" bin, Q. is the SMEFT correc-
tion characterized by the Wilson coefficient C,, and we assume Ny, Wilson coefficients
activated. This is actually the case in our works involving SMEFT because we activate
either dimension-6 or dimension-8 operators alone and in the squared amplitude, we take

into account only the SM squared and SM-SMEFT interference terms. Thus, we have a
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linear fit model. With this, we can write the x? test statistic as

Np Np

(2.113) 2= ZZ(@b — Qb)%b’(@b’ — Qy),

b=1 b'=1
where 7 = &1 is the inverse of the uncertainty matrix. At this point, one has every
right to question what the data points we use are since the colliders of interest live in
the future. We use made-up data, which we technically refer to as pseudodata (but we
continue calling them data because that’s all we've got). We generate pseudodata by
smearing the SM predictions with the experimental uncertainties predicted by people

who know better:
(2.114) Q, = QSM,b + 7y GQERCOT 4 ZT; 5Q20rr’j,
J

where §Qp"“ is the total uncorrelated experimental uncertainty at the b bin added
in quadrature, §Q;”™ is the j* correlated uncertainty, and r, and 7’ are unit normal
variates, 1y, 7 ~ 47(0,1). We introduce the correlated uncertainties with a different unit
normal variate, which is fixed across the bins, to ensure that all the bins feel the shift
uniformly.

Since our fit model is a linear function of Wilson coefficients, the x? function is a

quadratic function of Wilson coefficients. We may as well write

(2.115) =k 3 3 = : :
: X =ko+ ) kwCot Y Y kauwCuCuw = ko + ki - C + C - kyC.
w=1 w=1w'=1

We now minimize this expression with respect to the Wilson coefficients. The vanishing

gradient of the expression gives us the values of the Wilson coefficients that minimize the
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x? function,
(2.116) Vx*(C) =0,

and the Hessian evaluated at these values give us the Fisher information matrix [136), 13),

92],
(2.117) 7 = SVV(0)

Here, all the derivatives are with respect to the variables of the parameter space, namely

the Wilson coefficients. With the quadratic form of the x? function presented above, we

have

(2.118) C = %k;lkl,
and

(2.119) F = k.

Once we have the Fisher information matrix, we can do anything. We can obtain non-
marginalized bounds for Wilson coefficients around some central value with a desired
confidence level (CL), which is equivalent to the best-fit analysis of the model function
as if we turn on one Wilson coefficient at a time, or confidence ellipses at a desired CL,
which is equivalent to the best-fit analysis with just two Wilson coefficients activated at
a time, or marginalized bounds and marginalized confidence ellipses when a larger set of

or all the Wilson coeflicients of interest activated at a time.
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Before we proceed, there is one more concern we need to address. Our statistical
analysis strongly relies on pseudodata. If we generate one set of pseudodata, namely if we
perform just one pseudoexperiment, we might as well obtain best-fitted C values away
from the origin. However, we know that the best-fit values of the Wilson coefficients must
be centered at zero. We are sure because our pseudodata generation procedure deploys
unit normal variates, which are just random numbers picked from a Gaussian distribution
centered at the origin. Therefore, in order to ensure that our fits are reliable, we need to
create statistics. This goes on to say that we repeat a finite number of pseudoexperiments,
denoted Ng. Our best-fitted values for Wilson coefficients and our Fisher information
matrix are meaningful only when we average over the pseudoexperiments. Let’s put a
subscript e to indicate the e™ pseudoexperiment. Then, our previous notation for the
best-fit values and the Fisher information matrix evolve into C, and .%,, respectively.
The best-fit values of the Wilson coefficients averaged over pseudoexperiments is given by

Ng -1 ng
(2.120) C-= (Z %) > 7.C.,
e=1 e=1

and the Fisher information matrix averaged over the pseudoexperiments is given by
1
(2.121) F === 7.

Now we claim that we do not even need to run pseudoexperiments and we prove it.
The disclaimer is that what follows works only when the model function is a multilinear
function of Wilson coefficients so the y? function is quadratic in Wilson coefficients; for

instance, it works when we have only dimension-6 SMEFT operators or only dimension-8
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SMEFT operators and when their effects are included in the squared amplitude only via a
SM-SMEFT interference term. Let’s show how. In the x? function, we have the difference
between the observed value, which is the SM entry plus uncertainties added after scaled
by random numbers pick from unit normal distribution, and the predicted value, which is
just the SM value plus the SMEFT corrections each characterized by a particular Wilson

coefficient. The SM parts cancel out and we are left with

(2.122)

X2 — (Ow wa _ Tb 5Qll)1ncorr _ T, 5ngrr))%b,<cw/ Qw’b' _ Tb’ 5Qzllncorr _ 7”, 6Qlc)§)rr)’

where we assume summation over b, ¢/, w, and w’. If we rewrite this as

(2.123) ) =ko+k -C+C-kC,

then we see that

(2.124) Ky = =y (1" Qup Q5™ + 1" Quuy 0Q5° + 14, Quy 0™ + 1y Qupy 0Qp" ™),

and

(2.125) koww = Ay Qub Quty -

Thus, whilst the best-fit values of Wilson coefficients certainly depend on pseudoexperi-
ments (because they depend on k; and k; depends on the random variates), the Fisher

information matrix depends only on the uncertainty matrix and the SMEFT corrections,
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which is independent of random variates and hence of pseudoexperiments. With % be-
ing constant across pseudoexperiments, the formula for the averaged best-fitted values of
Wilson coefficients simplifies to

_ 1 _
2.12 = — .
(2.126) C=x > C.

Now we can hypothetically carry out infinitely many pseudoexperiments to ensure that
the Wilson coefficients are best-fitted around zero.

The take-home message is that if the fit model is linear in Wilson coefficients, then
we don’t really need to run pseudoexperiments to create statistics. This may seem like
a trivial statement but it is au contraire. Experience shows that for a single Wilson co-
efficient, running 1k pseudoexperiments guarantees that {Ue}évfip is distributed normally
around the origin beautifully by visual inspection. When we activate two Wilson coeffi-
cients, this number easily becomes 50k, and for six Wilson coefficients, we quickly reach
10M pseudoexperiments to make sure the results are sensible. This is nothing but an
unfortunate waste of computational resources and time. Occasionally, we introduce other
parameters in an attempt to improve the bounds on SMEFT parameters, and we might
have to do it in a nonlinear manner. In this unfortunate occasion, one has to run a couple
pseudoexperiments for statistically sensible results.

We are now at a point where we have .% in our hands and we want to obtain bounds and

draw confidence ellipses. First, we emphasize that the Fisher matrix is always symmetric

and positive definite. Furthermore, the inverse of the Fisher matrix gives the symmetric



covariance matrix, ¥, which looks like

(2.127)

/V:

ot

£120102

2
05

P130103

P230203

P1Nw 010 Ny,

P2Nyw 020 Ny,

2
O'NW

sym
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where o, is correlated (or marginalized) 1-sigma, or about 68% CL, uncertainty of the
Wilson coefficient C,, and p,. is the correlation of C,, and C\,. The correlation matrix

is obtained by

1 pi2 piz -+ ping
I pag -+ pany
1 1 1 1
(2.128) 1 ... : :diag(—,...,—)”Vdiag(—,...,—)
01 O Ny 01 O Ny
1

sym
Furthermore, if we are combining more than one independent experiments or data sets, we
add up the individual Fisher matrices and then take the inverse to obtain the correlations
and the uncertainties. This is to say, if we combine data from distinct data sets or
independent experiments, the factor 1/Ng in Eq. drops. The reason is that
pseudoexperiments correspond to one set of run parameter or configuration so they are
technically not independent and that pseudoexperiments are required only to generate

statistics (so they should not accidentally improve the allowed bounds). Now, we discuss
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how to actually obtain bounds and confidence ellipses. The nonmarginalized interval of

Wilson coefficient C,, is given by [—z, z], where x is the positive solution of the equation

(2.129) () Fuww () = AXP(1, ¢),

where Ax?(p,c) is the scaling factor of the bounds depending on the number of fitted
parameters p and the CL ¢, which can be numerically computed using MATHEMATICA
by Quantile[ChiSquareDistribution[p],c], where p is an integer and c is between
0 and 1, which we usually like to take 95% or 0.95. The reason why we write this
equation in this form shall become apparent shortly. On the other hand, the marginalized
interval is, in general, larger because it includes the correlation effects among all activated
Wilson coefficients (or essentially, if the data size is kept fixed but the set of parameters
is extended, then we lose information about each parameter). The marginalized interval

is given by [—x, |, where z is the positive solution of the equation

(2.130) (@) (Yw) () = Ax*(1, 0).

The fundamental difference between the two intervals is that in the first, we take the
(w,w) entry of the Fisher matrix before inversion, which immediately eliminates all other
variables as if they were not activated in the first place, which in turn avoids the correlation
effects. The situation is similar in confidence ellipses, the only difference being that now

we have one more variable. Suppose we just active two Wilson coefficients at a time, C,,
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and C,y. Then, the confidence ellipse at a CL ¢ is given by equation
yww <g\ww’ x

(2.131) (x y> = Ax%(2,¢).
a;

This is the non-marginalized ellipse, which completely ignores the correlation effects from
other Wilson coefficients. The marginalized ellipse when a larger subset of or all the
Wilson coefficients are activated is given by

-1

7/ww 7/ww’ X
(2.132) (x y> = Ax?*(2,¢).
ﬂf/w’w /yw’w’ Y
We present a minimal working example (MWE), or rather a hypothetical case study at

the end of the next section.

2.5. Computational frameworks

We outline the analytical and numerical tools used in this thesis. Our main tool
for analytical and numerical computations, statistical analysis, and data visualization
is Mathematica, as long as the observable does not require full phase-space integration.
When the observable necessitates inclusive phase-space integration especially for more
crowded final states as in 2 — 3 and 2 — 4 topologies, we deploy Monte-Carlo methods
designed for this purpose on Python, or some days Fortran if we are in the mood or
believe it might run faster. We use FeynArts [111] and FeynCalc [146], 145], 144, 138§]
to compute traditional amplitudes and Vegas [133), [132] for numerical integration. For
hadronic processes, we use ManeParse [69] on Mathematica or LHAPDF [59] on Python

and Fortran for PDFs.
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2.5.1. Amplitudes with FeynArts and FeynCalc

We obtain the SM amplitudes using FeynCalc in conjuction with FeynArts because it
is already a closed ecosystem that works just fine, especially when we have a significant
amount of amplitudes that we want to generate systematically with the least possible
number of keystrokes.

Some of the key ideas are as follows. In the standard model files (pun intended),
all the couplings are given in terms of electric charge, particle masses, and weak mixing
angle explicitly, which is not immediately helpful. We parametrize the vertex factors
as V = iCTS, where C is the coupling strength, I' is some Dirac matrix, and S is a
momentum structure tensor. We let I and S ride along because we want them explicitly to
get traced or to join Lorentz contractions. We do not substitute expressions for C's because
it creates larger files already and because we want to keep track of helicity structures for
diagnosis, for instance using the ffZ couplings, defined as Cf£fZL and CffZR, where f is
some fermion. To illustrate, in the array M$Couplings in our custom .mod file, we define
the interactions eey, uuZ, udW, eeh, hW W, and yWW as follows:

(x eeA *)
CL-F[2,{j1}],F[2,{j2}],V[1]] ==
I CeeA IndexDeltalj1,j2] {{1, 0}, {1, 0}},
(x uuZ *)
C[-F[3,{j1,01}],F[3,{j2,02}],V[2]] ==
I IndexDeltaljl,j2] IndexDeltalol,02] {{CuuZL,0},{CuuZR,0}},

(* udW, CKM = Identity *)
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C[-F[3,{j1,01}],F[4,{j2,02}],-V[3]] ==
I CffW IndexDeltal[j1,j2] IndexDeltalol,02] {{1,0},{0,0}},
C[F[3,{j1,01}],-F[4,{j2,02}],V[3]] ==
I CffW IndexDeltalj1,j2] IndexDeltalol,02] {{1,0},{0,0}},
(x eeh x)
C[-F[2,{j1}],F[2,{j2}],8[1]1] ==
I Ceeh IndexDeltalj1,j2] {{1,0},{1,03}},
(x hWW *)
Cclsl1], -v[3], V[3]] ==
I Chww {{1,0}},
(x AWW *)
CLv[1],-V[3],V[3]] ==

I caww {{1,0}}

Once we modify the model file following this vision, we generate the amplitudes and
then perform another set of simplifying substitutions for the propagator denominators.
FeynArts introduces FeynAmpDenominator and we simply replace it by Dp, where p is
some particle identifier. For instance, if we have a single photon or a Z boson in a given
amplitude, which is the case for our studies, then we replace these lengthy objects by
DA or DZ with the appropriate momenta. Another example would be a quark living in
different channel propagators, for example Dgs or Dgt. In the former, the quark is the
s-channel resonant particle and in the latter, it is the t-channel exchanged particle, with
Dad = Dyg = if/d, with k> = d. Also, if we have successive decays as in the case of
+

e~ e™ annihilation, we introduce DW12 and DW34. Here, the W bosons have the momentum
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p12 and ps4, respectively, so they have the invariant masses mis and mg4. This is also
illustrative in the sense that the first W decays into a pair of particles with momenta
p1 and po, and the second one into a pair with momenta p3 and ps. Whenever relevant,
all D factors are assumed complex so they have the full Breit-Wigner form, which is
also defined in numerical calculations later. All this leads to simple-looking traditional
amplitudes even for larger topologies such as 2 — 3 and 2 — 4.

As far as we know, FeynArts do not immediately support four-fermion interactions
yet. Thus, we define the SMEFT amplitudes manually. Doing so, we follow the sign
convention of FeynArts and FeynCalc, namely derivatives are replaced by —ip, assuming
outgoing momenta, and we append a factor of ¢ to obtain the vertex factor after functional
derivatives of the interaction Lagrangian. Then, we introduce one more factor of i to form
the amplitude after writing down all the currents, vertex factors, and perhaps gauge-boson
polarization vectors.

In order to obtain the squared amplitude, there is a certain order of operations we

follow. Once we have the SM and SMEFT amplitudes, first we add them with trackers,

amp ["SMEFT"] =
track["SM"] amp["SM"] + track["X"] amp["X"]

where we use X to denote the pure SMEFT amplitudes because the corresponding Feyn-
man diagrams look like x. Next, we compute the squared amplitudes as
amp ["SMEFT"] //

csq //

FermionSpinSum[#, ExtraFactor -> extraFactorl& //

DoPolarizationsSum[#, pV]& //
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projections //
DiracSimplify //
colorSimplify //
momentumSimplify
where csq is the complex square defined as
csqlexpr_] :=
expr ComplexConjugate[expr, Conjugate -> {(x BW propagators, any other

< complex param *)}]

FermionSpinSum is the command to convert expressions of the form [@ol'uq][w; " us] into
tr((p, +m2)l(p, +mi)I"), the extraFactor is the factors for initial spin and color av-
eraging, whenever relevant, DoPolarizationSums is the polarization sum for the gauge
boson V' with momentum pV whenever relevant, projections is the command where we
replace p by Pyp for incoming massless fermions or p +m by (p +m)Py (S) for incoming
massive fermions when we collide polarized beams, defined for example as
projections[expr_] :=

expr /. {

DiracGamma [Momentum[k1]] -> projl[sgnl, laml].GS[k1],

DiracGamma [Momentum[k2]] + m2 -> (GS[k2]+m2) .projGen[+1, lam2, S2]

Y /. A

projlsgn_, lam_] :> (1+sgn lam GA5)/2,

projGen[sgn_, lam_, S_] :> (1+sgn lam GA5.GS[S])/2

3
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where the projection operators are defined as Py = (1 & \y5)/2 and P5(S) = (1 &
Ms$)/2, k1 = k; is the momentum of some massless incoming particle longitudinally
polarized with helicity sign 1aml = \{, k2 = k5 is the momentum of some massive particle
having polarization vector S = S* with helicity sign 1lam2 = ),, sgn is the particle sign,
namely +1 for particles and —1 for antiparticles. Continuing with squaring the amplitude,
colorSimplify takes care of SU(3) algebra, momentumSimplify replaces various momenta
in terms of others as much as possible so as to have a squared amplitude that depends
on the least amount of independent momenta. For a 2 — 2 process, this is natiirlich
irrelevant because all dot products are already accounted for by either invariant masses
or Mandelstam parameters, but for 2 — 3 or 2 — 4 processes, this is especially useful
if we can write the process at hand in terms of successive subprocesses so as to have
multiple equations for momentum conservation. Finally, since we assume a linear SMEFT
observable in Wilson coefficient, or to be more precise at leading order in power of 1/A,
throughout this thesis, we kill the terms proportional to Track["X"]2. With that, we are

ready for numerical calculations.

2.5.2. Numerical calculations

For our numerical routines, depending on the complexity of the problem, we either stick
to Mathematica if the observable does not require the full phase-space integration, or else
we use purely numerical integration tools on Python or Fortran. On Mathematica, we use
ManeParse to call and use PDFs. We do this in Chapters [3] and [d] where we evaluate our
observable at the central points bin by bin, so no integration is necessary. For these partic-

ular studies, it is actually a more tidious exercise to keep track of data sets, generate our
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own data tables filled with SM and SMEFT predictions and generated uncertainties. For
the successive studies, which are slightly different in nature and philosophy, we have more
populated final states so the inclusive phase-space integrals require more sophisticated
tools than Mathematica’s naive NIntegrate. We use the Vegas routine for this purpose
on Python or Fortran. For the PDFs, we use the LHAPDF library. The involvement of
PDFs is more straightforward than preparing the integrand for the Vegas routine.
Modern Vegas integrators allow integration variables to vary between general limits.
However, some days we have dependent variables so we need to pay more attention. Fur-
thermore, we still opt to scale our integrals so they run from 0 to 1, which is preferred to
increase sampling efficiency. We refer to this process as unitizing variables. On Python,
with batching and multiprocessing, we can reach lightning speeds on our personal comput-
ers compared to widely accepted open-source packages such as MadGraph and MCFM.
Of course, this is because our integration routines are written solely for the process under
consideration, and because of our manipulation of the integration order so as to further
maximize the sampling efficiency. Thus, we include an MWE for Vegas on Python.
Consider the following 3D integral:

2 2

1 1—x1 T]—x5
(2133) f([L‘l,IQ,l'g) :/ dl‘l/ d{L'Q/ dl‘g T1X2T3.
0 0 0

The analytical result of this integral is 1/480, or approximately 0.00208333. Let’s write
a Vegas routine, pretending that this integration represents our observable, so all the
constants, PDFs, and the good stuff are defined or called beforehand. Below is a batched,

multiprocessed vegas routine:



import vegas

nitn = 10
ncall = int(le7)
nproc = 10

ntrain = 10

Q@vegas.lbatchintegrand

def f(var):
x1min = O
xlmax = 1

xljac = xlmax-xlmin

x1 = xljac*var[:, O]+ximin

x2min = 0
x2max = 1-x1
xX2jac = x2max-x2min

x2 = x2jackvar[:, 1]+x2min

x3min 0

x3max X1k*2-x2%*2

x3jac = x3max-x3min

x3 = x3jac*var[:, 2]+x3min

110
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J = xljac*x2jac*x3jac

integ = x1*x2*x3

return J*xinteg

def main():
integ = vegas.Integrator(3*x[[0, 1]], nproc = nproc, nitn = nitn)
for _ in range(ntrain):
integ(f, neval = ncall/10)

result = integ(f, neval = ncall, adapt = False)

mean = result.mean
error = result.sdev
perror = abs(error/mean*100)

chi2dof = result.chi2/result.dof

print(
f"result = "
f"{round (mean, 8)1}"
f" +- {error:.le}"
" [{perror:.1e}%],"

f" chi2/dof = {round(chi2dof, 1)}")
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if __name__ == '__main__"':

main()
This prints
result = 0.00208333 +- 1.1e-08 [5.2e-04%], chi2/dof = 1.0

The rest is just to apply this to the observables.

2.5.3. Statistical analysis with Mathematica

We conclude this chapter with MWEs of cases that one might encounter in our line
of work. Suppose that we activate only three Wilson coefficients, C, C5, and Cj, to
illustrate marginalization and we consider the cases with weak correlation betwen C} and
Cs, moderate correlation between C and Cj, and strong correlation between Cy and C3 to
illustrate various shapes of ellipses. We demonstrate how to obtain the nonmarginalized
bounds, the marginalized bounds, and the equation for the confidence ellipse at 95% CL
in a systematic way that can be easily generalized to a larger number of parameters. We
use a Mathematica code snippet accompanying the explanations.

Suppose that we obtain a Fisher matrix

329.825  380.117 —333.333
(2.134) F = | 380.117 487.329 —416.667

—333.333 —416.667 364.583

We define this as F. The nonmarginalized 1-sigma (or 68% CL) bounds, sigmaNM68, are

the inverse square roots of the diagonal entries of the Fisher matrix. If we multiply these
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uncertainties by Ax?(1,0.95) = 3.841, we obtain the nonmarginalized 2-sigma (or 95%
CL) bounds, sigmaNM95.
In[1]:= sigmaNM68 = 1/Sqrt[Diagonal [F]];
dchisql = Quantile[ChiSquareDistribution[1], 0.95];
sigmaNM95 = Sqrt[dchisql] sigmaNM68;

The marginalized 1-sigma bounds, sigmaM68, are the square roots of the diagonal
entries of the inverse of the Fisher matrix. The marginalized 2-sigma bounds, sigmaM95,
are obtained with the same factor of Ax?(1,0.95).

In[4]:= V = Inversel[F];
sigmaM68 = Sqrt[Diagonall[V]];
dchisql = Quantile[ChiSquareDistribution[1], 0.95];
sigmaM95 = Sqrt[dchisql] sigmaM68;

The correlation matrix is given by Eq. (2.12§).

In[8]:= R = DiagonalMatrix[1/sigmaM68].V.DiagonalMatrix[1/sigmaM68];

The nonmarginalized confidence ellipses, namely the confidence ellipses when only two
Wilson coefficients are activated at a time, at 95% CL are given by Eq. .
In[9l:= NW = Length[F];
Wpairs = Sort /@ Permutations[Range([Nw], {2}] //
DeleteDuplicates;
dchisg2 = Quantile[ChiSquareDistribution[2], 0.95];
ellipsesNM = Table[

{x, y}r.{
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{FCIwl[1]], wl[1]11], FOLw(l1]], w2111},
{Flwl[2]], wC[1111], FOLwC[2]], wC[21111%}
}.{x, y} == dchisq2, {w, Wpairsl}];
Here, the confidence ellipse of the pairs (C1, Cs), (C1, C3), and (Cy, C3) is called with the
indices 1, 2, and 3, respectively. If we now replace the Fisher matrix here by the covariance
matrix and take the inverse of the created 2 x 2 matrix, we obtain the equations the 95%
CL confidence ellipses described by Eq. .
In[13]:= ellipsesM = Table[
{x, y}.Inversel[{
{VIIwC[11], wC[1111], VOIw([11], wl[2]111},
{viwl(2]], wC[1111]1, VOLwC[2]], wC[21111}
H .{x, y} == dchisq2, {w, Wpairs}];

The rest is now just to paint these ellipses, like Bob Ross painting on The Joy of Paint-
ing. The correlation matrix can be plotted with a simple ArrayPlot and the ellipses with
ContourPlot. In Figure [2.11] we present the nonmarginalized bounds (the red dashed
rectangles), the marginalized bounds (the red solid rectangles), and the nonmarginalized
ellipses (black dashed) and the marginalized ellipses (black) at 95% CL. The correlation
values indicated in the plot labels are the ones obtained with the three-dimensional fit.
These ellipses beautifully demonstrate the boot camp basics.

To summarize this section, let’s note the following.

e Nonmarginalized bounds are obtained by fixing all other parameters to zero.
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Figure 2.11. Comparison of nonmarginalized and marginalized constraints

on the parameter pairs (C,Cy), (C1,Cs), and (Cy, C3).

e Marginalized bounds are obtained by allowing the other parameters to vary freely

in the fit.

They account for degeneracies and correlations, and therefore are

generally wider or less stringent.
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e Marginalization leads to an effective loss of information due to projection onto
a lower-dimensional subspace, which naturally increases the allowed region for
each parameter.

e Nonmarginalized ellipses are typically tighter and reflect the direct correlation
between two parameters, assuming all others are fixed.

e Marginalized ellipses incorporate correlations with the remaining parameters.
This can change the orientation, size, and even the qualitative shape of the
allowed region.

e The correlation coefficient between two parameters can differ between nonmarginal-
ized and marginalized cases. Marginalizing over a third parameter can weaken
or even flip the sign of the apparent correlation.

e When the correlation between two parameters is small and their uncertainties are
comparable, the resulting confidence ellipse is approximately circular in shape.

e As the correlation strength increases, the ellipse becomes increasingly elongated,
with its major axis oriented along the principal direction of degeneracy.

e In the limiting case of p = %1, the ellipse becomes a narrow band or even collapses
into a line, corresponding to a flat direction in the parameter space.

e Such flat directions typically signal degeneracies at the observable level, where
certain combinations of Wilson coefficients appear together in analytical expres-
sions and cannot be disentangled by the data.

e Identifying these directions is important for both interpreting the fit and de-
signing future measurements that can break the degeneracy and constrain the

orthogonal directions.
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e In linear models such as SMEFT with interference-only terms, these features are
directly encoded in the structure of the Fisher matrix and its inverse, allowing

for analytical control and efficient estimation of confidence regions.
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CHAPTER 3

EIC Wide Shut

I didn’t need an explanation. Making an effort he took the plunge: “It’s all about trying
to create ties, you see.” Well, sure, I understood. In this life that sometimes seems to be
a vast, ill-defined landscape without signposts, amid all of the vanishing lines and the
lost horizons, we hope to find reference points, to draw up some sort of land registry so
as to shake the impression that we are navigating by chance. So we forge ties, we try to

find stability in chance encounters.

Patrick Modiano, In the Café of Lost Youth

In this chapter, we study the potential of the Electron-Ion Collider (EIC) to search for
physics beyond the Standard Model using cross section asymmetries in neutral-current
deep inelastic scattering. We include a complete accounting of anticipated experimental
and theoretical uncertainties. The analysis covers both proton and deuteron beams, with
a wide range of beam energies and integrated luminosities. We also consider possible
extensions such as a positron beam and a 10-fold luminosity upgrade. The Standard Model
Effective Field Theory framework is used to parametrize new physics effects, focusing on
semi-leptonic four-fermion operators. A simultaneous fit of the beam polarization and
luminosity difference parameters with the Wilson coefficients is also performed. The
results show that the EIC can constrain the Wilson coefficients competitively with, and

in some cases better than, neutral-current Drell-Yan measurements at the Large Hadron
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Collider. Unlike the latter, EIC pseudodata does not yield strong degeneracies in the

parameter space.

3.1. Prelude

The Standard Model (SM) describes all laboratory phenomena to date. With the
discovery of the Higgs boson, the predicted particle spectrum has now been complete.
Yet no new particles have been discovered, and no remarkable deviation from the SM
has emerged. Despite its success, the theory has several shortcomings. It offers no expla-
nation for dark matter, the baryon-antibaryon asymmetry of the universe, or the origin
of neutrino masses. The hierarchy problem remains unresolved. Even within the known
parts, there are features that resist interpretation, such as the proton spin decomposition
in terms of the spin and orbital angular momentum of its constituent quarks and gluons.

Many experimental programs are running or under design to address these open ques-
tions. Our focus in this work is on the Electron-Ion Collider (EIC), currently under
construction at Brookhaven National Laboratory. The EIC will collide electrons with
protons and nuclei in an intermediate-energy regime, connecting the realms of fixed-
target experiments and high-energy colliders. Its luminosity is expected to exceed that
of Hadron-Electron-Ringanglage (HERA) by several orders of magnitude, making it the
highest-luminosity electron-proton collider to date. It will also be the first lepton-ion col-
lider with both beams polarized, with a fast spin-flip capacity. In addition, uncertainties
are expected to be significantly reduced due to improved luminosity measurements and

detector acceptance and efficiency. These features together allow for a clean extraction
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of parity-violating (PV) asymmetries in neutral-current (NC) deep inelastic scattering
(DIS), associated with spin flips of either the electron or the hadron beam.

The EIC is primarily designed as a machine of quantum chromodynamics (QCD), no
one promised that it would be a new physics machine, yet its potential reach in probing
physics beyond the Standard Model (BSM) is strong. The accessible range of momentum
transfer complements both Z-pole measurements and low-energy precision experiments.
The availability of polarized beams offers unique handles on potential new physics effects.

Our goal in this chapter is to provide a detailed assessment of the EIC’s sensitivity
to new physics, incorporating a complete accounting of the expected experimental and
theoretical uncertainties. The primary observables of interest are PV asymmetries. We
also consider lepton-charge (LC) asymmetries, assuming that a positron beam will become
available.

Given the absence of new particle discoveries, we employ the Standard Model Effective
Field Theory (SMEFT) framework to parametrize potential deviations from SM predic-
tions. SMEFT introduces operators of mass dimension greater than four, constructed
using SM fields, and suppressed by powers of an ultraviolet (UV) scale A higher than SM
particle masses and beyond collider reach. We neglect the dimension-5 operator that vio-
lates lepton number, and work instead with the leading dimension-6 operators, following
the Warsaw basis [58, 28, 110].

We find that the EIC can probe SMEFT scales of a few TeV. The combination of
different asymmetry observables allows us to constrain the relevant Wilson coefficients
without leaving flat directions, unlike what is observed in NC Drell-Yan (DY) at the

Large Hadron Collider (LHC) [23, 47|, 142].
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This chapter is organized as follows. Section 2 introduces the formalism of NC DIS
at the EIC, including SMEFT contributions. Section 3 presents the projected asymmetry
datasets and associated uncertainties. Section 4 details the generation of pseudodata, the
construction of the uncertainty matrix, and the fitting procedure. Section 5 shows the
SMEFT fit results for both single and two-parameter cases. We conclude with a summary

in Section 6.

3.2. Neutral-current DIS physics at the EIC

3.2.1. SMEFT meets DIS

We generalize the SM DIS cross section and asymmetries to include SMEFT effects. The

process of interest is

(3.1) (k) + H(P) = O'(K) + X,

where the incoming lepton ¢ is either an electron or a positron, the hadron H is either a

proton or a deuteron, and X is the final-state hadron. The kinematic variables are

(32) s=(P+RP, Q= —(h—K)?

% P (k= k)
83) TRy YT PR
(3.4) W2 = (P+k—FK)

where s is the collider energy, () is the momentum transfer, x is the momentum fraction
carried by the parton, y is the fractional energy loss of the lepton in the hadron rest

frame, and W is the invariant mass of the hadronic system. These variables are related
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via Q? = zy(s — M?), where M is the mass of the incoming hadron. The Feynman

diagrams at tree level are shown in Figure |3.1

4 4 4 4

V=y,7Z

q q q q

Figure 3.1. The Feynman diagrams for { + H — ¢ + X at the parton level

from one-boson exchange (left) and SMEFT contact interactions (right).

In SMEFT, one constructs operators O™ of mass dimension n > 4 at a UV scale A,
and introduces Wilson coefficients C\™ as effective couplings. The SMEFT Lagrangian

looks like

An

(3.5) Lsverr = Lsm + Z 1_4 Z Cin)Oﬁn)
n>4 r

We focus on n = 6 and keep only the SMEFT effects at leading order in the Wilson
coefficients, or more precisely, at order E?/A? where E is a typical energy scale, which is
the momentum transfer in our case. Higher-order terms may become important for the
DY process at the LHC [15], [46], but the EIC runs at low enough momentum transfer to
justify neglecting them. We therefore keep only the SM-SMEFT interference and ignore
the squared SMEFT amplitudes. Consequently, all observables are linearized with respect
to the SMEFT parameters.

The dimension-6 operators of interest are listed in Table |3.1] Following a common

phenomenological approach, we write these operators in the vector-axial vector basis
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Table 3.1. The list of dimension-6 SMEFT operators relevant to DIS in the
Warsaw basis before electroweak symmetry breaking and reexpressed in the
vector and axial-vector current basis after electroweak symmetry breaking.

The c{/ /A, coefficients represent the chiral structure of each operator.

e e U U d d
Cy O, Cr oy |, ey | Ch |y | ch

o | O =@y |C/4l 11111

O 1 0P = (v O)@Gyrle) |CP/4 1 | 1 1|1 1] 1

using massive Dirac fields [157]:

1 ~ =, e e —
(3.6) Lsvert = Lsm + A2 Z C, {Z[G’Y“(CVT — 4, 75)€] [(Jf’Yu(C{/T - Cfxﬂs)qf]} .
r f

Table also shows the electroweak couplings and the rescaled SMEFT parameters.
The differential hadronic cross section is written in terms of the usual SM DIS structure

functions and additional SMEFT-induced structure functions:

(3.7)
dQU _ 27Ty042 YL WM ’YZL’YZWMV ZLZ Wk AT ZrLZer/
dedy Q4 M S W N Ly Waz + 07 L Wz +Z£ pv Py +Z£ p ' Zr (o
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where « is the electromagnetic fine structure constant, and L{W and Wgy with j = 7,
Z, vZ, yr, Zr represent the leptonic and hadronic tensors, respectively. These include
contributions from the photon and Z channels, as well as the photon-Z, photon-SMEFT,

and Z-SMEFT interference terms. The 1/ and &/ coefficients are

vZ _ c;(FTHZZ Q2

3.8 v =1, . n? =m?)?,
(3.8) n n rama " (n")
C. @ L, 0@
o X T _ )Y
(3:9) 3 v A2’ ¢ 4 A2

where G is the Fermi constant and my is the Z mass. The lepton tensors are

(3.10) LY, =2[k.k, + Kk — k- K g — iAe€unapk® K],
(3.11) L7 = —(9v = Aegd) L,

(3.12) L, = (97 = Aegd)* L},

(3.13) L7 = (c§, — ¢y, )L,

(3.14) Lty = —(cv, = A€y, ) (g% — Aed) L

where A\, = £1 is the lepton helicity. For positron beams, one flips the signs of all g and
¢ couplings, and also the overall signs of LVZ and L77.

The cross section becomes more explicit when these lepton tensors are inserted:

d?o 2mya’ y z y e \Dvr ol
oy = or LW =7 = Mg Wi (g — Mg

(3.15) n Zgw C A )V — ZgZ’“ ey, — Ao ) (g — Aegg)wgﬁ}.
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The hadronic structure tensor is parametrized using structure functions as

R qﬂql’ F] P P F] ZE/WOC/B Pa ﬂF] 20% B J
Wi, (g,mtq) L+ T apg +2¢°57g3)
3.16 SR ) +<g L )g] .
( ) P. P. q q2 5

This form follows from general Lorentz structures, available four-momenta, and the spin
vector S* of the nucleus. We define P* = P# — q"“(P - q)/q*. The functions Ff and gf
represent the unpolarized and polarized structure functions. We omit g% and gg because
they are suppressed by M?/Q?. The spin vector satisfies S? = —M? and S - P = 0. For
longitudinally polarized nuclei, we use S* = \y(|p|, Ep), where Ay = £1 is the nucleon
helicity and P* = (E, p) is its four-momentum.

The structure functions F; and g; each include the SM piece and a SMEFT contribu-

tion:
(3.17) F, = FSMNC | pSMEFT
(3.18) gi = gSMNC | gsMEFT.

The SM terms are given in terms of the familiar NC structure functions as

(3.19) FMNC = Y2 (g% — A gD Y7 + 0% (g% — Negt)*FZ,

1

(3.20) PMNC = g7 — 7 (g% — N9 D) 977 + 07 (g5 — Aeg%)?97
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The SMEFT corrections are

(321) ESMEFT Zgwr e\ CA er Zng e\ CA )(g‘c}_/\egz)Fin7
(322)  gMIT = Zf“( T — A€, )g Zfzr G = Aecy ) (g5 — Aeg)g?"

The expressions for these structure functions in the parton model are

R B R YR

2 2 _
(3.23) ry [Q?, 2Q19%. 97 + g ,2Qycl,  2(glcl, + gﬁCQT)} (qr +Gy),
f

R YRR R =

(3.24) > 10.2Qs9%, 200 94 2Qscl, 2l e + ghel)] ar — 7)),
f

A
[91,g¥ a7, 91", g7 ]—

1 2 2 .
(3.25) 52 [vaa 2Qrg%, gl + gl ,2Qycl, 2(glcl, + gf;CQT)} (Agy + ATy),
7
[95,9572,9?,957}95 ] =
(3.26) > 0.Qudh ol gl Quch, aleh, + gl | (Day - A7),

f
Here, (A)gy refers to the un(polarized) parton distribution functions (PDFs) and @ is the
electric charge of parton flavor f. In the parton model at leading order, the Callan—Gross

relations hold, namely FQJ = QxFlj and gi = ngg, for all channels j.
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If the incoming hadron is an ion or a nucleus, we also need neutron PDFs. From

isospin symmetry, neutron PDFs are given by

(3.27) Gusn(, Q%) = qasp(z, Q%),
(3.28) Gan(7,Q%) = quyp(, Q%),
(3.29) Gs/n(7, Q%) = qspp(, Q%)
(3.30) Gopn (2, Q%) = qosp(x, Q%),
(3.31) Aguyn(, Q%) = Agasp(z, Q%)
(3.32) Agasn(r, Q%) = Aguyp(z, Q%)
(3.33) Ags/n(r, Q%) = Agypp(a, Q7),
(3.34) Agesn(r, Q%) = Ageyp(z, Q7).

For the deuteron, which is an isoscalar combination of a proton and a neutron, the PDF's

are given by

(3.35) a0, Q) = 3lagle, @) + 4yl @),

(3.36) Aggp(e, Q%) = %[AQf/p(fC, Q%) + Aqym(z, Q%)].

The hadronic cross section, now written in terms of the structure functions F; and g;, is

A2t 4ra?

dedy  2yQ?

{xy2F1 +(1—y)Fy — /\eg(y —2)xF;

(3.37) + A A2 —y)rygr — Au(1 —y)ga — >\H$y295}7
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for specific helicities of the electron and nucleon. We neglect the electron mass and
corrections of order M?/Q? The unpolarized and polarized cross sections are built by

summing combinations of this expression evaluated at all helicity configurations:

1
(3.38) dog = 1 (do** +dot” +do t+do™7),
1
. O,=-(doc""+do" —do " —do ),
3.39 d 1 do™ +dot” —do T —d
1
(3.40) doy = 1 (do*tt —do?™ +do T —do ),
(3.41) dous = + (A — o™ —do™ +-do™).

Here, doy is the unpolarized cross section, do, refers to a polarized electron and unpolar-
ized hadron, doy corresponds to a polarized hadron and unpolarized electron, the fully
polarized case is do.y, and we have suppressed the differentials dz and dy. The SM parts
of these cross sections are

d%oq Ao

dedy  2yQ?

{wy2 [Ff — g5 2 F7 + (g7 + gf)nzFﬂ

(=) [F] = gimaF3” + (95" + g3 FY |

xy e e (4
(3.42) -5 2-y) [gAsz;? 7 — 29595 FY ] }
d%o, Ao o[ o P e e e
dz dy = 290? {a:y [gAsz{’ — 2g9vganz Ly ]
e YZ e e Z
+(1—y) [gAn’YZFQ — 29y 9Nz F; }
3.43 @ 92 _ e F'VZ - e 2 e?2 FZ
(3.43) + 5 (2—=y) |gvnzF3 (v + 947 nzFs | ¢,

d%oy Ara? e e e
Lo - -]




(3.44)

(3.45)

+(1—y) [gevngZZ — (977 + giz)nzgf]

e Z e e
—zy? [gvngg — (g% + 95> )nz97 ] }

d%o.y  4Ama?

dedy  zyQ?

e Z e e
{ 2—y)zy [9? — gvnyz97” + (907 + 957 nz9f ]
e Z e e
—(1-vy) [gAngZ — 290 95m297 ]

—zy” [ginggz — 25 94m297 } }

The SMEFT contributions are

(3.46)

(3.47)

(3.48)

SMEFT
d*o, 4o’

dedy — ayQ?

D | 6 FTT = (e gt + ¢, 9060, FEY)

r

(1= ), e I — (el 90 + ¢4,90)82F5)

Ty . - e e . )

—1—7(2 —y) (¢ & T — (7 9% + CArgv)fmFg,Z |,
d2O'SMEFT 471'042 e T e e e e r
dedy — ayQ? Z [ny(cArng{/ — (5,94 + ¢4, 9v)z FT)

T

+(1 = y) (5, & B — (c5,95 + ¢4, 95 ez FST)

xy € T € € (& € T
"‘7(2 — )T, & B — (¢, 9% + ¢4, 90) 62 FYT) |
dzazMEFT 4
- _ 2 _ e , Y (e € e _e . Zr
o oL Z 22 = ) (5, Gl — (5,95 + ¢, 90)62,97)
+(1 - y) (C%.g’yrgzr - (Cilrgil + C%'g\e/)nggzizr)
+ay? (e, &5 — (5,95 + cevrgff)ﬁmgf’”)] :
dQUSE‘EFT _Ama?

dedy  2yQ? Z [a;y(Z —y) (v &gl — (€a, 90 + c%g‘e,)fmglh)

T
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+(1 = y)(c, 691" — (c5,. 95 + 4,05 )E20977)

(3.49) oy (e, Ergd — (65,95 + ¢, 90)€2,92")]

The observables of interest are PV and LC asymmetries. To be more precise, we consider

the left-right asymmetry of electrons with unpolarized hadrons,

do,

3.50 Ay =

left-right asymmetry of hadrons with unpolarized electrons,

dO'H
3.51 Al = —=
( ) PV do_o

Y

and unpolarized electron-positron asymmetry with unpolarized hadrons,

dot" — dot”
3.52 Apg=—"2L %
( ) ke do¢" +dog

3.2.2. Measurement of PV asymmetries at the EIC

In DIS experiments with polarized electron and hadron beams, the measured differential

cross section with the beam polarizations P, and Py is given by
(3.53) do = doy+P.do, +Pydoy +P.Pydo.y .

Here, P. and Py play a role similar to helicity signs, but in practice they are not exactly
+100%. Instead, they take values somewhere in between. PV asymmetries correspond to

flipping the spin direction of either the electron or the hadron.
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At the EIC, electron and hadron beams with opposite polarization signs will be enter
alternately into the storage rings. This means both beam polarizations will flip periodi-
cally over short time scales. This is in contrast to HERA, where data were collected with
one polarization at a time. The intervals between different polarization configurations
were so long that each setting effectively formed an independent experiment. The EIC
setup avoids that limitation.

The DIS event counts during a given beam helicity configuration are expressed as

(3.54) N = aqeo LT (doo +|PF | doe +| P | doy +| P | P F | doen )
(3.55) N~ = aqee L™ (doo +|PS " | doe —| P~ | doy —| P}~ | | Py~ | doen)
(3.56) N~ =agee L~ (dog —| P, *|doe +| Pyt |doy —| P || Py doen )
(3.57) N™" = aau L™ (doo —|P 7| doe —| Py~ | doy +| P, || Py~ | doen)

where LXY is the integrated luminosity for configuration XY, and PXY and PjY are
the electron and hadron beam polarizations for that helicity bunch. The label XY =
++, +—, —+, —— corresponds to the electron and hadron helicity signs, respectively. The
factor aqe; accounts for detector acceptance, efficiency, and phase space coverage. Assum-
ing beam polarization, luminosity, and detector effects to be constant over the measure-

ment period, we get

(3.58) dog == (do" " +do* " +do™ " +do ),

(3.59) do, = (do**+do™ —do™t —do™ ),
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1
(3.60) doy = —— (do** —do*" +do™F —do™ ),
4| Py
1
(3.61) doey = (Aot —do™ —do T +do™ ),

4| Pel| Py

where the experimentally measured cross section is defined by doX¥ = NXY /LXY /qqq.
The PV asymmetries are then obtained as ratios of these measured cross sections. Since
both beam helicities flip frequently on a short time scale, it is safe to treat aqe; as constant.
We extract the asymmetries from the measured yields YXY = NXY /LY using

e doo 1 YTP4YTT Y T YT

PV doy  |P|YHH Y+ Y Y

doy 1 YH Y+ 4Vt -y~
dog [Pyl Y+t + Y+t 4+ Y-+t 4Y—"

(3.62)

(3.63) A, =

The EIC has been designed to keep point-to-point luminosity uncertainties at the level of
O(107%). As a result, the dominant experimental uncertainty is expected to come from

polarimetry.

3.2.3. Measurement of LC asymmetries at the EIC

PV asymmetries can be extracted from the yields within a single run. In contrast, form-
ing the LC asymmetry requires two separate runs: one with electrons, the other with
positrons. To reduce possible systematic effects coming from differences in electron and
positron detection, the magnet polarity can be flipped between the runs. In this case,
the dominant uncertainty is expected to be from luminosity. For the LC asymmetry, we
assume a 2% relative uncertainty in luminosity, treated as an absolute uncertainty on the

asymmetry itself.
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3.3. Projections of PV and LC asymmetry data

The anticipated runs and corresponding pseudodatasets, including beam energies, in-
tegrated luminosities, and the labeling convention used throughout this study, are listed

in Table 3.2
Table 3.2. Expected runs at the EIC, in terms of beam energy, beam type,

and nominal annual luminosity, together with our labeling scheme. P6 is

the Yellow Report reference setting.

D1 |5 GeV x 41 GeV e D, 4.4 fb™! P1|5 GeV x 41 GeV e p, 4.4 fh7!
D2 |5 GeV x 100 GeV e D, 36.8 fb™' | P2 |5 GeV x 100 GeV e p, 36.8 fb~!
D3| 10 GeV x 100 GeV e~ D, 44.8 fb~! | P3| 10 GeV x 100 GeV e~ p, 44.8 fb!
D4 | 10 GeV x 137 GeV e~ D, 100 fb™ | P4| 10 GeV x 275 GeV e p, 100 fb~*

D5 |18 GeV x 137 GeV e D, 154 fb™! | P5 | 18 GeV x 275 GeV e p, 15.4 fb~*

P6 | 18 GeV x 275 GeV e p, 100 th~!

We refer to these configurations as datasets for simplicity. D# and P# labels denote
the unpolarized PV asymmetry datasets in e~ D and e™p collisions, while AD# and AP#
indicate the polarized ones. LD# and LC# labels are used for the LC asymmetry datasets.
P6 represents the unrealistic e”p collision setting with the highest energy and luminosity,
and corresponds to the reference configuration used in the Yellow Report [9]. We also
include a high-luminosity scenario, HL-EIC, in which the integrated luminosity of each
run is increased by a factor of 10.

The projected data are subject to a series of baseline cuts. We require () > 1 GeV

to suppress nonperturbative QCD effects. To reduce uncertainties from bin migration
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and unfolding, we apply a cut y > 0.1. To suppress photoproduction backgrounds from
the final-state hadron, we apply y < 0.9. For the scattered lepton, we require || < 3.5
to restrict events to the main detector region and E’ > 2 GeV to ensure high sample
purity. In the SMEFT analysis, we apply additional cuts of x < 0.5 and @) > 10 GeV.
These remove regions where uncertainties from nonperturbative QCD and nuclear effects
become large. The kinematic region covered by the datasets spans /s = 70 to 140 GeV,
with 0.1 <y <0.9. This coverage is shown in Figure (3.2

Now let’s talk about the money. The statistical uncertainty on the unpolarized PV
asymmetry is determined by the event count and corrected by the electron beam polariza-
tion. It is given by 5A§f\),7 stat = 1/ Pe/ V/N. For the HL-EIC scenario, where the integrated
luminosity is increased by a factor of 10, this improves to 5A§f\),, stat, HL = 514%6\),7 ot/ V10.
For the polarized PV asymmetry, the hadron beam polarization should be included, and
the uncertainty becomes 5Agi,)’ stat = (Pe/Pr) 5A§f\),’ stat- 10 the case of the LC asymmetry,
both beams are unpolarized, so the polarization factors are removed. We also introduce
a v/10 penalty to account for the expected 10-fold reduction in positron luminosity. The
resulting uncertainty is 0Arc, stat = V10 P, 514%)6\),7 stat- We consider a HL-EIC upgrade
also for the polarized PV asymmetry, but not for the LC case. The remaining sources of
uncertainty are treated as follows. A 1% uncorrelated systematic uncertainty is assigned
to all asymmetries. Beam polarization uncertainties are taken as fully correlated, and
1% for the unpolarized PV asymmetry and 2% for the polarized case, since the latter is
smaller in magnitude. The LC asymmetry has no associated polarization uncertainty. We

include an absolute luminosity uncertainty of 2% for the LC asymmetry, treated as fully
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Figure 3.2. The kinematic coverage at the EIC in terms of the Bjorken-
x variable and the momentum transfer for the lowest and highest collider
energies. The shaded region indicates the good region used in our SMEFT
analysis.
correlated. For the LC observables, we also include higher-order quantum electrodynam-
ics (QED) effects by assigning the 5% of the difference between the next-to-leading-order
(NLO) and Born-level values as uncorrelated uncertainty. Finally, PDF variations are
included as fully correlated theoretical uncertainties. All experimental and theoretical

uncertainties are summarized in Table 3.3
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Table 3.3. Anticipated uncertainty components for each observable at each
family of runs at the EIC. NL means the case of nominal luminosity and

HL indicates the case of a 10-fold higher luminosity.

Uncertainty Agy (D, P) AH, (AD, AP) Arc (LD, LC)

]};:I (SA%V,stat \ 1OP€ (SA%V,stat

statistical (NL) OADY stat = ﬁﬁ

statistical (HL) \/%—0 O APV stat \/% 11;; OABY stat -

uncorrelated
1% rel. 1% rel. 1% rel.

systematics

fully correlated
1% rel. 2% rel. -

beam polarization

fully correlated
— - 2% abs.

luminosity

uncorrelated
- S| e - ape)

NLO QED

fully correlated
yes yes yes

PDF

3.4. Pseudodata generation, the uncertainty matrix, and the fitting

For the PV asymmetries, both unpolarized and polarized, three sources of uncertainty
are considered: statistical, uncorrelated systematics, and correlated beam polarization

uncertainty. For the b*" bin, the pseudodata are generated as

(3.64) Aﬁsve,“bd" = Apvsmp + 1o(0APY stath B 0 APV sysp) + 177 0APY poLps
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where @ means sum in quadrature, and 7,7’ ~ A47(0,1) are independent unit normal
variates. For the LC asymmetries, four types of uncertainty are included: statistical,
uncorrelated systematics, uncorrelated NLO QED effects, and correlated luminosity un-

bth

certainty. The pseudodata in the bin are generated as

(3.65) AL = Arcsmp + (0 ALCstars @ 0ALCsysy B SALeNLO QEDS) + 1 SALC lum.b,
The total uncertainty matrix has two parts, experimental and theoretical,
(3.66) & = Eoxp + Siheo

The only theoretical uncertainty we consider is from PDf variations. The experimental

part is defined as

(5A;)1ncorr o) 6141(;0”)2, b — b/7
(3.67) Eexp bty =

Dbl 5Azorr 6Az?rr7 b 7£ b/,

where d A denotes the total un(correlated) uncertainty and we assume full correla-

tion ppy = 1. The PDF uncertainty matrix is given by

Np
1
(3.68) Epatply = N, E (Asmmb — Asm,op) (Asvmy — Asmop )
m=1

where Agnom),s is the observable evaluated at the central (m'") member of the PDF set.
We use NNPDF3.1 NLO [32] for the unpolarized cross section and NNPDFPOL1.1 [141]

for the polarized one.



138

AP5
0.100 0.100 "
0.010 A %Jc
0.010 0.001 v,./-\ AN IALANE T i :
N Va: o=
A -

0.001

107°F v /\/Vf/

1074 1076 W
| 1077E,
0 5 10 15 20 25 0 10 20 30 40
bin bin
— g, T
— Ogtat NL)  eeeeee Ostar (HL) — Ostat NL) e Tstar (HL)
— 1% sys (rel) ..uu.. 2% sys (rel) —— 1% sys (rel) euene 2% sys (rel)
1% pol (rel) 2% pol (rel)
Opdf Opdf

Figure 3.3. Error budget plots for representative datasets D4, AP4, and LP5.

In Figures and [3.4] we present the error budget plots for representative datasets D4,
AP5, and LC5. These plots show the contribution of the uncertainty contributions to the
diagonal entries of the uncertainty matrix. The black line corresponds to the central value
of the asymmetry, Ag\)/, Agl,), or A, depending on the dataset. The solid red line shows
the statistical uncertainty for the nominal luminosity case, while the dashed red line shows
the HL-EIC scenario. No high-luminosity configuration is assumed for A;c. The solid
blue line corresponds to the default uncorrelated systematic uncertainty of 1% relative,
and the dashed blue line represents a hypothetical 2% case, which is shown for illustration

but not used in the analysis. The cyan lines indicate the correlated beam polarization

uncertainty, 1% for AS\), and 2% for Agf,), and 2% absolute luminosity uncertainty for
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Figure 3.4. The same as Figure [3.3 but for LP5.

Apc. The orange line shows the uncertainty from PDF variations, and the green line,
included only for Apc, corresponds to NLO QED uncertainty introduced as higher-order
effects. The horizontal axes show only those bins that pass both detector-level cuts and the
additional cuts used in the SMEFT analysis. The bins are sorted by momentum transfer
first and then by Bjorken-x, which explains the wave pattern. In the nominal luminosity
case, statistical uncertainty dominates the PV asymmetries. In the high-luminosity case,
systematic and beam polarization uncertainties are comparable. The LC asymmetry is
dominated by luminosity uncertainty. PDF uncertainties are subdominant for Aff\), but

become more important in the polarized case.
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We perform fits using both e™p and e~ D data, focusing on datasets #4 and #5, where
the center-of-mass (c.m.) energy is higher and SMEFT effects become more visible. The
fit is based on a standard y? function:

Np Np

(3.69) = Z Z(ASMEFT — Apsendoy oy (Asmprr — AP)y,

b=1 b/=1

where 77 = &~ ! is the inverse of the uncertainty matrix. The error budget plots suggest
that the uncertainties from polarimetry and luminosity differences could become limiting
factors. To assess this, we also perform simultaneous fits of SMEFT parameters along
with either the beam polarization parameter P or the luminosity difference parameter
Apm, in order to potentially improve the bounds on the Wilson coefficients. In the fits
where P is included as a free parameter, the y? function is defined as

N Ng

(3.70) X’ = Z Z(P Asuprr — AP 5 (P Asvmrr — AP")y +

b=1 bv/'=1

(P —P)?

In this case, we omit the beam polarization uncertainty from the error matrix, since P is
treated as a fit parameter. We set the reference value P = 1. The idea is that polarimetry
gives an external estimate of P, but a better value may be inferred directly from the data,
constrained within the uncertainty provided by polarimetry. In the fits where A, is
included as a free parameter, the x? function is defined as

Np Np

(3.71) X = Z Z(ASMEFT — AP0 — Ay ) Ay (Asuerr — AP — Ay )y

b=1 b'=1

Here, we omit the luminosity uncertainty from the uncertainty matrix.
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Let W denote the full set of fit parameters, including the Wilson coefficients and,
where applicable, the additional nuisance parameter, P or Ap,,. The best-fit values are

obtained by solving the condition
(3.72) V3(W) = 0.

The Fisher information matrix is constructed from the Hessian of the y? function evaluated

at the best-fit point:
1 -
(3.73) F = §VVX?(W).

The inverse of the Fisher matrix gives the covariance matrix #'.
Since a single pseudodataset reflects just one outcome, we repeat the procedure over
Ng = 1000 pseudoexperiments to generate statistics. The final best-fit values and corre-

sponding covariance matrix are then obtained by averaging over this ensemble:

Ng 1 Ng
(3.74) W = [Z 5?] > FW.,

e=1 e=1

1 O
3.75 F = — Fe.
(3.75) N,

e=1

The fit results are shown in the next section.
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3.5. SMEFT fit results
3.5.1. Single Wilson coefficients

We now present the results of the single-parameter fits for the Wilson coefficients. These
are quoted as 95% confidence level (CL) intervals, averaged over 1000 pseudoexperiments.

The bounds on the Wilson coefficients are shown in Figures |3.5H3.11}]

CY at 95% CL, A = 1 TeV

‘q

0.4 s ; [ SETH | IS

0 H SHF S SRR o s S S S ST S

-0.40 el

» Y &9 » » Y% S0 » » Y% ~9 » o Y 59 » &b » 59
FPCPIITL PP PP ISP PITISS
unpolarized Apy polarized Apy lepton—charge A

Figure 3.5. 95% CL bounds of Ce(;) from single-parameters fits (darker)
and from the (14 1)-parameter fits with beam polarization as an additional
fitting parameter (lighter) using the families of data sets D4, D5, P4, and

P5at A =1 TeV.

The plots are grouped into three categories based on the observable: unpolarized PV
asymmetry, polarized PV asymmetry, and the LC asymmetry. For each PV asymmetry
type, we show results for both the nominal and high-luminosity scenarios. The fits are

restricted to datasets #4 and #5, where the c.m. energy is highest and sensitivity to
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Figure 3.6. The same as Figure but for C’g’).

Cry at 95% CL, A =1 TeV
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Figure 3.7. The same as Figure 3.5 but for Cy,.

SMEFT effects is enhanced. In each plot, two lines are shown per parameter. The darker

line corresponds to the fit where only the Wilson coefficient is fitted, and the lighter line
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Figure 3.8. The same as Figure [3.5] but for Cyg.
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Figure 3.9. The same as Figure [3.5 but for C.,.

corresponds to the fit where the beam polarization parameter P is also included. The
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Figure 3.10. The same as Figure 3.5 but for Cg.
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Figure 3.11. The same as Figure [3.5 but for C..

color scheme is as follows: black for the D4-family (D4, AD4, LD4), red for D5-family,

blue for P4-family, and orange for P5-family.
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From these figures, we note the common patterns. Across all observables, proton
targets lead to stronger bounds than deuteron targets. The higher-energy but lower-
luminosity datasets, D5 and P5, yield weaker constraints than the less-energetic but
higher-luminosity D4 and P4 datasets. Among the observables, unpolarized PV asymme-
tries yield the strongest bounds, followed by polarized PV, and then the LC asymmetries.
The HL-EIC scenario results in a noticeable improvement in sensitivity, particularly for
the deuteron datasets.

For the unpolarized PV asymmetries, we find that the SMEFT parameters and the
beam polarization parameter are strongly correlated, with correlation coefficients typically
greater than 0.7. Including P in the fit leads to a 30 to 50% improvement in the bounds
on the Wilson coefficients. In contrast, for the polarized PV asymmetries, the correlation
between the SMEFT parameters and P is weaker, generally below 0.2, and the bounds
weaken by 15 to 20%. Since the potential gain outweighs the loss, including P in the fit
can be justified. For fits involving Aj.m, the correlation with the SMEFT parameters is
moderate, around 0.4, and the resulting bounds become 15 to 20% weaker. This suggests
that treating A, as a fit parameter does not offer a meaningful improvement.

Figures|3.12H3.18 show the effective ultraviolet scales corresponding to these 95% con-
fidence intervals. The same grouping and color scheme are used. Darker bars correspond
to C-only fits, while lighter bars represent C' + P fits.

With nominal annual luminosity, the EIC can probe scales up to 3 TeV in some

channels. With the 10-fold HL-EIC upgrade, the reach extends up to 4 TeV.
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Figure 3.12. Effective UV cut-off scales, A/ C’tg), defined in terms of the
95% CL bounds on the Wilson coefficient Cé;) and with A =1 TeV.
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Figure 3.13. The same as Figure |3.12| but for C’g’).
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Figure 3.14. The same as Figure but for Cy,.
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Figure 3.15. The same as Figure but for Cyy.

3.5.2. Double Wilson coefficients

We now turn to the results of the two-parameter fits, where pairs of Wilson coefficients

are varied simultaneously. These fits include beam polarization as a nuisance parameter.
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Figure 3.16. The same as Figure but for C¢,.
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Figure 3.17. The same as Figure but for C.,.

A known limitation of NC DY measurements at the LHC is that they suffer from
parameter degeneracies in this sector [47, 48]. One of the aims of this study is to test

whether the EIC can lift those degeneracies.
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Figure 3.18. The same as Figure but for Ce.

Figure shows the joint constraints on (Cp,, Cye) using datasets from the D4 and
P4 families. Each observable leads to a distinct correlation pattern, and the resulting
constraints are complementary. The LC asymmetry produces elongated ellipses, while
the unpolarized PV asymmetry gives the tightest bounds. As in the single-parameter
case, proton data are significantly more constraining than deuteron data.

Figure compares the EIC reach on (Ce,, Cy,) using D4 and P4 datasets against
the LHC bound adapted from [48]. The LHC result is based on 8 TeV, 20 fb~' NC DY
data. That measurement exhibits a clear flat direction in this parameter subspace, namely

this specific parameter combination cannot be resolved fully using DY observables alone.

Figure [3.21| presents a similar comparison for (C’eu,Cé;)), using both nominal and

high-luminosity P4 datasets at the EIC. In this case, the EIC not only resolves the flat

direction but also provides stronger bounds with visibly distinct correlation contours.
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4 —195% CL, A =1 TeV — 4 —195% CL, A =1 TeV

.......... / / :

Ceu
Figure 3.19. 95% CL ellipses for the Wilson coefficients C,, and C,. using
the families of data sets D4 and P4 in the simultaneous (2 + 1)-parameter

fits that includes the beam polarization as an additional fitting parameter.

In Figure |3.22, we show the results for (C’é;), C’g’)) using P4 at the EIC, compared

to LHC data from [47]. This particular subspace is already tightly constrained by the
DY data at the LHC, but we find that the EIC can lead to even stronger bounds. We
also include the result of a combined fit, which highlights the complementarity of the two
datasets.

The deuteron data at the EIC also exhibits flat directions for certain pairs of SMEFT
parameters, such as (Cey, Ceq) and (Cjy,, Cig). This behavior can be understood analyt-
ically. In the analytical expression for asymmetries, these coefficients appear in linear
combinations, for example, 2C,, — C.q. Such combinations prevent the individual coef-

ficients from being disentangled using deuteron data alone. However, the degeneracy is
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Figure 3.20. 95% CL ellipses for the Wilson coefficients C., and C,. using
the data sets D4 and P4 in the (2 + 1)-parameter fit that includes the
beam polarization as an additional fitting parameter, compared with the

corresponding two-parameter fit from the LHC data [48].

specific to the deuteron target and does not appear in the corresponding proton datasets.
As a result, the flat direction is lifted when data from different hadron beams are com-
bined. This highlights the importance of a physics program that includes multiple hadron
species at various energies at the EIC.

Let’s summarize our findings. Proton data consistently yield tighter bounds than
deuteron data. Among observables, unpolarized PV asymmetries provide the strongest
constraints. When taken together, the three types of observables, namely unpolarized
and polarized PV, and LC asymmetries, from both deuteron and proton collisions, as well

as the NC DY data at the LHC, form a complementary set. Each contributes a distinct
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Figure 3.21. 95% CL ellipses for the Wilson coefficients C,, and Cé;) using
the nominal- and high-luminosity data set P4 in the (2 + 1)-parameter
fit that includes the beam polarization as an additional fitting parameter,

compared with the corresponding two-parameter fit from the LHC data
47].

correlation pattern. The EIC is capable of resolving all the flat directions that persist in
LHC DY data. In several subspaces, the EIC even outperforms the LHC, highlighting its

important role in future SMEFT analyses.

3.6. Coda

We conclude with a brief summary of the methodology and findings of this study. Our

goal was to assess the BSM sensitivity of the EIC. We adopted the model-independent
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Figure 3.22. 95% CL ellipses for the Wilson coefficients Cé;) and Cg) using
the nominal-luminosity data set P4 in the (24 1)-parameter fit that includes

the beam polarization as an additional fitting parameter, compared with the

corresponding fit from the LHC data [47] and the combined fit of the two.

SMEFT approach, focusing on semi-leptonic four-fermion operators. The analysis incor-
porated a detailed treatment of anticipated experimental and theoretical uncertainties,
and explored the potential improvement in sensitivity through simultaneous fits of Wilson
coefficients with beam polarization and luminosity normalization parameters.

Our results show that the EIC can probe ultraviolet scales above 3 TeV using nominal
integrated luminosity per year. With a 10-fold luminosity upgrade, the reach extends
beyond 4 TeV. The most stringent constraints are obtained from polarized electron beams
scattering off unpolarized protons. These results are complementary to, and in some cases

competitive with, existing LHC bounds. In particular, the EIC’s clean environment and
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different initial states allow it to disentangle operator degeneracies that remain unresolved
in hadron collider data.
Although the EIC was primarily designed as a precision QCD facility, this study

demonstrates that it can also serve as a powerful probe of new physics.
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CHAPTER 4

DISentangling SMEFT: A Few Colliders More

Blondie: Two hundred thousand dollars is a lot of money. We’re gonna have to earn it.
Sergio Leone, The Good, the Bad, and the Ugly

In this chapter, we extend our previous study of parity-violating deep inelastic scatter-
ing asymmetries at the Electron-Ion Collider to include additional simulated data from the
Large Hadron-electron Collider and the Future Circular Collider. We upgrade the leading-
order analysis of Chapter [3| with the framework of Standard Model Effective Field Theory
by incorporating the complete set of dimension-6 operators that affect the amplitude,
namely the shifts to the fermion couplings to neutral gauge bosons, and include next-
to-leading order corrections from quantum chromodynamics to the structure functions.
This allows us to directly compare the new physics sensitivity of all three future machines

under consistent assumptions.

4.1. Prelude

The Standard Model (SM) is a remarkably successful theory. It accurately describes
all known particles and interactions, and with the discovery of the Higgs boson, the
SM particle spectrum is now complete. But its success is limited to what it includes.
There is no explanation for the existence of dark matter, no mechanism to account for
the matter-antimatter asymmetry, and no built-in origin for neutrino masses. There

are also structural issues, such as the hierarchy problem and the vast spread of fermion
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Yukawa couplings. All this is just Nature’s way of saying “in your face”. Meanwhile,
in humankind’s long history of extensive and expensive experimental efforts, no new
particles have been found. If new physics exists, it is likely to appear as subtle deviations
in precision measurements before any new particle states are observed directly.
Electron-hadron colliders provide an ideal platform for these precision measurements.
They constitute the ultimate tools for high-precision quantum chromodynamics (QCD)
studies and microscopes for probing internal structures of hadrons. Electron stands out
as a desirable probe to look into the proton because it doesn’t get involved in color
interactions, so all the interactions are strictly electroweak (EW), which already has a
solid footing with the unmatched precision of quantum electrodynamics. Furthermore,
kinematics are uniquely determined by the incoming electron beam, the scattered lepton,
or the hadronic final state, which all can be measured with great accuracy. These machines
serve both as microscopes for QCD and as sensitive instruments for EW and BSM physics.
Historically, the only electron-hadron collider ever operated was Hadron-FElectron-
Ringanglage (HERA), which ran at DESY in Germany between 1991 and 2007. Since
then, three next-generation facilities have been proposed or are under development. The
Electron-Ton Collider (EIC) [12] is a United States (U.S.) Department of Energy (DOE)
project now under construction at Brookhaven National Laboratory. It will be first high-
energy deep inelastic scattering (DIS) machine to collide polarized electrons with polarized
protons and ions at center-of-mass (c.m.) energies between 70 and 140 GeV, which is a
range between fixed-target-scattering and high-energy collider experiments. It is antici-
pated to start operating within a decade. Electron beams will have energies 5 to 18 GeV,

proton beams 41 to 275 GeV, light ions up to 166 GeV, and heavy ions up to 110 GeV.
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With yearly integrated luminosities up to 100 fb~' and high detector acceptance and ef-
ficiency rates, it will help improve extraction of parity-violating (PV) DIS asymmetries
in EW neutral-current (NC) DIS cross section with reduced uncertainties. Just to give a
timeline of the history of the EIC, an electron-ion collider of this caliber was first offered
in 2012. In 2015, the U.S. DOE officially named the machine the EIC and released the
public annoucement of construction at Brookhaven in 2020. The construction will start
at the end of 2025 and is planned to be completed by 2040.

The Large Hadron-electron Collider (LHeC) [11] is a proposed upgrade of the Large
Hadron Collider (LHC) at CERN in Switzerland, which is awaiting approval at the time
of writing. It would run simultaneously with the LHC, using its proton and ion beams,
and a new, dedicated electron beamline, reaching c.m. energies of 1.5 TeV. The planned
integrated luminosity is 100 fb~'. Its primary design purpose is novel measurements in
QCD, DIS physics at low Bjorken-x, EW precision studies, and BSM physics. Historically,
the idea of an electron-proton collider in the LEP-LHC tunnel was discussed for the first
ime in 1984, which is also the year HERA was approved. In 2005, it was found feasible
to simultaneously run pp collisions in the LHC and the e™p collisions in the new machine
named LHeC. The first complete draft of the conceptual design was published in 2011.
Its earliest operational period is estimated to be around 2032, which would coincide with
the LHC Run 5.

The Future Circular Collider (FCC) [8, [34], 35], 36] would be a brand new collider to
be built at CERN; however, it will take at least 30 years for design and construction. The
designed collider energy is 3.5 TeV, and the planned integrated luminosity is at the order

of 1 ab™'. It would have a broad physics program similar to the LHeC’s, namely QCD and
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EW precision studies and new physics searches. As the history unfolds, European studies
of post-LHC circular accelerators that are at energy frontiers were published between
2010 and 2013. In 2014, these efforts were combined into the FCC study. The first
complete draft of the conceptual design was released in 2019. The feasibility studies were
very recently published in May, 2025. The design and construction are expected to be
completed by 2050.

In this work, we explore the potential of these future machines to probe physics beyond
the Standard Model (BSM) by presenting the complete set of uncertainties projected by
people who know better. Our observable is the PV asymmetries at the EIC based on our
previous study in Chapter [3, and the NC DIS cross section at the LHeC and FCC-eh.
Since there has been no definitive sign of new particles beyond the current spectrum of
the SM, we use the Standard Model Effective Field Theory as our BSM framework. We
consider the full spectrum of SMEFT operators that contribute to the NC DIS amplitude
at leading order in SMEFT couplings at dimension 6, namely the good old semi-leptonic
four-fermion operators, as well as operators that modify the fermion couplings to NC EW
gauge bosons.

The best method to measure and constrain ffV vertex corrections is via Z-pole
EW precision observables (EWPO) at LEP and SLC; however, data being limited yields
degeneracies among SMEFT parameters. This is illustrated in [92]. In the current study,
we demonstrate that DIS measurements at the future colliders can not only resolve these
degeneracies but also impose more stringent constraints.

We find that for semi-leptonic four-fermion operators, the LHeC and FCC-eh can probe

effective ultraviolet (UV) scales exceeding 10 TeV, whilst the reach of the EIC remains at a
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few TeV. We include all posibilities in our analysis: beam energy, polarization, luminosity,
and lepton species. No single choice of a configuration is sufficient to probe the parameter
space fully. Furthermore, a positron beam can significantly extend the UV reach for
certain Wilson coefficients due to the structure of the underlying amplitude. In addition,
the EWPO global fits can give the most stringent bounds; however, that is true for merely
single-parameter fits. Multi-parameter fits paints a picture, namely the allowed bounds of
the SMEFT parameter get weakened by an order due to strong correlations, which signals
flat directions. At this very point, the LHeC and FCC-eh become important.

This chapter is organized as follows. In Section 4.2, we review the SMEFT framework,
define the operator basis, and summarize the relevant kinematic structure of DIS. Section
4.3 describes the observables used and the simulated pseudodata sets in terms of their run
parameters, anticipated uncertainties, and error budgets for the SMEFT fits, as well as
our fitting procedure. In Section 4.4, we present first our fit results for the semi-leptonic
four-fermion operators, discussing the impact of different runs, luminosities, and lepton
species. In Section 4.5, we activate all 17 operators and shift the focus to the f fV vertex
corrections. We compare our results to those from global EWPO fits and highlight where
the LHeC and FCC-eh improve upon them. Section 4.6 concludes with a summary of the

main findings and their implications for the SMEFT program.

4.2. Formalism

4.2.1. The SMEFT Lagrangian

The SMEFT provides a systematic expansion of the SM Lagrangian in inverse powers of

a heavy new physics scale A, which is assumed to be above the SM particle masses and
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beyond collider reach. One builds operators, O,(gn), of mass dimension higher than n > 4

using the existing SM spectrum:

1 n) A(n
(4.1) Lsverr = Lsv + Z = Z C}E )Ol(c g
K

n>4

where Wilson coefficients C’,in) are introduced as effective coupling strengths. In this
study, we restrict ourselves to the case of dimension 6. We investigate only the leading-
order effects of the SMEFT operators, so we retain only the SM-SMEFT interference
amplitudes and discard the squared SMEFT contributions, and therefore all observables
are linearized in the Wilson coefficients.

There are 17 dimension-6 operators in the Warsaw basis [85] that contribute to NC
DIS. These include 7 semi-leptonic four-fermion operators, and 10 operators that shift the
fermion couplings to the neutral EW gauge bosons. The operators are listed in Table [4.1]
Here, ¢ is the SU(2) Higgs doublet, ¢ and q are left-handed lepton and quark doublets, e,
u, and d are the right-handed electron, up quark, and down quark singlets, respectively,
the 7! are the Pauli matrices, and the double-arrow covariant derivative is defined such

that

. & I - I
(4.2) ©'i DM = "iD*(t")p + h.c..
Operators involving dipoles or scalar bilinears are neglected because the corresponding
vertex factors are proportional to fermion masses, which we assume zero. We also assume

flavor universality and hence suppress flavor indices.
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Table 4.1. Dimension-6 SMEFT operators in the Warsaw basis [85] that
contribute to the NC DIS amplitudes at leading order. The 10 operators
that modify ffV vertices are shown on the left, and the 7 operators that

introduce semi-leptonic four-fermion contact interactions are presented on

the right.
frv semi-leptonic four-fermion
Opws = (AT Q)WL B | O = ((v0)(@v,0)
Oup = (' D) (0! Dyp) | Of) = By 0) @v.'q)
04 = (g D "o)(07,.0) Oeu = (e7"€) (W, u)
O = (i D *r10)(Ty7'0) | Oua = (E1"€)(dy,d)
Oge = (¢ D #¢)(Evae) O = (y0) ()
0L = (¢t D ") (@v.a) O = ((y"0)(d,d)
O] = (¢ D7) @nr'a) | Oy = (@1"€)(@10)
Opu = (1 D #0) (1)
Opa = (15 D #0)(dr,d)
O = ((4*0)((y,0)

4.2.2. DIS and Structure Functions

We study the NC DIS in the process £ + H — ¢ + X, where ¢ is an electron or a
positron, H can be proton or deuteron, and ¢ and X are the final-state lepton and hadron,
respectively, within the framework of the SMEFT including next-to-leading-order (NLO)
QCD corrections. One has to worry about the missing energy and the reconstruction

of hadronic final states to determine kinematic variables in the CC DIS. This typically
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brings in larger systematic uncertainties, so we find it feasible not to dedicate time to the
CC DIS studies.

At parton level to leading order, said process can be mediated by single photon or
Z-boson exchange or by the SMEFT contact interaction of leptons with partons. The

tree-level Feynman diagrams are presented in Figure

14 A A
Y, 4
q q q q

Figure 4.1. Feynman diagrams at tree level for the underlying partonic

process of the scattering / + H — (' + X.

NLO QCD corrections to the SM process are well known [82], 22, 151], 21, [83].
These corrections modify only the quark lines, as illustrated in Figure 1.2} therefore, said

corrections are identical for both SM and SMEFT cross sections.

14 v

Figure 4.2. Feynman diagrams describing NLO QCD corrections to the

underlying partonic process of the scattering / + H — (' + X.
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The NC DIS cross-section expressions for collisions of a lepton ¢ with an unpolarized

or polarized hadron are given in terms of the NC structure functions F: 1N3CL and glNg . by

(4.3)

d?o¥ 2

Traoe = 2 L+ (0= 2e N bsan(O)L = (0 =yl + (1= y)2FC ],
and

> Aok 8ma?

4 Lo = 2o {[1+ (1= )%agd® — sen(O)1 - (1 = ) + (1 - )9k},

respectively, where sgn is the particle signum function that returns +1 for particles and

—1 for antiparticles. The dimension-6 SMEFT NC DIS structure functions FIN 30 ’Lei and

NC,e* . . : Vv 1%
9,57 are given in terms of the structure functions Fy’; ; and gy 5 ; by

+ )
) ) f

NC,e® yxF oYX F
A)d, S,

(
(
(
(4.5) (A)SNC =8 £x, — 1) (A)BNCEEgE b
(
(
(

(A)
(A)
(A)q)?lc,ei,inSizxi
(A)

NC,et,ZxF ZXF
A)d] S:

\ /

+ + + +
where S8 = FN9 and ASNYT = gN9" and A\, = +1 is the incoming lepton

NC,et,V
(bic7€7

helicity sign. The structure factors (A) are given by

(4.6) PN = 2

ey’



(4.10)
(4.11)
(4.12)
(4.13)
(4.14)
(4.15)
(4.16)
(4.17)
(4.18)

(4.19)

and

(4.20)
(4.21)
(4.22)

(4.23)

N =2 (e + 1) (@) - e = 1) (@

ei
(I)lfg 77 = +Qer1yz (()‘e +1)QL, — (A F1) fz) ;

NC,e® yx+
<I)1,L

= :FQe'y?

NC,et yx—
(I)LL - :FQe'y?

NC,ei,Zx+ o R
(I)l,L - :anZQeZa
(I)Nc,ei,Zx— o L

1,L - :FTI’YZQeZ7

NC,e*
@3 € "Y:O

Y

YT = 2, (A £ 1) (Q%) 2+ (A F 1) (

e:l:
3T = 2Qumyz (N £ 1) QL+ (A F1) QL))

NC,ei,7X+ _
(1)3 - :FQe'W
NC,et yx—

(I)3 - :FQE’W
NC,et Zx+ R
®3 - :FT}’YZQeZ’
(I)NC,ei,Zx— o L

3 - :Fn’YZQeZ7

NCety _
ADY — ),

ABYTTE = (F122) (O 1) (QF2) > = (e F 1) (QF) %),

6i
Aq)sN,% 7= Ag (£Qey) Nyz ((/\e +1)QL — (A F1) fZ) ;

ei
A(I)E)N,% = Aq (iQm) )
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(4.24)
(4.25)
(4.26)
(4.27)
(4.28)
(4.29)
(4.30)
(4.31)
(4.32)

(4.33)

A¢5N,%eiﬁx_ = :F/\qu%
e

ARTT I = N (£m2) QL
ei —

A(D?,% 7 Iq[/\quQﬁz,

ADYCT = AN, (£Q2),

ADYOTT =\ (£02,) (e £ 1) (Q5) 2+ (A F 1) (QF) ?)

ABYOTTE = N (£Qu) iz (A £1) Qi + (A F 1)
AGYOTTE = ) (£Qe)
AR = A Qe
APNCT I N (dn,2) QF,,

ei —
Aq)ll\lc’ 7 ::F/\qanQé:Z-

The structure functions are given by

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

Q) = %Z Wai(r, Q)
ngn (—\Das(z, Q)
F (2,Q) = Z sgn(g) M az(z, Q).
g} (2.Q) = Z/\V Aqi(z,Q),

o (1,Q) = %ngnwi Ags(2,Q),

q

ez) s
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(4.39)

ngQ
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ngn )\AAqL ,Q),

q

[\3|,_.

where V = Vo L, NL, Yy X+, X —, 4 X 4,7 x — is the channel label and

(4.40)
(4.41)
(4.42)
(4.43)
(4.44)

(4.45)

a(z,Q) = q(z,Q) +

Q3($a Q) = Q('Ia Q) +
_ (@)

A(h(xa Q) = AQ(za Q) +

AQ5(x7 Q) = AQ(xa Q)

Aqr(z,Q) = 048(75»

as(Q)
2m

a(Q)

™

Cu @ a2, Q)+ 0y @ 9(2, Q)]

[@3 ® q(2,Q) + Cy, @ g(x, Q)] ,

Cu @ 4(@.Q) + Cyy, @ 9(,Q)]
as(Q)
2m

|AC, ® Aq(r, Q) + A, © Ag(, Q)]

as;f) [Aéqs ® Aq(g]7 Q) + Aégs (%9 Ag(m, Q)i| )

[A@L ® Aq(z, Q) + AC,, ® Ag(a, Q)] ,

with (A)g and (A)g being the un(polarized) quark and gluon parton distribution functions

(PDFs), respectively. The quark couplings /\“Z and /\‘Z are given by

(4.46)
(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

XI// = sz’

1
= @k + @R
N = qu Qg7 + Q%) »
Qu (C7" + C7)

YX+

A 202P, ’

)\wx— qu (CLR CqLL)
202P,

e _ Il + Ol

2C2P, ’
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LRNHR LLHL
Cq QqZ+Cq QqZ

4.52 7=
(4.52) AV 202,
and
(4.53) Ay =0,
1
(4.54) M= Q%) = Q) 7).
1
(4.55) NE = 50 (O~ QL)
. i - Gl )
2C2P,
LR _ LL
(4.57) AT = n (G ; ) ,
202P,
58 e CHQls—Cn
- A 2C2P, ’
(4.59) Az _ Gz — G Qs
' A 2C2P, '

The parametrization of the ffV and ¢{qq vertex factors in the L/R basis in our analysis

is given by

(4.60) ViR =icvQHE,
PP _ . ~PP

(4.61) VPP = icP?

where we denote the single-photon and single-Z exchange and the semi-leptonic four-
fermion interaction channels by V = v, Z, X, respectively, in the subscripts. The Cy, and

C’f P" are the coupling strenghts and P, P’ = L, R indicate the structure of the lepton and
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quark currents in the interaction term. To illustrate, CqLL denotes the coupling of nyuPLE
and gv*Prq. The Q%R are the SMEFT quantum numbers.

The gauge-boson propagators are defined as

1
(4.62) Pp=—.
@ + M
The coupling strengths are given by
(4.63) C, = —Vira,
(4.64) Cy = =24/ V2Gp M},
C’él) - C’f’)
(4.65) Cojfa=—""F33
Cruya
(4.66) Cufi= 3
Coe
(4.67) Clh = A—‘;
O@ u
(4.68) CRE = A_g
(4.69)

where the upper (lower) signs and indices are for the up (down) quark. The quantum
number of fermions in the photon interactions, ()¢, is still given by the electric charge,

(), at dimension 6:

(4.70) Q‘?’y = Q?v = Qpy = Q-
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The quantum numbers of the ffZ interactions are given by

1 1), A3
Qez = {ato (8 oy (2 + 7))
4\4/51\2\/ GFMZ (g%(o) —+ gg(o)> 3/2

1 3
—92(0)910) (20(20)92(0) (C;g) + CL}) + 3/\292(1))
3
—93(0) <92(0) (U(QO) <O§;1e) + CLZ) + A2> + A292(1)>

+gf(0) (A1) — 0(20)92(0)09014/3)

(4.71) +050)9100) (V{09200 Cow s + 3M% 011 ) }
o7 = 1 {293(0)91(0) (v0) 9200 Cowns + 20%011))
oz = »
4\4/51\2\/ GFMZ (g%(o) + 93(@) 3/2
+202(0)91(0) (920 (A* = v{0)Ce) — Mga1)) + 2% )11
(4.72) +910) (2A% = vy Cpe) — “<2o>9§<o>cwe}7
L 1

4 2 (o) _ o) 2
i {91(0) (3U(0) (Osoq - C@q) +A )
12020 /GMy () + G ) 2

—920)90) (26200) (30(y) (C5) — CL)) + A%) + TA%ga1))
—3930) (92000 (vfo) (Cy) = C&)) + A?) + A?gaq1))
+9§(o) (A*g11) — 30(20)92(0)0@4/3)

(4.73) +950)910) (V{0)920Cow s + 58 g11)) }
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1
Qll, = — {493(0)91(0) (092000 Cow s + 28 g111))
123/202\/Gp My (9%(0) + gg(o)) W2
+2050)910) (30(0)92(0) Cou + 2% g0y — 20%g2(1)) + 402G} 01 1)
(4.74) 1980y (303 Clou + 4A2) + 307,40, cw},
1
Qly = - {gho (30 (€ + CE) +2?)
129202V G My (90 + G0y ) ¥ (O ATHO) W ea T Tea
+92(0)9%(0) (6U(20)92(0) (Cé,lq) + C(,(j])) + 4/\292(0) + 5/\292(1))
+3930) (9200) (vfo) (C5q + CL)) +A%) + Mgaqr))
+g%(0) (3U(20)92(0)C<PWB + A291(1))
(4-75) +9§(0)91(0) (U(20)92(0)C¢WB - A291(1)) }>
Qi = ! {292( )91(0) (U(2 192(0)Cow B + 21\291(1))
o 2(0 0 ®
12\4/§A2 \Y4 GFMZ <g%(0) + gg(o)) 3/2

+2gg(0)g%(0) (92(0) (A2 - 31}(20)C¢d) - A292(1)) + 2/\29%(0)91(1)
(476) ‘f‘gil(o) <2A2 — BU(QO)Ccpd) — 3?)(20)93(0)C¢d},
with

gs
(4.77) iy = 2,

Cw

CwM§S12/V <SW (409(03) + Cch — 20@@) + 4CWO¢WB>
gA? (2%, — 1) ’

(4.78) g1y = —
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(4.79)  g20) = 9,

CIQ/VMg (-812/1/ (409(0?2) + C¢D> + 408(0?2) + 4CW3WC(,0WB — QC%VC“ + C(pD)

4. =
1
4.81 Vo) = ——,
( ) (0) \4/5\/G_F
Cyy — 20
(4.82) gy = —— e

o 3/27
2 23/4\2GY
where we have defined

V4
(4.83) g=Y"
Sw

(4.84) cw =/1— s,

1 \/GFM% (GFMg — 2\/57?04)
2 |1 GpM?2 ’

as a shorthand notation. Numerically, in the input basis (G, «, Mz) and with A = 1 TeV,

we have

L, = —0.0303121CY) + 0.0223408C) + 0.0430523C,i 5 + 0.0131632C,p

(4.86) —0.0263264C, — 0.287848,

K, = 0.0223408C"}) + 0.0430523C s + 0.00558519C,p — 0.0303121C,

(4.87) — 0.0111704Cy, + 0.212152,
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QL, = —0.0303121CY) +0.0303121CE) — 0.0452059C) — 0.0287015C

(4.88) — 0.0113015C,p + 0.022603C, + 0.358566,

3
R = —0.0148938CY) — 0.0287015C, i — 0.00372346C,,p — 0.0303121C,,

(4.89) +0.00744692Cy, — 0.141434,

Ql; = —0.0303121CL) — 0.0303121CE) + 0.037759C") + 0.0143508C 1w 5

(4.90) +0.00943975C,p — 0.0188795C), — 0.429283,

QF, = 0.00744692C%) + 0.0143508C,yy 5 — 0.0303121C,4 + 0.00186173C .

(4.91) — 0.00372346C, + 0.0707172.

The energy-dependent eta factors are defined by

C2p,
(4.92) hi = —as Nz =g
2= Cp, g

The convolution operator that appears in Equations (4.40)—(4.45|) is defined as

(4.93) O flz) = / 1 % o1 (%),

z

The normalized unpolarized and polarized coefficient functions, CN"qﬁgi and Aé’q’gi, are

borrowed from [82]. Before setting the factorization scale equal to the transfer momentum,
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we have
Cu(2) = Cr{n (M—;) Pral2) + (1 2) (-2 - %2)

(4.94) b Ly(2) = Lo(2) —; [1:2L+3}’

(4.95) Cos(2) = Cyy (2) — Cp(1 — 2),

(4.96) C,, (2) = Cp2z,

(4.97) Oy (2) = % {ﬁqg(z) {m (3—;1 - Z) - 1} +22(1— z)} ,

(4.98) Cp,(2) =0,

(4.99) C,, (2) = 22(1 — 2),

(4.100) AC, (z) = Cyp(z) — Cp(1l — 2),

(4.101) AC, (2) = Cy (2),

(4.102) AC,, (2) = Cy, (),

(4.103) AC, (2) = % {Aﬁqg(z) {m (S—; ! - Z) - 1] +21— z)} :

(4.104) AC,, () =0,

(4.105) AC,, () =0,

where the auxziliary functions are defined by

1 ~

(4.106) ﬁqq('z) = C_qu(z)a Pog(2) = 2Pg4(2), Aﬁqg(z) =2z—-1,
(4.107) Li(z) = (1+ 22) {1“51__;)} Lo(z) = 11+_ZZ In(z)
-
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with Cr = 4/3 and P, ,, being the leading-order Altarelli-Parisi splitting functions (see

e.g. [155]), and the plus prescription is defined via

@109 [ de (L) = [ as FEle) - o) - o) [ ds )

In our case, the plus-prescription functions are of the form

1—2

(4.109) f(z) = {M} .

where 7 is a natural number. With this, Equation (4.108]) becomes

IRTUNY R [M] ) =g [ PO - gy

1—2z r+1

We define the reduced cross sections as usual by

d%ot o 2o’ ) ! d%ofq

(4.111) dIdQ2_{IQ4 [l—l—(l—y)]} drdQ?
d? Aot o Ara? ) ! d2Ac{ .
(4.112) 12 d0? _{xQ4 [1+(1—y)]} A0

From this point onward, when we mention cross sections, we mean the reduced ones and
denote them simply by (A)oxc.

In Figure 4.3} we show the NC DIS cross section with NLO QCD corrections for e p
collisions at /s = 1.3 TeV with RH electrons of beam energy 60 GeV and polarization
P, = +80% and the corresponding k factors as a function of () for various = values.

From Figure [£.3] we observe that NLO QCD corrections to the NC DIS cross section

are 30% at most in either direction and exhibit high sensitivity to @ and low sensitivity
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ep, Vs = 1.3 TeV, P, = +80%

ep, \Js =1.3TeV, P, = +80%

-
oy
1.2r -
7 M;g%
rﬁ*.::i”’-a N
| g
| &
5
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0.1
0.8r
G:V'@:Qi 707@%7@
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Figure 4.3. NC DIS cross section with NLO QCD corrections for e™p colli-

sions at v/s = 1.3 TeV with E, = 60 GeV and P, = +80%.
to x for @ < 30 GeV and low sensitivity to ) and high sensitivity to x for higher values
of Q.
4.3. Observables

The EIC observable is the PV asymmetries based on the polarized DIS cross sections

following our previous study. The unpolarized PV asymmetry is defined as

+ j—
g — 0
NC NC
Apv = """

(4.113) NG,
oRc + One
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and the polarized PV asymmetry as

0
Aoge
0 )
ONC

(4.114) Adpy =

where o5 is the NC DIS e"H (H = p, D) cross section with unpolarized hadron and
polarized lepton beams with A\, = £ F,, 0% is the all-unpolarized cross section, and AoR
is the cross section with polarized hadron and unpolarized lepton beams. Here, P, denotes
the lepton-beam polarization reach at the EIC. The observable of interest at the LHeC
and FCC-eh is the NC DIS cross section with unpolarized hadron and polarized lepton
beams. This observable is chosen so we can compare our simulated pseudodata with
previous studies in the literature [50}, [51].

Since we consider only the SM-SMEFT interference at the amplitude level, all our
observables are linearized in SMEFT parameters, or to be more precise, are kept to
leading order in the SMEFT expansion, E?/A? where E is a relevant variable with energy
dimensions, which is momentum transfer in our case. Thus, our observables have the

generic SMEFT form
(4.115) O =Osm+ Y GOy,
k

where k runs over the active Wilson coefficients, O = (A)onc or (A)Apy is the observ-
able, Og\ is the SM prediction, and Oy is the SMEFT contribution to the observable

characterized by the Wilson coefficient Cj.
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4.4. Analysis

In our analysis, we use the EIC pseudodata from the previous work presented in

Chapter [3| the most recent public LHeC pseudodata available at
http://hep.ph.liv.ac.uk/ mklein/lhecdata/| [126],

and generate our own pseudodata for the FCC-eh following the procedure explained in
Chapter [3| using the run parameters found in [51]. To simplify the language, from now on,
we simply refer to these pseudodatasets as datasets. The configurations of these datasets
regarding beam energies, polarizations, and integrated luminosities, as well as our labeling
scheme, are summarized in Tables [£.2H4.4. We note that the case of a 10-fold luminosity
upgrade at the EIC (so as to have a high-luminosity EIC), which is considered in the
previous chapter, is not included here.

On top of the detector cuts, we introduce the kinematic cuts
(4.116) r <05, @>10GeV, 0.1<y<0.9,

and we refer to the bins that satisfy these conditions as the good bins. These cuts help us
avoid large uncertainties from nonperturbative QCD and nuclear dynamics. We expect
SMEFT effects to be minimal in the leftout regions anyway. The kinematic coverage of

the datasets is illustrated in Figure [£.4]


http://hep.ph.liv.ac.uk/~mklein/lhecdata/

179

Table 4.2. The description of the EIC datasets used in our analysis. We
indicate beam energies, polarizations, integrated luminosities, our labeling

scheme, and the observable of interest.

Label | Configuration Observable
D4 |10 GeV x 137 GeV e~ D, P, =80%, £ =100 fb~*
D5 |18 GeV x 137 GeV e~ D, P, =80%, £L =154 fb™!
Apy
P4 |10 GeV x 275 GeV e p, P, =80%, £ =100 fb~*
P5 |18 GeV x 275 GeV e p, P, =80%, £L =154 fb!
AD4 | The same as D4 but with P, = 0 and Py = 70%
AD5 | The same as D5 but with P, = 0 and Py = 70%
AApy
AP4 | The same as P4 but with P, = 0 and Py = 70%
AP5 | The same as P5 but with P, = 0 and Py = 70%
LD4 | The same as D4 but with P, =0
LD5 | The same as D5 but with P, =0
Arc
LP4 | The same as P4 but with P, =0
LP5 | The same as P5 but with P, =0

Next, we discuss the anticipated uncertainties. For the EIC, we have previously as-

sumed uncertainties, which are statistical uncertainties,

1
PN’

P
SAAR = SCoAR,

(4.117) SAPE = By
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Table 4.3. The same as in Table [4.21 but for the LHeC.

Label | Configuration Observable

LHeC1 | 60 GeV x 1000 GeV e p, P, =0, £ =100 fb

LHeC2 | 60 GeV x 7000 GeV e~ p, P, = —80%, £ =100 fb~*

LHeC3 | 60 GeV x 7000 GeV e p, P, = +80%, £ =30 fb!

LHeC4 | 60 GeV x 7000 GeV etp, P, = +80%, £ =10 fb~! oNG

LHeC5 | 60 GeV x 7000 GeV e p, P, = —80%, £ = 1000 tb™!

LHeC6 | 60 GeV x 7000 GeV e p, P, = +80%, £ =300 fb~!

LHeC7 | 60 GeV x 7000 GeV etp, P, = 0%, £ =100 fb!

Table 4.4. The same as in Table [4.2] but for the FCC-eh.

Label | Configuration Observable

FCCehl | 60 GeV x 50000 GeV e p, P, = —80%, £L=2ab™*

FCCeh2 | 60 GeV x 50000 GeV e~ p, P, = 4+80%, £ =0.5 ab™* NG

FCCeh3 | 60 GeV x 50000 GeV etp, P, =0, L =0.2 ab™"

where Py is the assumed hadron polarization reach, uncorrelated systematic uncertainties,
S(A)ADY, 1% relative to the asymmetry due to particle background and other imperfec-
tions in measurements, and correlated lepton and hadron beam polarization uncertainties,
5(A)APY 1% and 2% relative to the asymmetry, respectively. For the LHeC and FCC-
eh, we borrow the estimates from [50], [51]. These cover uncorrelated statistical, 0ogat,
uncorrelated efficiency, doeq, and correlated systematic uncertainties, dogys. Systematics
include lepton energy scale and polar angle measurements, doje, and doy,e, hadronic en-

ergy scale, dopen, radiative corrections, doy,q, photoproduction background, dogam, global
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mm EIC, \/s = 74 GeV
EIC, +/s = 140 GeV

1000F e LHeC, /s = 490 GeV
LHeC, /s = 1.3 TeV

mmm FCCeh, /s = 3.5 TeV
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x

Figure 4.4. Kinematic coverage of the EIC, LHeC, and FCC-eh data sets,

indicating the the complementarity of these experiments to each other in

terms of the good regions considered in our analysis.
efficiency factor, dog.q, calorimetry noise, 00,1, and luminosity, doj,y,. Luminosity uncer-
tainties are 1% relative to the cross section. Systematics are assumed fully correlated. In
addition to anticipated experimental uncertainties, we also include fully correlated PDF
uncertainties, §(A)ARY and do,qe. We summarize the anticipated values and ranges of

experimental uncertainties for all the machines in Tables 4.5



Table 4.5. Anticipated values or ranges of experimental uncertainties at the

EIC for the good bins used in our analysis. All uncertainties are relative

with respect to the observable.

Source of uncertainty Value or range of uncertainty [%] | Observable
Statistical 1.53-65.87

Systematical 1.00 Apv
Lepton beam polarization 1.00

Statistical 1.74-75.28

Systematical 1.00 AApy
Hadron beam polarization 2.00

Table 4.6. The same as in Table [4.3] but for the LHeC.

Source of uncertainty Value or range of uncertainty [%] | Observable
Statistical 0.10-6.83

Uncorrelated efficiency 0.50

Lepton energy 0.11-0.49

Lepton polar angle 0.00-0.13

Hadron energy 0.00-1.81

ONC

Radiative corrections 0.30

Photoproduction background 0.00-1.00

Global efficiency 0.50

Calorimetry noise 0.00

Luminosity 1.00
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Table 4.7. The same as in Table [4.5 but for the FCC-eh.

Source of uncertainty Value or range of uncertainty [%] | Observable
Statistical 0.10-5.49

Lepton energy 0.90

Lepton polar angle 0.40

Hadron energy 2.00

ONC

Radiative corrections 0.30

Photoproduction background 0.00-1.00

Global efficiency 0.50

Luminosity 1.00

With all the uncertainties accounted for, we can build the uncertainty matrices for
all data sets of all machines. An uncertainty matrix has two parts, experimental and

theoretical:
(4.118) & = bexp + Eiheo-
The experimental error matrix is defined by

(4 1 9) & (5Ouncorr,b ©® 50C0rr,b>2, b= b/7
' 1 exp,bb’ -

Pbb! 5Ocorr,b 5Ocorr,b’7 b 7£ b/a

where b,b' = 1,2,..., Ng are the bin indices, Np is the number of good bins, O is the

observable, 0O un)corrp are the (un)correlated uncertainties added in quadrature at the bth



bin, and we have defined

(4.120) 501 @60, @ -+ = \[60 + 503 + -

We assume full correlations among bins by taking p,y = 1. For the EIC data sets,

have
(4121) (5<A>APV,uncorr,b = 6<A>APV,Stat7b ©® 5(A>APV»S}’SJ’7
(4122) 5<A)APV,corr,b = 5(A)APV7pOLb?

and for the LHeC and FCC-eh data sets, we have

(4123) 6auncorr,b = 5Ustat,b D 6Uueff,b7
(4124) 60C0rr,b - 5asys,b7
with

(4.125) 00sysp = O01enp B 001polp B OThenp B 00rad b D OTgamp D 00 geti b D OT1um p-
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we

On the theoretical side, the only source of uncertainty is the PDFs. The PDF error matrix

is defined as

Np

1
(Om,b - OO,b)(Om,b’ - OO,b’)v

Np

m=1

(4.126) Endty =
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where Np is the number of PDF set members and Oy, is the SM prediction for the
observable O at the b™ bin evaluated at the central (m'™) member of the relevant PDF
set.

After obtaining the uncertainty matrices, we can compare various uncertainty com-
ponents to the observables at the EIC, LHeC, and FCC-eh. In Figures and [£.6, we
exhibit the error budget for the fits by comparing the uncertainty components to the ob-
servables for representative data sets. On the horizontal axis, we have the bin numbers,
where the bins are sorted first by @ and then by x in increasing order. On the vertical
axis, we have the central values of the observables and the uncertainty components that
contribute to the diagonal entries of the error matrix.

In these error-budget plots, we see that systematics dominate at the LHeC and FCC-
eh and that PDF uncertainties are non-negligible, which means at some point, one should
consider a simultaneous fit of PDF in conjunction with SMEFT parameters, much like
[62, 107, 102]. At the EIC, statistics dominate by an order for the unpolarized PV
asymmetries, and for the polarized PV asymmetries, PDF uncertainties become more
important than statistics.

Later in our study, we consider joint fits of certain datasets within a given machine.
For the joint EIC fit, we assume beam polarization and PDF uncertainties to be correlated
among the combined runs, and for the joint LHeC and FCC-eh fits, we assume all the
uncertainites under systematics except for photoproduction background, as well as PDF
uncertainties to be correlated. A joint uncertainty matrix is given by the uncertainty

matrices of individual runs on the block-diagonal entries, &, and we define uncertainty
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P4: 10 GeV x275 GeV ¢ p, P, =0, £ =100 fb~!
L~

LHeC3: 60 GeV x7000 GeV e p, P, = +80 %, £ = 30 fb!
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Figure 4.5. The different sources of uncertainty that make up the diagonal
elements of the uncertainty matrix are shown for the LHeC3 (left) and P4
(right) data sets. The red line shows statistical uncertainty, the blue line
shows uncorrelated global efficiency uncertainty, the magenta line shows
systematic uncertainty, and the orange line shows PDF uncertainty. For
P4, the cyan line shows the uncertainty from beam polarization.
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Figure 4.6. The same as in Figure 4.5/ but for AP4 (left) and for FCCehl (right).
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matrices of correlation, ¢, in the off-block-diagonal entries by

(4127) jnn’ - /exp,nn’ + /pdf,nn’a

where n,n’ = 1,2,..., Ng are the run indices, Ng is the number of datasets or runs

combined, and

(4128> /exp,nn’,bb’ = Pnn’ bt 6Ocorr,n,b 5000rr,n’,b’7
1 o
(4129) /pdf,nn’,bb’ = N_P Z(On,m,b - On,O,b)(On’,m,b’ - On/,O,b’)7
m=1
where b=1,2,..., Ng,, Ng,, is the number of good bins of the n'" run in the combined

datasets, 0Ocorrn,p is the relevant correlated uncertain described above, and O, o) is

the observable evaluated at the central (m'®) member of the PDF set at the b*® bin of the

n™ run. At the end of the day, the joint uncertainty matrix looks like

& S o g
& ...
(4.130) &= : Smn|
En
sym

where &, is the error matrix of the n'* run of the datasets combined.
Now we have the observable, as well as the uncertainty matrix for a given individual
or joint dataset. With that, we define a x? test function as

Np

(4.131) Xe= ) (0= Qo) (0 — Qe)y

bb'=1
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for the e pseudoexperiment, where Oy is the SMEFT observable, O, is the pseudoexper-
imental value for the observable at the b'" bin, and # = &' is the inverse uncertainty
matrix. Pseudoexperimental values are obtained by smearing the SM values with the

uncertainties using random variates as

(4132) Oe,b = ObSM + Tep 6Ouncorr,b + Z T;’,e 5Oc0rrj,b7

J

where Oj™ is the SM prediction for the observable, 74,7}, ~ N(0,1) are unit normal
random variates, dOuncorr,p 18 the total uncorrelated uncertainty, and 0O, 5 is the 5t

correlated uncertainty. The best-fit values are obtained as the solutions of the equation
(4.133) Vx:i(C.) =0,

and the Fisher information matrix is simply the hessian evaluated at the best-fit values:

1 —
(4.134) F = 5vaz(ce),

where all the derivatives are with respect to the SMEFT parameters. For a linear model,
the Fisher matrix is constant for all pseudoexperiments, hence we drop the subscript e
now on. Using the machinery of statistical analysis introduced in Section 2.4, we present

the SMEFT fit results in the next section.
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4.5. SMEFT fit results

For our numerical analysis, we use the input scheme {Gpg,a,mz} with numerical

values

(4.135) Gp = 1.1663787 x 10° GeV 2,
(4.136) a~! =137.036,

(4.137) my = 91.1876 GeV.

We assume polarization reaches of P, = 80% and Py = 70% at the EIC, and use the
polarization values given with the LHeC and FCC-eh datasets. We set A =1 TeV. We
use NNPDF3.1 NLO [32] and NNPDF1.1 NLO [141] PDF sets with unpolarized and
polarized cross sections, respectively. We compute a, from the renormalization group

equation running at two loops

o dao

(4.138) = Blas) = =(boa? + bial),

R

where by = (33 — 2N;)/(127) and by = (153 — 19N;)/(247?%), with the initial condition

as(myz) = 0.1185. We set Ny =5 and pup = Q.

4.5.1. Semi-leptonic four-fermion operators

First, we activate only the semi-leptonic four-fermion operators. The Drell-Yan (DY) pro-
cess at the LHC has difficulty probing certain linear combinations of SMEFT parameters

in this subspace [47, 23]. As we have shown in Chapter , future DIS experiments can
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resolve these degeneracies (see also [47]). Thus, we want to compare the BSM potential
of the EIC, LHeC, and FCC-eh to the DY at the LHC first.

In Table 4.8 we present the nonmarginalized bounds and the corresponding effective
UV scales at 95% confidence level (CL) by activating one Wilson coefficient at a time,
as well as the marginalized bounds and the marginalized bounds in the seven-parameter
(7d) fit and the UV scales by activating them all. Our analysis focuses on the datasets
P4, AP4, the joint set of D4, AD4, P4, and AP4 at the EIC because #4 datasets are
the strongest at the EIC (see Chapter [3)), individual and the combined LHeC runs, and
individual and the combined FCC-eh runs.

There are strong correlations among SMEFT parameters, which is why marginal and
nonmarginal bounds often look wildly different. This tells us that there are degeneracies
in the parameter space. But when we combine datasets, these degeneracies start to break,
and we get better results. The marginal effective UV scales range from about 500 GeV
to 1 TeV at the EIC, from 2.5 to 14 TeV at the LHeC, and from 2 to 18 TeV at the
FCC-eh. The trend is clear: higher energy, stronger reach. No man can eat 50 eggs, but
FCC-eh comes close. Polarized PV asymmetries at the EIC give weaker bounds on its
own, but plays an important role in joint fits. No single LHeC or FCC-eh run is able
to strongly constrain all semi-leptonic four-fermion operators. Each run uses different
lepton types and helicities, which affect sensitivity. Still, the LHeC bounds are generally
stronger than the EIC because of access to higher momentum transfers, where SMEFT
effects become more important. For most operators, FCC-eh joint fits give the strongest
bounds overall. Among the different configurations, e™p with right-handed e~ beams are

best for constraining C., and C.4. High-luminosity e™p runs with left-handed e~ beams



Table 4.8. Individual and combined 95% confidence level limits on semi-

leptonic four-fermion Wilson coefficients at A = 1 TeV, using the EIC data

sets P4 and AP4, the combined EIC fit with D4, AD4, P4, and AP4, the

separate and combined LHeC runs, and the separate and combined FCC-eh

runs. The related effective UV scales are also shown in TeV. “nonmarg.”

means nonmarginalized and “marg.” means marginalized.
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A A ) A 3) A A A A

Ceu Neew Ced C Cry m Cry m Cu Nrem Cra G Cye Neh

nonmarg.| 0.15 [ 26 | 054 | 1.4 | 023 [ 21| 013 [ 27| 036 | 1.7 | 075 | 1.2 | 051 | 14

5 marg. 19. [ 0.23 |2.5%x10%|0.063|1.2x10%[0.091 [1.3x10%|0.089| 43. |0.15| 39. |0.16| 46. |0.15
nonmarg.| 0.34 | 1.7 22 [068| 028 | 1.9 | 044 | 1.5 [ 0.81 | 1.1 53 |043| 074 | 1.2

AP4 marg. 39. [016| 92. [o010| 52. [014| 32. [018] 36. |0.17 [1.1x102[0.097| 30. |0.18
P— nonmarg.[ 012 | 29 [ 034 | 1.7 | 017 | 24 [ 010 [ 3.2 [ 028 [ 19| 057 | 1.3 | 0.39 [ 1.6
marg. 21 069 72 037 28 (059 42 [049| 91 [033] 98 032| 89 [033

nonmarg.[ 0.054 | 43 | 029 | 1.9 [ 0.048 | 4.6 [ 0028 | 6.0 [ 0.27 [ 19| 094 | 1.0 | 037 | 1.7

LHeCl marg. 89. |0.11 [1.9x10%[0.073] 67. |o0.12| 80 [0.35| 23 o021 62 [0.13| 52. [0.14
o nonmarg.| 0.080 | 3.5 [ 0.35 | 1.7 [ 0.0089 | 11. [ 0.0043 | 15. [ 0.059 | 4.1 | 024 | 2.1 | 075 | 1.2
marg. |7.8x102]/0.036|1.7x103/0.024| 66. |0.12| 94 |033| 28 |0.19]| 58 |0.13[5.1x102(0.044

LHeC3 nonmarg.| 0.0066 | 12. [ 0.026 | 6.2 | 0.064 | 4.0 | 0.028 [ 6.0 | 0.36 | 1.7 1.0 1099 [ 0.050 | 4.5
marg. 58. | 0.13 [1.3x102|0.089[4.0x102[0.050 [ 55. | 0.13 [1.7x102[0.077]|3.4x102|0.054| 38. [0.16

nonmarg.[ 028 | 1.9 [ 069 | 1.2 [ 0037 | 52 [ 0.013 | 87 [ 0.015 | 81 | 0.057 | 4.2 | 0.18 [ 24
LHeC4 marg. (8.4x102(0.035(1.9x10%[0.023| 72. 0.12 11. 0.30 33. 017 63. |0.13]5.8x10%|0.041
nonmarg.| 0.053 | 4.3 | 0.30 | 1.8 [ 0.0052 | 14. [ 0.0031 | 18. [ 0.037 [ 52 | 0.18 | 24 | 049 | 14
LHeG5 marg. |3.0x10%|0.058/6.6x102/0.039] 25. |020| 3.6 |053| 11. |0.31] 22. [0.212.0x102|0.071
o nonmarg.| 0.0037 | 16. | 0.019 | 7.3 | 0.030 | 5.8 [ 0.017 | 7.7 [ 0.20 [ 22| 077 | 1.1 | 0.032 | 5.6
marg. 20. | 0.22| 45. |0.15 [1.4x102[0.084[ 20. [0.22 | 59. [0.13]1.2x102/0.090| 13. [0.27

LHeC7 nonmarg.| 0.024 | 6.5 [ 0.075 | 3.7 | 0.023 | 6.6 | 0.011 [ 9.5 | 0.014 | 85 | 0.065 | 3.9 | 0.020 | 7.1
marg. 41. [016| 93. [o010| 32. [018| 50 [045] 15 |026| 28 [0.19] 29. |0.19

St RO nonmarg.| 0.0022 | 21. | 0.0097 [ 10. [ 0.0031 | 18. [ 0.0017 | 24. [ 0.0084 | 11. | 0.036 | 5.3 | 0.011 [ 9.7
marg. | 0.0053 | 14. | 0.026 | 6.2 | 0.020 | 7.1 | 0.011 | 9.5 | 0.032 | 5.6 | 0.16 | 2.5 | 0.018 | 7.4

. nonmarg.| 0.015 | 8.3 | 0.043 | 4.8 | 0.0020 | 22. [0.00070| 38. [ 0.0061 | 13. | 0.016 | 8.0 | 0.065 | 3.9
marg. [3.6x102|/0.053]|8.2x102/0.035| 31. |0.18| 4.9 |045| 14. |0.26]| 27. |0.19 [2.6x102|0.063

nonmarg. | 0.0013 | 28. [ 0.0031 | 18. | 0.019 [ 7.2 [ 0.0046 | 15. | 0.042 | 4.9 | 0.077 | 3.6 | 0.0046 | 15.

FOCeh2 e | 20, [022| 46, [0.15 [14x10°]0.083| 22. |021| 66. |012 |12x102]0.090] 14 |0.26
nonmarg.| 0.0059 | 13. [ 0.012 | 9.2 | 0.012 [ 9.3 [ 0.0021 | 22. | 0.0074 | 12. | 0.018 | 7.4 | 0.0083 | 11.

FCCeh3 marg. 69. |0.12 [1.5x10%[0.081| 53. [0.14| 7.8 [0.36] 25. |020| 44. |[0.15| 47. |0.15
Joint nonmarg. [ 0.00056 | 42. [ 0.0012 | 28. | 0.0014 [ 27. [0.00038| 51. | 0.0028 | 19. | 0.0061 | 13. | 0.0016 | 25.
FCCeh | ™arg. [ 0.0031 [ 18. | 0.0070 | 12. | 0.035 | 5.4 [ 0.014 [ 84 | 0.068 | 3.8 | 0.26 | 2.0 [ 0.0092 | 10.
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are best for Cé;) and Cés). The only polarized e™p LHeC dataset is especially good for
Ci, and Cjg, because of the kinematic structures in the amplitudes. Finally, unpolarized
e™p runs are best for probing Cl.

The effective field theory is based on an expansion in powers of Q /A = Q/(A/+/(C)).
In our case, this ratio stays small for all runs. This means the expansion works well. So,
keeping only the dimension-6 terms and treating their effects to first order is a safe and
good choice.

We show examples of 2d nonmarginalized fits and marginalized results from the 7d fit
in Figure[£.7] The strongest individual EIC data set, the strongest LHeC and FCC-eh sets
for these Wilson coefficients, and the combined EIC, FCC-eh, and LHeC fits are shown.
In the 2d case, we activate two Wilson coefficients at a time. These fits often look clean
because the data can separate the effects of the chosen pair. But in the 7d marginalized
case, some information is lost, and flat directions appear. These are combinations that
the data cannot fully resolve. The EIC is especially weak in this case. Even the joint EIC
fit does not break these flat directions. So, one must consider running the machine under
different setups to better cover the parameter space.

In both the LHeC and FCC-eh datasets, there are three parameters that vary: the in-
tegrated luminosity, the lepton beam polarization, and the lepton species. To keep things
simple, we focus on the LHeC as a representative case. Figure [4.8] shows a comparison
between two data sets that differ by a factor of 10 in total luminosity. The improvement
in the fit is small. This tells us that just increasing the event count is not always the most

effective way to gain sensitivity.
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Figure 4.7. Nonmarginalized (top) and marginalized (bottom) 95% confi-
dence level ellipses for the parameter spaces formed by Cé;) and Cy, (left)
and C’,_S;) and Cy. (right) with A =1 TeV. The insets display a zoomed-in

view of the combined LHeC and FCC-eh fits.



194

95% CL, A = 1 TeV, 7d fit
95% CL, A = 1 TeV, 7d fit

0.2

0.10

0.05

e

0. //;/ \\\)

£
-0.05 -0.1 A
mm LHeC2 mm LHeC3
mm [HeC5 mm LHeCo6
—0.10L L . -0.2L L . ]
-0.10 -0.05 0.00 0.05 0.10 -0.2 -0.1 0.0 0.1 0.2
C(l) C(l)

lq lq

Figure 4.8. Marginalized 95% confidence level ellipses in the parameter
spaces formed by Céql) and Cés) (left) and Cy, and Cyy (right) at A =1 TeV,
comparing data sets with luminosities differing by a factor of 10: LHeC2

and LHeC5 (left), and LHeC3 and LHeC6 (right).

Figure [4.9| compares runs with electron and positron beams. Here, even though the
positron run has lower luminosity, the bounds improve significantly. The reason is in the
structure of the amplitudes. For electron and positron beams, different Wilson coefficients
contribute. When we switch from electron to positron beams, we replace C,, with CY,,
C.q with Cjy, and C’l(q1 ) 4 C’l(; ) with Cge- These new combinations remove the factor of
(1 — y)? that suppresses the cross section in the electron case. On average, this factor
is about 1/4. Removing it gives a much larger SMEFT contribution. This shows that
changing the lepton species can improve the fit more than increasing luminosity. It also

supports the case for including positron beams in future DIS programs.
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95% CL, A = 1 TeV, 7d fit
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Figure 4.9. The same as in Figure but for Cy, and Cyy, with data sets

having different lepton species (LHeC3 and LHeC4).

The DY data from the LHC leaves blind spots in the SMEFT parameter space. These
directions are poorly constrained and limit the reach of global fits. DIS measurements
can remove them by probing different operator combinations. But DIS measurements
can also have their own degeneracies, especially at high energies. To illustrate this, we
examine one LHeC run configuration as an example.

The NC DIS amplitude contains two structures: one constant in y, and one propor-
tional to (1 — y)%. We set the coefficients of both structures to zero, for both up and
down quark amplitudes. This gives four equations involving seven Wilson coefficients. So

only three directions are independent. We choose oW c®

g+ Chy s and Cqe as a basis. For the
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SMEFT contribution to e™p scattering to vanish, the solutions are given by

P,—-1Q,— ¢ u
Y. Qu— 95947z () _ @),

4.139 C.p = L
(4.140) o, = tl Qu— 9° 94z
Pr—=1Qu— 959"z ™
Pf_le_gegdﬁZ (1) (3)
4141 C, - Ltz o | o)
e tP+1Qu- g'igd_mz( W+ G
P 1 e dn
(4.142) Cua r+1Qa— 929472 C..,

B Pp—1Qq — gigd,ﬁyz
where @,/q is the up/down quark electric charge, g:ft = g‘f/ + gf;, g‘f// 4 are the usual

SM vector/axial fermion couplings to the Z boson, and the energy-dependent 7 factor is

defined by

A GrMZ Q@
4.143 - .
(4.143) hZ =S fara QF + M2

These same combinations also cancel the SMEFT contribution to e*p scattering if we flip
the lepton polarization.

Because of energy-dependent factors in the amplitude, these cancellations are only
approximate. But they become more accurate at large ). At the LHeC, @) can reach
up to 1 TeV, which is much larger than my. So the degeneracies become relevant. Since
the cancellations depend on the lepton polarization, they can be broken by running with
different polarization settings. This holds for both LHeC and FCC-eh.

This is a bottom-up construction of a flat direction. We do not try to connect it to any

specific UV model. For P, = —80%, we study how this direction appears in the LHeC2,
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LHeC4, and LHeC5 data sets. In the limit Q/mz — oo, the solutions are given by

(4.144) Ceu ~ —13(CY) — C1)y = CY
(4.145) Cru & —0.052C,, = C})
(4.146) Cea = —22(C) + Oy = CY
(4.147) Cra = 0.12C,, = CL).

A/~ Cr [TeV ] at 95% CL, 3d fit

Pr=-80%, Cou~—13(CV) — C)), Cru~ =0.052 Cye, Coa~ —22(CY) +CY)), Cra~0.12Cy,

80f
60
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20
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Figure 4.10. Effective UV scales corresponding to marginalized 95% con-

fidence level bounds on the Wilson coefficients C’g), c?

vy » and Cye in the

analysis of flat directions for LHeC2, LHeC4, and LHeC5.

We apply these equations to the amplitudes and re-fit the data in the three-dimensional

parameter space spanned by oW o)

1+ Ciy > and Cge. The resulting bounds and effective UV

scales at 95% CL are shown in Figure As expected, the individual runs give weak
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bounds, since the SMEFT effects are tuned to cancel out. But the joint fit removes the flat
direction and leads to strong bounds. This highlights the importance of running future

DIS programs with a variety of beam configurations.

4.5.2. ffV vertex corrections

We now activate a 17-dimensional parameter set that includes modifications to the fermion
couplings to neutral EW gauge bosons. In general, precision observables at the Z pole
provide strong constraints on these parameters. In some cases, they push the effective UV
scales up to 10 TeV, as shown in [76), [49]. But the number of independent measurements
is limited, and once we move beyond single-parameter fits, the bounds weaken by about
an order of magnitude. This is due to strong correlations among parameters, which create
flat directions in the global fit. These effects are discussed in [92].

Table shows our results from a 17-dimensional marginalized fit of the ffV operators
using joint data sets from the EIC, LHeC, and FCC-eh. For comparison, we also show
the corresponding bounds from the 34-dimensional EW, diboson, Higgs, and top-quark
fits adapted from [92]. The correlation matrices from our joint LHeC and FCC-eh fits
are given in Figures and [£.12] It is important to note that this is not a one-to-one
comparison with [92], since their fit includes 34 parameters while ours has only 17.

Several features stand out. First, the bounds from the LHeC are stronger than those
from the joint EW fit. If added to a global analysis, the LHeC would be a major contrib-

utor. The FCC-eh bounds are even stronger than both the LHeC and the EIC in most



Table 4.9. Marginalized 95% confidence level bounds on Wilson coefficients
in the 17-dimensional fit assuming A = 1 TeV, along with the corresponding
effective UV scales in TeV. The combined EIC fit of D4, AD4, P4, and AP4,
the joint LHeC and FCC-eh fits, and the marginalized bounds and UV scales

from the 34-dimensional fits of EW, diboson, Higgs, and top data [92] are

shown.
Joint EIC| Joint LHeC | Joint FCCeh |EW diboson, Higgs, and top data
Cop |[-3.8, 3.8][[-0.019, 0.019]{[-0.013, 0.013] [-1.6, 0.81]
A
NG 0.51 7.2 8.8 0.91
Cowp [[-9.9, 9.91|[-0.098, 0.098]|[-0.034, 0.034] [-0.36, 0.73]
A
o | 032 3.2 5.4 1.4
C&%) [1-38., 38.]| [-0.40, 0.40] | [-0.39, 0.39] [-0.27, 0.18]
A
= 0.16 1.6 1.6 2.1
C‘fl
C& |1-4.1, 417 [-0.11, 0.11] [[-0.031, 0.031] [-0.11, 0.012]
A
NG 0.49 3.1 5.7 4.1
Cou |[-38., 38.]| [-0.51, 0.51] | [-0.45, 0.45] [-0.63, 0.25]
A
NG 0.16 1.4 1.5 1.5
Coa |[-84., 84.]| [-0.82, 0.82] | [-0.71, 0.71] [-0.91, 0.13]
A
> 0.11 1.1 1.2 1.4
C& [[-18., 18.1{[-0.094, 0.094]|[-0.060, 0.060] [-0.19, 0.41]
A
& 0.23 3.3 4.1 1.8
C |[-4.1, 4.11|[-0.060, 0.060]|[-0.022, 0.022] [-0.13, 0.055]
A
\/W 0.49 4.1 6.7 3.3
Cee |[-5.7, 5.71 [-0.16, 0.16] |[-0.046, 0.046] [-0.41, 0.79]
A
0.42 2.5 6 1.3
N 4 4
Cy |1=7.7, 7.71[-0.039, 0.039]|[-0.026, 0.026] [-0.084, 0.02]
A
N 0.36 5.1 6.2 4.4

199
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Figure 4.11. Correlation matrix of the 17d joint LHeC fit of Wilson coefficients.
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cases. Second, the ffV operators are only weakly correlated with the four-fermion oper-
ators, which justifies treating them separately in some analyses. Third, the EIC bounds
barely reach 0.5 TeV and remain much weaker than those from the LHeC or the EW fits.

Two-dimensional projections of selected Wilson coefficients are shown in Figures 13
and 14. These include both non-marginalized and marginalized fits at 95 percent confi-
dence level. The EW fits are taken from [92] for comparison. In most cases, the LHeC
provides stronger bounds than the EW data. The FCC-eh pushes them even further.
The EW fits show tight correlations and degeneracies, but these are largely resolved when
using DIS data from the LHeC or FCC-eh. On the other hand, the EIC fits are by far

the weakest and contribute little to probing the ffV parameter space.

4.6. Coda

This chapter explored the potential of the EIC, LHeC, and FCC-eh to probe BSM
physics using the SMEFT framework. We focused on NC DIS cross sections at the LHeC
and FCC-eh, and PV observables at the EIC, following the general strategy used in earlier
studies. Our analysis included the full set of dimension-6 operators that can modify the
DIS amplitude, namely the semi-leptonic four-fermion operators and the vertex corrections
to fermion couplings with neutral EW gauge bosons.

We examined a wide range of machine configurations, varying in energy, beam polar-
ization, and lepton species. The results show that the EIC can reach effective scales up to
3 TeV, the LHeC up to 13 TeV, its joint runs up to 14 TeV, and the FCC-eh up to 18 TeV.
No single configuration gives full coverage of the SMEFT parameter space. Multiple runs

with different polarization and species setups are necessary. Most importantly, future DIS
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Figure 4.13. Marginalized 95% confidence level ellipses in the two-
parameter fits of C,p and Cy. (left) and C&) and Cy. (right) at A =1 TeV.
The joint EIC, LHeC, and FCC-eh fits are shown, along with the EWPO
fit adapted from [92].

data can lift the flat directions that limit EW precision fits. Among the three machines,

the LHeC and FCC-eh provide the strongest reach.
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Figure 4.14. Marginalized 95% confidence level ellipses in the two-
parameter fits of C,p and Cy. (left) and C’&) and Cy. (right) at A =1 TeV.
The joint EIC, LHeC, and FCC-eh fits are shown, along with the EWPO
fit from [92].
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CHAPTER 5

Transcendental Etude in e~ Minor

Church Painter: Why should one always make people happy? It might be a good idea to
scare them once in a while.

Jons: Then they’ll close their eyes and refuse to look.

Church Painter: They’ll look. A skull is more interesting than a naked woman.

Jons: If you do scare them...

Church Painter: Then they think.

Jons: And then?

Church Painter: They’ll become more scared.
Ingmar Bergman, The Seventh Seal

This chapter demonstrates how measuring single transverse-spin asymmetries at the
Future Circular Collider operating in the electron-positron mode can enhance the sensitiv-
ity to the electron Yukawa coupling. We show that using transversely polarized electron,
in both the bb and semi-leptonic WV final states, the significance can increase up to three
times compared to inclusive cross section methods. If positrons are also longitudinally
polarized even at just 30%, the significance and improve by a factor of five or more. The
method takes advantage of the quantum interference between the Higgs signal and the
continuum background, providing a more precise measurement. This approach is also

applicable to other WIW and ZZ final states.
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5.1. Prelude

The discovery of the Higgs boson marked a monumental milestone in our understand-
ing of the Standard Model (SM) and the mechanism by which elementary particles acquire
mass. However, despite over a decade of experimental progress, some of the most fun-
damental aspects of Higgs physics remain elusive, for example the coupling of the Higgs
boson to the electron, which in the SM is predicted to be proportional to the electron
mass and therefore vanishingly small. The electron Yukawa coupling, y., is the smallest
among all SM fermion Yukawa couplings, with a value y*™ = v/2m,. /v =~ 2.9x 10~%, where
v is the Higgs vacuum expectation value. Probing this coupling directly would represent
one of the most stringent tests of the SM Higgs mechanism.

The current experimental bounds on y. are orders of magnitude above the SM ex-
pectation. The most recent limits, derived from Drell-Yan production processes at the
Large Hadron Collider (LHC), constrain |y.| < 260|y5M| at 95% confidence level [124, [7].
Even with the full High-Luminosity LHC dataset, this bound is projected to improve to
no better than |y.| < 120|y>™| [64]. The primary obstacle is that the Higgs coupling to
electrons enters the cross section quadratically and is heavily suppressed by the electron
mass, making it extremely challenging to isolate from large SM backgrounds.

The electron Yukawa coupling can be accessed more directly at future electron-positron
colliders operating near the Higgs resonance. The proposed Future Circular Collider
in electron-positron mode (FCC-ee) is a promising candidate for such measurements.
By running at /s = 125 GeV with a planned integrated luminosity of 10 ab™!, the
FCC-ee can produce Higgs bosons in the s-channel via electron-positron annihilation.

Several dedicated studies [106), [89], B8] have investigated the prospects of measuring y, at
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the FCC-ee, employing inclusive cross-section measurements and multivariate techniques.
The most complete analysis to date suggests that an upper bound of |y.| < 1.6/y>™| could
be achievable, provided that exceptional control over beam energy spread and detector
resolution is maintained.

However, the inclusive cross-section approach suffers from intrinsic limitations. The
cross section for s-channel Higgs production is proportional to 1.2, further compounding
the suppression associated with the electron mass. Additionally, large backgrounds from
electroweak continuum processes challenge the statistical significance of such a measure-
ment. This motivated the search for alternative observables that could provide enhanced
sensitivity to ye.

A promising avenue lies in exploiting the spin degrees of freedom of the initial-state
electrons. Single transverse-spin asymmetries, well-studied in the context of deep-inelastic
scattering and quantum chromodynamics (QCD), exhibit a chiral suppression propor-
tional to the electron mass [I39]. More importantly, these asymmetries arise from inter-
ference between the Higgs signal and the SM continuum background, leading to a depen-
dence linear in y,. rather than quadratic. This crucial feature opens up a new strategy for
probing the electron Yukawa coupling.

The theoretical framework underpinning these asymmetries is rooted in the discrete
symmetries of the SM amplitudes. Transverse single-spin asymmetries are odd under
the combined transformation of parity and naive time reversal. In the processes consid-
ered here, namely e"et — bb and e"et — W-W™, the asymmetries emerge from the
imaginary part of the interference between the Higgs-mediated amplitude and the contin-

uum background. This imaginary part is generated primarily near the Higgs resonance
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through Dyson resummation effects. As a result, the asymmetries exhibit a characteristic
dependence on the azimuthal angle between the transverse spin direction of the electron
and the final-state particles. Properly weighting the measured events with this angular
dependence allows the signal to be isolated from background contributions.

Our study builds upon these theoretical insights and systematically investigates the
potential of transverse spin asymmetries to probe the electron Yukawa coupling at the
FCC-ee. We consider two final states: the bb channel, which is clean and well-understood,
and the semi-leptonic W~W™ channel, which benefits from favorable kinematics and
reduced QCD background. For each process, we construct asymmetry observables under
various beam polarization configurations and assess their statistical significance. Our
analysis accounts for realistic experimental effects, including beam energy spread and
initial-state radiation, and incorporates optimized kinematic cuts to enhance sensitivity.

A key result of this analysis is that the use of transverse spin asymmetries significantly
improves the prospects of observing the electron Yukawa coupling at the FCC-ee. In the bb
channel, we find that the significance can be improved by a factor of five compared to the
inclusive cross-section analysis. In the semi-leptonic W~W™ channel, the improvement
reaches a factor of six, with the significance approaching the threshold for observation of
the SM electron Yukawa coupling. These results illustrate the power of spin asymmetries
as precision probes of fundamental SM parameters.

The broader theoretical implication of this work is that quantum interference effects,

long known to play a subtle role in collider observables, can be harnessed strategically to
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access otherwise inaccessible parameters. By coupling this approach with beam polariza-
tion, precision measurements at future colliders can extend beyond conventional limits,
probing the chiral structure of the SM with unprecedented sensitivity.

This chapter is organized as follows. In Section 5.2, we introduce the processes con-
sidered, outline our theoretical framework clearly and explicitly, and define all relevant
observables. Analytical expressions for the transverse-spin asymmetries are presented in
Section 5.3. In Section 5.4, we explain how beam energy spread and initial-state radiation
effects are incorporated into our analysis. Our primary sensitivity results and numerical

estimates are provided and discussed in detail in Section 5.5. We conclude in Section 5.6.

5.2. Structure of the cross section

We consider the following processes of interest:

(5.1) e (pa) + €t (po) = b(p1) + b(p2),

(5.2) e~ (pa) + € (po) = W(p12) + Wi(pss) = L(p1) + v(p2) + (ps) + j(pa)-

We refer to these processes simply as the bb and WW processes, respectively. Analytical
calculations are carried out with FeynArts [111] and FeynCalc [146, 145, 144, 138] using

the unitary SM model. The only modification we introduce is the generalized projectors

for the spinors [43]:

(5.3) Uy Uy = (pa +me)Py, w0y = (pb — me) Py,
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Here, the generalized projector for a particle/antiparticle in a spin state A having the spin
4-vector s is given by

(5.4) P=(A, ) 5

Then we have P, = Pt ()\,, s,) and P, = P~ (\, s). The electron and positron spin vectors
are given respectively by s, = (0,1,0,0) and s, = m%(’pb], Eypy), where we use bold-face
font to denote 3-vectors. The latter can also be expressed in terms of the incoming
momenta as S, = CqPq + CyPp, Where

2m? — &2

2m, .
Te/E —am T meJE —am?

(5.5) Co =

Er/E2—4Am2

2 2
e’ 2me

<2 _ _ _ _
Sqg = Sp = _]-7pa'8a —pb’sb—07 Sa'Sb—O, aJndpa'sb_

so that p? = p} = m?, s2

Here, £ denotes the center-of-mass (c.m.) energy.

Once we derive the squared amplitude, the cross section is obtained by
(5.6) o= F/dLIPS |AJ]?,

where F' = 1/(2€?) is the flux factor in the small-m, approximation and |AJ? is the
squared amplitude with the spin sum over the outgoing fermions. The Lorentz-invariant

phase space (LIPS) is given by

1
(5.7) / AP = / a0
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for the bb process and

1 I E—misg
/dLIPS = W\/O' dm12 2m12/0' dm34 2m34\/)\(52,m%2,m§4)

(5.8) x / A1 / do, / Qs

for the WW process. Here, my34) is the invariant mass of the W boson that decays into
the lepton-neutrino pair (jets).

Let us detail the geometries of the bb and WW processes and provide the expressions
for various 4-momenta involved. Figures and depict said geometries for the bb and
WW processes, respectively. In the latter, the momenta with asterisk (circle) are the ones
as measured in the rest frame of the W boson that decays into the lepton-neutrino pair
(jets). We emphasize that the momenta p; and p, for the bb process and p;, and ps, are
not restricted to the xz plane just because the drawings indicate so; that is, these vectors
have nontrivial azimuthal angles ¢ and 19, respectively.

The 4-momenta for the external particles in the bb process are given by p; = (E;, p;)
for : = a,b,1,2, where
£ +myg ), — my, AE2,m2, m?)

2E ’ 2E ’

&? +mf/2 - mg/l Pyl = A(E2,m2 m3)
28 ) DPi1/2| = 28 )

(5.9) Eopp =

|pa/b| = ﬁa/b = :l:(o) 07 1)7

(510) E1/2 = ﬁ1/2 = i(SGCW S0S¢p, C@)'

where m, = my = m,., m; = mo = my, and s and c are the sine and cosine functions of

the angle denoted in the subscript, respectively.
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Pa ) 9 Pb

Figure 5.1. The collision of a transversely-polarized electron beam with a
longitudinally-polarized positron beam for the bb process in the center-of-
mass frame of the incoming particles. Note that the vectors p; for ¢ = 1,2

are not restricted to the xz plane.

The components of the 4-momenta relevant to the WW process are given similarly by

(5.11)
(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

&2 + m?z/b - mg/a )‘(527 mg? mz)

Ea/b = 28 ) |pa/b| = 28 ) ﬁa/b = j:(07 0, 1)a
o - &% + m%2/34 - m§4/12
12/34 2€ )
ME2,m2,, m?2 .
‘p12/34‘ = \/ ( 2512 34)7 p12/34 = :|:<891QCQD127 Selzsgolga 6912)7
EIQ = M2, pTQ - 07
x mi, + m%/2 - m3/1
1/2 2myo ’
] VAmiy,mi,m3)
|p1/2| = 21727’le1 - v P12 = :t(39104p1, 56,81 5 691)7

(e} (e}
E34 = Mg3y, p34 - 07
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Figure 5.2. The collision of a transversely-polarized electron beam with a
longitudinally-polarized positron beam for the WW process in the center-
of-mass frame of the incoming particles on the left. On the right, we
draw the decays of the W bosons into a lepton-neutrino pair or two jets
in their respective center-of-mass frames. Note that the vectors p; for

1 =12,34,1,2,3,4 are not restricted to the xz plane.

5.18 0=
o \/)\(7712 7m27m2) ~o
(519) ’p3/4| = 5;1”343 . ) p3/4 = j:(89309037 803503, 093)'

where m, = mp = m, and m; = my = m3 = my = 0. The p; for : = 1,2, 3,4 can then be
obtained with a Lorentz boost from their respective frames into the c.m. frame of p, and

py. For the “12” system, we have

(5.20) Pla = Map12 = BiaRigyy Ria 2pi2,



where
712 0 0 —72B12
0 1 0 0
(5.21) By =
0 01 0
—’712512 0 0 Y12
1 0 0 0
0 Co, 0 S0,
(5.22) Rysy = ’ |,
0O 0 1 0
O 8912 0 6912
1 0 0 0
0 ¢ s 0
(523) R12,z _ P12 P12 :
0 —Sun Con O
0 0 0 1

which we can solve for 5 and S5 to find

5.24 == =
( ) Y12 o 12
For the “34” system, we have

(5-25) p§4 = N3upas = B34R34,yR34,zp347

214
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where

Y34 0 0 —v348

0 1 0 0
(5-26) Bsy = > R34,y = R12,y> R34,z = R12,za

0 01 0

o

—v34334 0 V34

which we can solve for v34 and f34 to find

(5.27) Yau=——, Pau=—"F7—
m-

This allows us to write pi/p = Afjp’{ /o and p3/y = A§41p§ /4 Finally, we expand each

fermion momentum with respect to the corresponding fermion mass as

(5.28) pi ="+ mip}?

i

for i = a,b,1,2 for the bb process and i = a,b for the WW process. Next, we present
an intuitive discussion on the derivation of many-particle LIPS. Our intention is not to
state that this is how we derive the LIPS, but rather to provide a generalizable way to
construct the many-particle LIPS from scratch iteratively.

We note that our expressions are consistent with the general formula

1 g1
2(4m) 23 T(n)T(n — 1)

(5.29) LIPS, =

after integration for the case of massless outgoing particles. We also confirm that our
numbers for the unpolarized cross sections for the background bb and WW processes in

the absence of any cuts match our MADGRAPH [24] simulations, as well as the relevant
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numbers quoted in Table 1 of [88], verifying not only our expressions for the LIPS but
also for the 4-momenta.

For the bb process, we keep the mass of the b quark to first order and for the WW
process, we take the outgoing fermions to be massless. For both, we keep the mass of
the electron to first order. We keep the vertex factors in closed form so as to distinguish
between the fermion masses that derive from the equation of motion and from the Yukawa
couplings.

Our observable is the polarization asymmetry, A = N/D, where N is the differences
between cross-section measurements with distinct incoming beam polarizations, which
are denoted by o*«* where )\, and )\, can take on values +1, 0, and —1, and D is the
sum of said cross-section measurements. We investigate various polarization asymmetries

constructed as follows:

e The double-polarization asymmetry (DP):

(5.30) N = Zl(a++ —otT -0 +077),
1
(5.31) D= Z(JJ”L +oT 4o T +o0).

e The single-polarization asymmetry with an unpolarized positron beam, A\, = 0

(SPY):

(5.32) N =

1
(5.33) D= 5(a+° +079).
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e The single-polarization asymmetry with a left-handed positron beam, A\, = +1

(SP™):
Lo it —+
(5.34) N = 5(0 —o ),
1
(5.35) D= §(a++ +o ).
e The single-polarization asymmetry with a right-handed positron beam, A\, = —1
(SP™):
L, _
(5.36) N = 5(0 —0o ),
L, _
(5.37) D= §(U+ +o 7).

We note that the angular weight functions sin(y) and =+ sin(pqy) are introduced to the
phase space whilst we form the numerator of the asymmetry of the bb and WW processes,
respectively, where the sign of the latter is opposite to the sign of the electric charge of
the outgoing lepton, ¢T. To see this, we need to understand the analytical expressions for

the numerators of the asymmetries, which is what we do next.

5.3. Analytical calculations

We start with the bb process. In general, we write
(5.38) N = F/dLIPS w>» N°

(5.39) D= F/dLIPS > Dr
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where w is a weight function and the summation runs over all the interference channels.
For the bb process, we have ¢ € {h,v,Z,hy,hZ,vZ}. To avoid clutter, we present the

expressions only for the primary observable of interest, which is the SP™ asymmetry. We

have
(5.40) N" =0,
(5.41) NY = —6E°A.*m, sin(26) cos(p) Cop, > Cee, 2,
NZ = —3&%m, sin(0) cos(p) (AL + AL)CE L (CE, + CF )

(5.42) x (cos(0)(Ciyz* + Ciiy”) + Ciit” — Ciis?),
(5.43) N = 128%my A, sin(0) Cyon Coiry Cech Ceery (sin () A + cos(p) A}),

N = 6E%my, sin(0) Cyppn CeenCl 7 (Ciy  + CF )
(5.44) x (sin(p) (A} A% — AfAY) + cos(9) (A} A7 + AjAY)),

N7 = —353A7me sin(Q)CbbyCew(cos(e)(C;ﬁ)z + CIfZZ) + Czﬁ)z - Cﬁz)
(5.45) X (sin(p) A% (City — Cly) + cos(p) AL (3CL, + Ciiy)),
and

(5.46) D" =3E'Chn’Ceen® (A} + AL?),

(5.47) DY = ;54A72(COS(29) +3)Chty* Ceer?

3 ‘
154(A122 + ATZQ)CeLeZQ(4 COS(Q)(CI;IéZ - lezz)(cziz + Clﬁz)

D% =

(5.48) + (cos(20) + 3)(Cy5* + Ciip),
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(549) Dhn/ = 24€2mbA7me COS(@)C’bbhctbbﬂfcteehC’eeA/A;17

(5.50) D" = 6&mym, cos(0) CopnCren (AL AL + AL ALY (CE , + CE ) (CE, + CE ),

D = gsmvcbbvcmAgcer
(5.51) x (4cos(0)(Chiz — Ciiz) + (cos(20) + 3)(Ciiz + Ciiz)).-

Here, Ay, A, and Ay are the propagators, given by

1 1 1
5.52 Ay = A, =—, Ayz=
( ) h 52 — m% +imh1"h’ v 527 z

. )
82 — mzz + ZerZ

A"/ are the real /imaginary parts of said propagators, and numerous C' factors are the
coupling strengths of indicated interactions in the subscripts.

We are interested in isolating the electron Yukawa coupling, denoted by Cl.p, in —
(5.45)) near the Higgs resonance. With small A’ and small A%, we see that all the channels
go like cos(ip), except for the Higgs-Z boson interference, which is proportional to sin(¢p)
due to the coupling of the imaginary part of the Higgs propagator to the real part of the
Z-boson propagator. This channel can be isolated with the weight function w = sin(yp).

We investigate the on-shell WIW production to have a decent understanding of the
full, more complicated WW process in regards to determining a proper weight function.

Thus, the process of interest is now
(5.53) e (pa) +et(py) = Wip1) + W(p).

At tree level, this process takes places via three s-channel diagrams with the Higgs, photon,

and the Z-boson emission, as well as a t-channel diagram with a neutrino exchange. Here,
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the p; (i = a,b,1,2) have components
&%+ mi/b - mi/a AEZ,m2,m3)
28 ’ 2& ’
E2 +mi,, —mj MNE2,m?2, m3
(5-55) E1/2 = 12/; 2/1, \P1/2| = ( 0F L 2), D12 = j:(SGCngOSLpaCG)?

(554) Ea/b = |pa/b| = ﬁa/b = :t(07 07 1)a

where m, = my, = m, and m; = my = my,. We focus on the numerators of the various

asymmetries of interest. We write

(5.56) N = F/dLIPS > N

where ¢ = h,v, Z,v,hy,hZ, hv,vZ,vyv, Zv. To avoid clutter, we present the expressions

only for the primary observable of interest, which is the SP™ asymmetry. We have

(5.57) N"=0,
1 :
N7 = p (EA.*m sin(20) cos(p)(E? — 4my?)
W
(5.58) x (—4&%mw? + 2my* + EN Oy (—Coww?)),
N%Z = S (Eme sin(20) cos(p) (28E*my* — 84 my? — 48myy® + £°)
W
(5.59) x Coww®(AL* + AL (=Cii ) (Coy + C2 ),

(5.60) N* =0,

N™ = 4%@%7 sin(0) v/ E2 — dmy2(E* — 12my ) CeenCeey
My
(5.61) x Craww (—=Chww ) (cos(p) A, — sin(p)A},)),
NhZ (E2sin(0)\/E2 — 4my2(E* — 12my ™) (—Clen)

= 2
dmy,
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(5.62) x Crww Coww Ol 4 (sin(p) (A A — AL AY) + cos(p) (AL AY + ALAL))),

(5.63) N" =0,

N = 87714 (EA,m,sin(20)(28E*my* — 8E*muy? — 48muy® + E°9)Cee,
W
(5.64) x (=Chyww)Caww (sin(0) A% (Ceez — Cizz) + cos(0) AL (Clyz + 3C22))),
1
NV = W(EAWA,,WL@ sin(6) cos(@)Ceery Comww (EN/ E2 — dmy?
w

x (—cos(20)(—6E*my? + 8my? + &) — 28%my? + 16my*
(565) + 84) - 4008(9)mw2(—1052mw2 + 24mw4 + g4>>0ff’W2)>

N% = m%(SAl,me sin(0)Cyww (4 cos(0)mw?(—10E%my* + 24my* + £4)
W

+ EVE? — dmy2(cos(20)(—6E%mw? + 8my ™ + EY) + 28 my

(5.66) — 16myw* — £))Crpw?(—Cliz)(sin(p) Ay + cos(p) Ay)).

Here, Ay, A, Az, and A, are the propagators given by

1 1
5.67 Ay, = A, = —
( ) 4 52—m2+imhfh’ 7

1 1
5.68 Ay = A =—"
( ) z (pa _p1)2

52 - m2Z + Z.mz]:‘Zj

and A"/* are the real/imaginary parts of said denominators. Numerous C factors denote
the coupling strengths of interactions indicated in the subscripts and are given in the
appendix. One should be scrupulous with the collider energy here because now we cannot
simply set £ = my, because of the two outgoing W bosons. Thus, what we have here

serves only as a crude estimation of the bigger picture. Nevertheless, we observe that in
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all these expressions, w(y) = sin(y) is again a good weight function that will isolate the
electron Yukawa coupling, C..p,, near the Higgs resonance, i.e. with negligible A}. Be
that as it may, this choice of the angular weight does not perfectly isolate the Higgs-Z
boson interference as in the case of the bb process; namely, we now have contributions
from the Higgs-photon and Higgs-neutrino interference amplitudes, as well. One could
try to find a weight function that would eliminate said contributions; however, it is a
nontrivial task due to the cos(f) term in the denominator of the neutrino propagator.
Even in the case where the hv interference could be removed, we still observe that the
h~ and hZ channels have identical dependence on #. This means that any attempt to
exterminate the A7y interference by introducing an angular weight that also depends on
6 would annihilate the hZ interference, as well. As we observe later, the chosen weight
function when generalized to the full, more involved WW process serves it purpose nearly

perfectly.

5.4. Dilution of the signal

To make a realistic estimate of the potential significance at an FCC, especially for a
study that needs the beam collision energy to be tuned near the Higgs resonance, it is
important to include the effects of beam energy spread and initial-state radiation. We
account for the beam-spreading (BS) and initial-state-radiation (ISR) effects with the
following convolution:

o0 5 1
(5.69) 0(Econ) = / d& W / dz f(z,&)o(VzE),
—00 0
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where the BS is characterized by a relativistic Voigtian function [130]

d[f(gcoll) é‘v 5) - 1 (é‘ _ gCOH)Q

Here, &E.op is the collider energy and 0 is the c.m. energy spread. In the meantime, we

use the Jadach-Ward-Was ISR function [120], 121] for its popularity in similar studies

[106, [81]:
(5.71) % Bo(1 — )P {1 n % B %(1 B x)Q} |

with v being the Euler-Mascheroni constant and

- e fu(2)-]

We carry out numerical integrations using VEGAS [133], 132]. For the BS convolution,
we perform the integration from émin to é'max by transforming the integral to one over the

unit interval via the following change of variables:

~ ~

(5.73) E=V2UF +Een, F=tan(d),

~

(574) 77/} =2 ardﬁan(é), (j = (gAmax - gAmin)'UgA + Gminv

where vg € [0, 1] and

(575) Gmax/min = tan (@) ;
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(576) 7vzmax/min = arCtan(ﬁmax/min)a
- émax min — gco
(577) erax/min = / 1 .

V28

These changes of variables introduce the Jacobian

(5.78) Js = [\/5(5] [SGC(@;)Q] {6224- 1] [Gmax - Qmin] .

Here, we assume c‘:’min = 110 GeV and émax = 140 GeV. Our analysis shows that these
limits are practically equivalent to integrating & over the entire real line, for the integrands
are highly peaked around the Higgs mass.

As for the ISR convolution, we perform the following change of variables to stabilize

the Monte Carlo integration routine:
(5.79) r=1—e"" w=tan(y), y=
where v, € [0, 1]. This introduces the Jacobian

(5.80) Jo = owe ] [sec(y)?] | 2]

Our analysis shows that «, = 4.5 yields the highest stability by essentially flattening the

ISR function to provide uniformity as a means of importance sampling.
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5.5. Sensitivity estimates

The experimental reconstruction of the asymmetry is given by

1 Ny
81 AP = —
(5:81) P.-P.+ Np
when both incoming beams are polarized and
1 Ny
5.82 ASP = —
(5.82) PN,

when only the electron beam is polarized. Here, P+ is the electron/positron beam polar-
ization reach at the collider, and Ny = nLN and Np = nLD are the event counts, where
n is the acceptance/efficiency and L is the integrated luminosity. In the limit of small

asymmetry, the error in AP is given by

OP,- 0P+ 1 1
5.83 JASP — — ¢ Aexp €T Aexp
(5.83) i &5 ® 5o i

when both beams are polarized and

0P,- 1 1
5.84 AP = —= AP @ —
(5:84) P,.- @ P.- \/Np

when the positron beam is unpolarized. The significance is then defined as § = AP /§ AP,
We assume P,- = 80% and P.+ = 30% [19, [40], and 3% relative uncertainties in the
beam polarization reaches, as well as L = 10 ab™! and n = 80% (100%) for the bb (W W)

process in accordance with [88]. We assume the input scheme {Gp, my, mz}. We have

(5.85) Gp = 1.1663787 x 1075 GeV 2,
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(5.86) my =125 GeV, T, =4.1x 1072 GeV,
(5.87) mw = 80.379 GeV, Ty = 2.085 GeV,
(5.88) my = 91.1876 GeV, TI'y = 2.4952 GeV,
(5.89) me = 0.511 x 1072 GeV, my = 3.105 GeV,

and the derived parameters are

-1
™

Va3, (1- )
zZ

mw
(5.91) cW:m—Z, sw=1/1—2¢%,

(5.90) a =Gy

Ty — Qssi Qrsw

(5.92) gi = 3—fW, gé _ =W
SwWwCw Cw
The coupling strengths are given as follows:
emf
5.93 Crp=—
(5.93) L Po—
e
(5.94) Crpy=—€Qp, Cliz=cegl, CFy=egh, Crpw = )
V2
em ec
(5~95) Chww = W, CWWW =—e, Czww = —W-
Sw Sw

The Cabibbo-Kobayashi-Maskawa matrix is taken to be the identity. The width parameter

in the BS function is set to the Higgs decay width:

(5.96) 5 =T}
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The collider energy is set to the Higgs mass:

(597) gcoll = My,

2

S v.euts Which we refer to as the

Now we assume only an invariant-mass cut z€% > m

level-0 cut, denoted by C°:
(5.98) C’ : Miny.cut = 120 GeV.

In the absence of any other cuts, we obtain the significance values presented in Table [5.1]
For the WW process, we note that there are two different WW processes, depending on
the sign of the electric charge of the outgoing lepton. We have e~et — WW — (- Tu,d;
and e"et — WW — (tyud;. We assume that the outgoing lepton could be any of
eT, ut, and 77, and we restrict ourselves to the first two quark generations, namely
1 = 1,2. We form the observables separately for each of these processes by taking six
copies of each to account for three lepton and two quark generations whilst forming the
event counts Ny and Np. Subsequently, we use or with the resultant value
of experimentally constructed asymmetry. Then, we compute the significances separately
for the two processes, combining them in quadrature at the end.

In Table [5.1] we also present the reference values of significance computed using the
unpolarized signal and background cross-section values as

S nLo(e et = h— X)
VB \/nLopg(e et — X)’

(599) Sref =

where X is bb for the bb process and WW — (vjj for the WV process.



Table 5.1. The sensitivity estimates for the double-polarization and various
single-polarization asymmetries, along with the reference observable, are
obtained using the level-0 cut C°, an integrated luminosity of L = 10 ab™!,

and beam polarization values of P.- = 80% and P.+ = 30% at the collider.

| etet > WW — lujy
Observable | e"e™ — bb
I ¢/t | combined
DP 0.27 0.31 | 0.31 0.44
Sp? 0.19 0.38 | 0.37 0.53
Sp* 0.11 1.7 1.6 2.4
SP~ 0.37 0.054 | 0.046 0.070
Reference 0.11 0.37 | 0.37 0.53
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From [88], one can also estimate the significance of said processes using the unpolarized

cross-section values in the absence of any cuts as follows. The cross-section values for the

irreducible background processes e~e™ — bb and e"et — WW — fvjj with including BS

and ISR effects are obtained to be 15 pb and 15 fb, respectively. We emphasize that the

reported values in said work are 19 pb and 23 fb, respectively, without the ISR effects.

In the meantime, the corresponding Higgs decay cross-section values are 164 ab and 26.5

ab, respectively. This leads to a significance of

(5.100) S =

~ (80%)(10 ab™")(164 ab)

S
VB

(80%)(10 ab™1)(15 pb)

=0.12
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for the bb process and

—1
(5.101) o_ S _ (100%)(10 ab~!)(26.5 ab) _ . .o

VB \/(100%) (10 ab™)(15 )

for the WW process. Therefore, we remark that in the absence of any cuts, with the SP™
(SP') asymmetry as our primary observable for the bb (WW) process, we can obtain a
significance of 3.1 (3.5) times what can be inferred from [88].

Next, we consider cuts on the phase space on top of the invariant-mass cut, which we

refer to as the level-1 cuts. Following [88], we impose
(5.102) C':C%and 5° < 0 < 175°
for the bb process and

C':C% and Ej, ;, < 52,45 GeV, E; > 10 GeV,

(5103) Emiss > 20 GeV, Mg > 12 GeV

for the WW process. With the level-1 cuts C!, our new sensitivity estimates are quoted
in Table[5.2] Note that at this point, we refrain from imposing any other cuts that might
upset the orthogonality of our weight functions with the interference channels not contain-
ing the Higgs field in the asymmetry numerator. We emphasize that the aforementioned
cuts do not affect the orthogonality of our precious weight functions as ¢ or Ej, j,, Ey,
Eliss, and myo are all independent of ¢ or (5.

Next, we investigate additional cuts on the phase space for the observables of interest

without spoiling the orthogonality of our weight functions. We start with the polar angle



230

Table 5.2. The sensitivity estimates for the double-polarization and various
single-polarization asymmetries, as well as for the reference observable, are
obtained using the level-1 cuts C', an integrated luminosity of L = 10 ab™!,

and beam polarization reaches of P,- = 80% and P.+ = 30% at the collider.

| etet > WW — lujy
Observable | e"e™ — bb
I ¢/t | combined

DP 0.27 0.22 | 0.22 0.31

Sp? 0.19 0.33 | 0.33 0.47

Sp* 0.11 14 1.4 2.0

SP~ 0.38 0.086 | 0.083 0.12
Reference 0.11 0.32 | 0.32 0.45

6 in the bb process. The left panel of Figure shows the dependence of the sensitivity of
the SP™ asymmetry on the invariant-mass cut and the polar-angle cut. Here, 6., indicates
the percentage of the interval [0°,180°] clipped symmetrically from both end points; to
illustrate, 0., = 20% means @ is integrated from 18° to 162°. In the same figure, we also
indicate the point with the maximum sensitivity, 0.61, which occurs when 6., = 39% and
Miny cut = My, — L'y, Which is the closest we approach the Higgs resonance. The left panel
of Figure displays the dependence of the sensitivity of the SP~ asymmetry on the
invariant-mass cut for 0.,; = 39% near the Higgs resonance. Once the invariant-mass cut
reaches the resonant energy, the sensitivity drops drastically because of the significantly

reduced number of event count.
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S of SP™ asymmetry for bb S of SP* asymmetry for WW
80 —10.6 80 —3.0
0.5 2.5
60 60
T S
fd 04 = 2.0
< 40 03 < 40 15
2 ’
20 ) 20 Ll
0.1 0.5
0 0
124.0 1242 1244 1246 1248 125.0 124.0 1242 1244 1246 1248 1250
Miny cut [GeV] Minvy,cut [GeV]

Figure 5.3. The dependence of the sensitivity estimate of the SP~ (SP™)
asymmetry on the invariant-mass and polar-angle cuts for the bb (WW)
process is shown in the left (right) panel. The results are obtained using
the level-1 cuts C', an integrated luminosity of L = 10 ab™', and beam
polarization reaches of P.- = 80% and P.+ = 30% at the collider. The

green dot marks the highest sensitivity, achieved at minycuts = mp — I'p.

In light of the bb process, one could argue if a cut on 65 would be viable for the
WW process, as well, though the parallel may hardly seem perfect at a first glance
because of the t-channel neutrino diagram. On the right panel of Figure |5.3] we show the
dependence of the sensitivity of the SP* asymmetry on the invariant-mass cut and the
polar-angle cut. Here, 012, has the same meaning as 0,;. In the same figure, we also
indicate the point with the maximum sensitivity, 3.1, which occurs when 619 ¢ = 28%

and Mipy cut = My — I'p. In the right panel of Figure 5.4 we display the dependence of
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the significance of the SP™ asymmetry on the invariant-mass cut for 61y = 28% near

the Higgs resonance. The observed behavior is identical to the case of the bb process.

SP~ asymmetry for bb SP* asymmetry for W W
0.6' J 30. ,J 4
0.5f [——e= ] 2_5-_’— T ]
Dt -70&11; =39 % 2.0p 612,cut = 28 %
“ 0.3} “ 15
0.2f 1.0
0.1 0.5
0.0t L 0.0t ;
124.0 124.2 1244 1246 124.8 125.0 124.0 124.2 1244 1246 124.8 125.0
Miny cut [GeV] Miny cut [GeV]

Figure 5.4. The left (right) panel shows how the sensitivity of the SP~
(SP*) asymmetry varies with the invariant-mass cut when the polar-angle
cut is fixed at its optimal value, Ocyt = 39% (f12cut = 28%), for the bb
(WW) process. The results are based on the level-1 cuts C!, an integrated
luminosity of L = 10 ab™!, and beam polarization levels of P,- = 80% and

P+ = 30% at the collider.

In Figure [5.5] we display the contribution of each channel to the numerator and
denominator of all the asymmetries under consideration for the WW process, summed
over the three generations of ¢* and two generations of quark jets, to have a better
understanding of the wild differences in the sensitivity estimates amongst observables. The
black bars indicate the DP asymmetry, red SPY, blue SP™, and green SP™, respectively,
with the level-0 cuts C°, whereas the lighter shades in the foreground are the corresponding

values after the phase-space, or level-1, cuts C'. The channels not shown contribute by an
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amount 0.005 or less in shown units. Note that the numbers for the reference observable

are just the D values of the DP asymmetry.

D inator of SP* try for WW
Numerator of SP* asymmetry for W W eromimnator o SRR A

60
100 .: I

|

5 50 - @ e E 2
3 I | 8 - -
= 0 = R 0 B ==
| ] B | . ]
B B
[ ~40 B
hy hZ hy b4 A v vZ yv Zv
mm DP mm SP’ mm SP* mm SP- mm DP mm SP’ mm SP* mm SP-

Figure 5.5. The left (right) panel shows the contributions of interference
channels to the numerator (denominator) of the SP* asymmetry in the
WW process. Results are shown for the level-0 and level-1 cuts, C° and C!,
represented by dark and light shading, respectively. Channels contributing

less than 0.005 in the displayed units are omitted.

From Figure [5.5] we observe that due to the absence of aggressive competition be-
tween the channels with and without the neutrino exchange, the SP™ asymmetry yields
a remarkably high significance value. In this figure, we also see that the negligible con-
tribution of the neutrino channels in the numerator renders the polar-angle cut viable for
the WW process.

In Table [5.3] we present our sensitivity estimates for the bb and WW processes with
the level-1 cuts C! plus the best polar-angle cuts at Miny cut = Mp, — (10 MeV), which we

refer to as the level-2 cuts, denoted by C*:

(5.104) C% . C' and Miny.cut = My, — (10 MeV) and best polar-angle cut.



Table 5.3. Sensitivity estimates for the double-polarization and various
single-polarization asymmetries, along with the reference observable, are
shown with the corresponding optimal polar-angle cuts. The results are

based on the level-2 cuts C?, an integrated luminosity of L = 10 ab™', and

beam polarization values of P.- = 80% and P,+ = 30% at the collider.

B e et > WW — lvjj
Observable | emet — bb | Oy [%]
(= | 07 | combined | 619 ey [%)]

DP 0.41 39 0.31]0.31 0.44 22

SpY 0.30 33 0.58 | 0.55 0.80 44

Sp* 0.17 44 21| 2.0 2.9 28

SP~ 0.58 39 0.24 | 0.22 0.33 67
Reference 0.16 6 0.45]0.45 0.64 6
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Our results are summarized on the top and bottom panels of Figure [5.6|for the bb and

WW process, respectively. The black bars indicate the DP asymmetry, red SP, blue SP™,

green SP™, and brown the reference observable. The darkest shades in the background

are the values obtained with phase-space cuts and the best polar-angle cuts, the lighter

shades in the foreground no cuts, and the lightest shades in between the phase-space cuts

only. The solid yellow lines represent the significance values quoted in [88] for the relevant

processes with the BS and ISR effects on top of multivariate analysis.

In Figure we picture the dependence of the sensitivity estimates of the asymmetry

observables SP~ and SP™ for the bb and WW processes on the left and right panels,
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Figure 5.6. Sensitivity estimates for the double-polarization and various
single-polarization asymmetries, as well as the reference observable, are
shown using the specified invariant-mass cuts at all three cut levels. The
results assume an integrated luminosity of L = 10 ab™' and beam polar-
ization reaches of P,- = 80% and P.+ = 30% at the collider. The phase-
space cuts are 5° < 6 < 175° for the bb channel, and Ej 4, < 52,45 GeV,

E, > 10 GeV, E.is > 20 GeV, and mqp > 12 GeV for the WW channels.

Miny.cut = 120 GeV

Miny.cut = 124.9 GeV

Miny.cut = 124.99 GeV

s DP s SP’ mmmm SP* mmmm SP~ mmmmm Reference

The corresponding optimal polar-angle cuts are listed in Table [5.3]
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respectively, on the c.m. energy spread, §, and the integrated luminosity, L, with the

level-2 cuts C2.

S of SP™ asymmetry for bb

S of SP* asymmetry for W W

w0
3.5
10}
3.0
= =
> 25 3
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© 20 =
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1 B1.0 2r
/ 0.5
1 5 10 50 100
L[ab™]

Figure 5.7. The left (right) panel shows

1 5 10 50 100
L [ab™!]

how the sensitivity of the SP™

(SP™) asymmetry depends on the center-of-mass energy spread and the

integrated luminosity for the bb (W W) process. Results are obtained using

the level-2 cuts C? and beam polarization

values of P,- = 80% and P+ =

30%. The green dot marks the baseline choice of § =T’y and L = 10 ab™ ',

5.6. Coda

18

In this chapter, we explored how transverse-spin asymmetries measured at a future

FCC-ee can significantly improve sensitivity to the electron Yukawa coupling compared to

traditional, inclusive methods. The electron Yukawa coupling, being the smallest in the

SM, comes with unique challenges due to its extremely small predicted value. Directly

probing such a tiny quantity demands creative, high-precision experimental strategies.
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The approach investigated here uses the quantum interference between the Higgs-mediated
amplitude and continuum background processes, allowing sensitivity to scale linearly with
the electron Yukawa coupling, rather than quadratically, thus greatly improving measure-
ment potential.

We have shown that transverse-spin asymmetries use this quantum interference to
isolate the Higgs-related effects from the substantial backgrounds present in the bb and
semi-leptonic WW final states. For the WW channel, we found that sensitivity can
be improved by nearly a factor of six compared to a conventional inclusive cross-section
measurement. Even in the more experimentally challenging bb final state, the gain reaches
a factor of five, demonstrating the generality and robustness of our method.

A particularly important result of our analysis is the significant boost in sensitivity
achieved using single transverse-spin asymmetries, where only the electron beam is trans-
versely polarized. By carefully exploring optimal phase-space cuts and angular weighting,
we showed that SP asymmetries consistently deliver the highest sensitivity improvements.
Although double-polarized asymmetries can further enhance sensitivity, it is the SP asym-
metry that primarily drives our most substantial gains. Thus, our results strongly suggest
experimental efforts at FCC-ee should prioritize single transverse-spin polarization, along-
side the precision in angular measurements and phase-space cuts thoroughly explored.

However, achieving such precision at an FCC-ee would involve demanding experimen-
tal requirements. High beam polarization, ultra-precise beam energy calibration, and
strict control of energy spread and initial-state radiation effects are essential. We care-
fully included these factors in our sensitivity estimates, demonstrating that even moderate

reductions in luminosity or slight increases in beam energy spread still allow substantial
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sensitivity gains compared to conventional approaches. This robustness highlights the
practical feasibility of our method.

Long story short, transverse-spin asymmetries not only enhance sensitivity to the
electron Yukawa coupling but also introduce a new dimension to precision Higgs physics,
enabling detailed studies otherwise unreachable. Beyond the numerical improvement, our
results clearly show the powerful synergy between collider polarization capabilities and
subtle quantum interference effects. If experimentally realized, this measurement strategy
could directly confirm the SM prediction for the electron Yukawa coupling, providing
crucial insights into one of the theory’s most elusive parameters.

The techniques developed here are widely applicable, extending beyond the specific
channels studied. Future experimental analyses at FCC-ee could adapt this method to
other diboson final states, such as fully leptonic or fully hadronic decays, thereby further
consolidating the electron Yukawa coupling measurement. Ultimately, this approach po-
sitions transverse-spin asymmetries as essential tools in future collider physics, setting the

stage for unprecedented precision in understanding the Higgs boson and its interactions.
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CHAPTER 6

CP-odd to Joy

There is this concept called “moment”. You don’t run into it on the bus or at the
movies. No one fights anyone over moment. We had this guy in class, who insisted he

didn’t believe in moment. I hate moment. It ruins my day.
Oguz Atay, The Disconnected

We study the sensitivity of the high-luminosity Large Hadron Collider (HL-LHC)
to previously unexplored C'P-odd dimension-8 operators in the Standard Model Effective
Field Theory. Focusing on neutral-current Drell-Yan production in association with a real
jet, we consider semi-leptonic four-fermion operators involving gluon field strength tensors.
These operators do not interfere with the Standard Model in inclusive observables at
leading order, but contribute to specific angular structures. We exploit the Collins—Soper
moments Ag and A7, which are C'P-odd and sensitive to such effects, and perform binned
analyses in dilepton invariant mass and transverse momentum. Using projected HL-LHC
luminosity, we extract constraints on the relevant Wilson coefficients through single and
multi-parameter fits. We find that effective scales up to 9 TeV can be probed in single-
parameter fits, while simultaneous fits to all relevant operators yield weaker but nontrivial

bounds at the TeV scale.



240

6.1. Prelude

A key goal of precision collider phenomenology is to constrain possible effects of new
physics through subtle deviations from the Standard Model (SM) predictions. The Stan-
dard Model Effective Field Theory (SMEFT) provides a systematic framework for this
purpose, parametrizing potential new physics through higher-dimensional operators sup-
pressed by the scale of new physics. While much of the existing SMEFT literature has
focused on dimension-6 operators, several classes of dimension-8 operators remain unex-
plored and may carry unique information about possible ultraviolet (UV) completions of
the SM.

One such class involves semi-leptonic four-fermion operators with gluonic field-strength
insertions. These operators first appear at dimension-8 and do not interfere with the
SM amplitudes in inclusive observables but can contribute significantly to differential
distributions. Previous studies have shown that neutral-current Drell-Yan (DY) produc-
tion, particularly in the high transverse momentum regime, is sensitive to these gluonic
dimension-8 effects. Specifically, [45] demonstrated that the doubly-differential DY dis-
tribution in dilepton invariant mass and transverse momentum can probe C'P-even semi-
leptonic dimension-8 operators involving a gluon field strength tensor. Their analysis
revealed that the transverse momentum distribution carries a distinct sensitivity to these
operators, offering a valuable diagnostic tool to distinguish between different UV scenar-
i0s.

However, said study was limited to C'P-even operators. The C'P-odd counterparts
remain uncharted. These C'P-odd dimension-8 operators arise naturally in many UV

scenarios, including those with nontrivial C'P-violating dynamics, and can potentially
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leave measurable imprints in DY production in association with a real jet (DYj). Their
contributions manifest in specific angular and momentum distributions, providing com-
plementary handles to their C' P-even partners.

The motivation for the present work is to extend the existing analysis to include C'P-
odd dimension-8 semi-leptonic operators in the DY j process. This channel is particularly
suited for such studies, as the real jet emission allows direct access to the gluon field
strength tensor in the hard scattering process. Furthermore, the analytical control over
the tree level 2 — 3 matrix elements enables us to systematically include the effects of
these operators and assess their impact on kinematic distributions relevant for current
and future measurements at the Large Hadron Collider (LHC).

By constructing the complete leading-order amplitudes for both SM and SMEFT
contributions, and performing a detailed numerical analysis, this work aims to quan-
tify the sensitivity of the high-luminosity Large Hadron Collider (HL-LHC) to C'P-odd
dimension-8 effects in the DY j production. This effort not only fills a gap in the SMEFT
phenomenology landscape but also enhances our ability to diagnose the nature of possible
new physics in the event of future deviations from SM predictions.

This chapter is organized as follows. In Section 6.2, we pave the path to the cross
section, detailing the process, theoretical calculations, and kinematics. We review the
Collins-Soper (CS) frame in Section 6.3. In Section 6.4, we revisit the SMEFT formalism
with the operators relevant to our study. The CS moments for the DY production cross
section are defined in Section 6.5. Section 6.6 details our numerical calculations, setting
up the scene for the HL-LHC simulations in Section 6.7. We present the fit results of the

SMEFT parameters in Section 6.8. In Section 6.9, we conclude.



242

6.2. Structure of the cross section

We are interested in the hadronic process pp — 7V — je et at the LHC at TeV ener-
gies with both incoming beams unpolarized. In what follows, we use e and ¢ interchangably
to denote the outgoing lepton. The underlying partonic processes, p, +p — j+e~ +e™

for partons p, and p,s, consist of pair annihilation,

(6.1) @i (pa) + Ti(pe) = 9(p1) + € (p2) + € (p3),

and Compton scattering,

(6.2) ¢i(pa) + 9(po) = qi(p1) + € (p2) +e* (p3),

(6.3) G (pa) + 9(ps) = Gi(p1) + € (p2) + e (p3).

The tree-level Feynman diagrams are illustrated in Fig. |6.1] Here, V' is a neutral elec-
troweak (EW) gauge boson.

We obtain the SM amplitudes using FeynArts [111] and FeynCalc [146], 145], 144,
138] first and add the SMEFT amplitudes later by hand. We denote the propagator

denominators by

1 1

(64) D’Y - DZ = Ds =

Wy | =
Il
S
|

> —
S
Il

| =

)
meeZ —my?

where 3 = (p, +pb)2 = (¢ +p23)2 = mjVQa t = (Pa — p1)27 and @ = (p, — p23)2 such
that 8§ +¢ + @ = mjy> + 1+ @ = my? Here, m;y is the invariant mass of the jV/

system and my, is that of the £~ /T system, and we eliminate one Mandelstam variable
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Figure 6.1. The tree-level Feynman diagrams describing the underlying par-

tonic processes.

via @ = mg?® — mjy? —t. We have the following elementary dots:

(6.5) pi>=0, i=a,b1,2,3; px’=mu’,
A 2 - N 2
s myy t U — My
6.6 e =2 =" pepi= s e =
(6.6) Pa Py =3 5 Pa - D1 5 Pa P2 5
a £ — g
(6.7) Dh-PL=—my Db Pay=
2 2
S — mys? M2 — Myg®
(6-8) P1 P23 = “ “ )
2 2
. Mg
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Since the center-of-mass (c.m.) energy is at a TeV level, we assume massless fermions.

The gluon polarization sum is

(6.10) > et (ke (k) = —g.
The color simplification is

(6.11) TyTs = n(T°T*) = CaCp = N x —5

N2-1

4.

In the squared amplitude calculation, we have some extra factors, depending on whether

the incoming state is a quark or a gluon. The extra factor 1/(2N) is for an incoming

quark, where 1/2 is for spin-averaging and 1/N is for color-averaging, and the extra

factor 1/(2(N? — 1)) is for the color-averaging of an incoming gluon, where 1/2 is for

polarization-averaging and 1/(N? — 1) is for color-averaging.

The hadronic cross section is given by

(6.12) 7= 3 S [dndofi) o

i=—Nj j=—Nj

where the quark flavor numbers are (d, u, s, ¢,b) = (1,2,3,4,5), the antiquarks get a minus

sign, the gluon flavor is simply 0, and
(6.13) o =F / dLIPS |A“|?
describes the partonic cross section. Here,

(6.14) F= - =
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is the flux factor, |AY|? is the unpolarized squared amplitude for partonic process p; + p;,

and dLIPS is the 3-particle Lorentz-invariant phase space (LIPS):

1
/dLIPSg = [W} _3/dm232

V(€% mas?, my?) / V (mas?, ma?, ms?) /
6.15 dQ0e® dQe
( ) 8 { 8E? 8m232 ,

where V(z,y,2) = /22432 + 22 — 2(zy + yz + 2x) is the square root of the Kéllén
function, & = V/§ is the available energy, the angles Q°* = (0%, ¢*) are the spherical
angles of the particle “23” in the rest frame of the total incoming momentum P and
the angles €2° = (60°,¢°) are those of the particle 2 in the rest frame of the particle
“23” partitioning the partonic process as p.(p.) + pr () — J(p1) + V(pes) followed by
V(pas) — e (p2) + e (p3). The frames are discussed in greater detail in the next section.
Here, the integration limits of mo3 are given by the requirements A\(£2, ma3?, m1%) > 0 and
A(mas?, ma?, ms?) > 0. Applying to our case, i.e. with & = V& = mjy, m; = my =ms =0

and ma3 = myy, we obtain

1 mjv2 mfZQ
1 LIPS; = 20dQe [ do° (1 — .
(6 6) /d Sg 20487‘('5 /(; dmgg /d /d ( mjv2>

We note that our expression agrees with the general formula [128]:

1 an—4

(6.17) LIPS, = e S T T = 1)
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For the partonic subprocess p,(p.) + pr (py) — j(p1) + V(p23) in the partonic c.m. frame,

the momentum components, p* = (E*, p*), are explicitly given by

v(gQ’ ma2a mb2)

& + Tna/b2 - mb/a2

(618) (:/b = 28 ) |p(.1/b| = 28 ) ﬁ;/b = :l:<07 07 1)7
. E? + Mazj1® — myjaz”
(6'19) 23/1 — 28 )
o V(52>m232, m12) R
(6'20) |p23/1] = Y3 » Pag/n = :|:<59'C<p'7 SpeSpe, Ce-)7

and for the subsequent leptonic decay V(pa3) — £~ (p2) + £1(p3) in the rest frame of the

EW gauge boson, the momentum components, p° = (E°, p°), are explicitly given by

(621) E203 = Mas, pg3 = Oa

2 2 2
o Ma3™ 4+ Ma/3” — M3/o
(622) 2/3 —

I

2m23

V(m232, m22, m32)

(623) |p;/3| = s ﬁ;/S = j:(Sgono, S¢S0, Cgo).

2m23

with & = V§ = miv, Mg = My = my = my = m3 = 0, and mas = my. The two
frames are connected by a Lorentz transformation, A°®, deriving from pS; = A°*p$,, with
A°* = BR,R., where R, is an azimuthal rotation by ¢®, R, is a polar rotation by 6°,
and B is a boost along the z axis. By expressing all the momenta in either one of the
frames, we also confirm the symmetry requirements of the LIPS. With s;; = (p; + p;)?
for 7,5 = 1,2,3, we must have s;; integrated over the LIPS giving the same result for all

1 # J; stmile, we must have p, - p; and p, - p; for ¢ = 1,2, 3 integrated over the LIPS giving
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the same result. We find

4

m;vy
(624) /dLIPSg [31278137823] = W’
and
(6.25) / dLIPS; [p |- T
. 3 [Pa D1, Pa P2, Pa P3Py DL Db P2 Py 3] = Toa s

6.3. Collins-Soper or: how I learned to stop worrying and love the Frame

With all the momenta expressed in either of the frames presented at the end of the
previous section, it is just a cute exercise of bringing all the momenta into a single frame
and computing the hadronic cross section; however, we are not going to work with all
the angular variables presented in the previous section. To be more precise, the spherical
angles €° are essentially replaced by the CS angles [73, [14], Q*, but for the leading
subprocess, we want to work with the invariant mass of the jV pair, m;y, and the rapidity,
y, and transverse momentum, pt, of the V = ¢~ /T system as measured in the lab frame,
i.e. the hadronic c.m. frame.

In the lab frame, we have
S
(626) (;)/b = \/7—<17 OJ 07 il)? pg,/b = xa/bp(f/ba p<2>3 = (EV7PT7 Oapz)-

In accordance with [14], we assume that V' is emitted with a positive  component of the
momentum and it is equal to pt. We also assume that the jV pair is emitted in the xz
plane of lab frame, which is still true in the partonic c.m. frame because the two frames

are related by a Lorentz boost along the beam axis.
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In the CS frame, we have

My
(627) p§/3 - 7(17 i86*0¢*7 :ESQ*SSO*, :l:CQ*)7

(6.28) P33 = me(1,0).

The transformation from the lab frame to the CS frame is given by a longitudinal boost

along the beam axis to make p, = 0, followed by a transverse one to make pr = 0 [14]:

(6.29) A = AL A,
where
w00 =B Yo —viBL 0 0
0 10 0 B v 00
(6.30) Aj = CoA=| T ,
0 01 0 0 0 1 0
B 0 0y 0 0 0 1
with
o 1 P 1
(6.31) B = ——, Bi= _

) = ; 1 T VL = —F/—/—-
By V31— 87 Ve + pr? V1=p8%

Using this, we can write, e.g., Py, = A*QP;/b. Note that if we compute p§/3 = AO*]D;/3 =
A~ 1ps /30 We confirm the well-known relation between the CS polar angle, lepton/antilep-

ton energies and longitudinal momentum components measured in the lab frame, and the
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invariant mass and transverse momentum of the V' = ¢~ /" system, which reads

(6.32) _ 20p5)*(p5)" — (3)°(p3)°]

CQ* 2 2
Mg/ Mye” + PT

The rapidity of the V' = ¢~ (T system is defined as

1 EV+pz
: =—In{——").
(6.33) v=3 D(Ev—pz)

For the 5V pair, we have the usual expression,

v = L ((291> +p53)° + (5 +p§3)3)
27\ +8s)0 — (0} + p5s)°
_ 1 (( o+ ) (p2+p§)3)
2 \(ws+pp) — (08 +pp)°
1 a
(6.34) =-ln (x—) ,
2 b
or
x
6.35 2= eV,
(6.35) e
With pz/b = Zop P by We also have
(6.36) TaTps = myy°.
Combining the two, we obtain
(6.37) Tafb = Meiywa



250

which is not Lorentz-invariant but as long as we define x,,,, P/, m;y, and y;y consis-
tently, we can write p,/, = T4/p P in any frame.

So far, the differential variables of the hadronic cross section are x,, p, Mg, 0%, ©°,
0%, and ¢*. Here, ¢* is immaterial and dropped (but still contributes a factor of 27 in
the phase space integration), and 6* and ¢* are the CS angles. Now, we want to perform
a change of variables from (z,, zp, 6°) to (mjv,y, pT).

Note the following. In the parton c.m. frame, we have

(6.38) Py = %(1,0,0, +1),
(6.39) p§3/1 = (B35, £|P33]see, 0, £[p3s]coe ).

Here, the components of the 4-momenta of the outgoing particles are found from earlier

to be
2 2
My~ &= My
6.40 o WV — b
( ) 23/1 2mjy
2 2
(6.41) IpSs| = myv- — M

2mjv

The transformation between the lab frame and the partonic c.m. frame is given by

Yab 00 _Vabﬁab

0 10 0
(6.42) A = ,

0 01 0

_f)/abﬁab 00 Yab
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with

Ty — Tp 1

- , Yab = ———.
La + Lb V 1— Bab2

Since the lab frame and the partonic c.m. frame are related by a z-boost, we must have

(643) Bab =

(6.44) |P35]S0e = P
This tells us that
(6.45) 0 < pt < |p3sl,

or

2 2
myy- — My

6.46 0< <

( ) P 2m]~v
We also obtain

6.47 Cge = 41 — J ,
( ) 0 \/ (mjV2 _ m££2)2

where the + sign is for 0 < 6* < 7 and the — sign is when § < 6°* < 7. Now consider the
V' momentum in the partonic c.m. frame and boost it into the lab frame via p5; = A®*p3,
and compute y with the components obtained after the boost. We obtain

(6.48) Ly (2
. = - n —_—
4 2 Ffl'b ’
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where
(649) F:t = mjVQ + mgf + Coe (T)’Ljv2 — mgf).
Together with z,zys = mjv2, we arrive at

(650) xa/b = \/ ﬁ@ Y \/g .

Noting that 0 < x,,, < 1, we obtain

1 F~ s 1 Ft s
6.51 ——In| — <y<-In|— .
( ) 2 D(F+mjv2) y 2 H<ijV2)

We can compute the Jacobian of the transformation easily to find

3

6(mjVa y,pT)) ’ N S(mjV2 - m€€2)\/<mjv2 - mezQ)Q - 4mjV2pT2’

which is independent of the range of #°. At the end of the day, the hadronic cross section

is given by
Nf \/g mjv mj\gfn—.meeQ %ln g ;92
o(s) = 2[27]/ dmjv/ dmee/ " de/ <F " ) dy/dQ*
=1 0 0 0 féln(%m;ﬂ)

1 mggz 1
X {2048#5 (2m) (1 - mjvz)} [2mjv2} J
(6.53) X {feq(wa, 2) AT + fog(2a, )| AY)? + frg(2a, 2p) AP},

where [27] is the ¢*® integral, [W(Qma) (1 - m”i)] comes from the LIPS derived in

mjV

the partonic c.m. frame, and [lew} is the flux factor. As the story unfolds, the order
J
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of integration matters in terms of the efficiency of the numerical integrations. Experi-
mentally, we are interested in my and p+, so that’s how we pick our bins. We are given
Mee € [Mppmin, Mermax] ANA PT € [PTmin, PTmax] and we integrate my, and pt over these
intervals, whilst we stay true to the integration limits of the other variables. One way
to achieve this is to impose cuts or tacking in a factor of step function; however, the
efficiency shows up when we have other cuts, as well. In a Monte-Carlo (MC) simulation,
when we require say 1M sampling points, the integrator would omit a large portion of it
and we would have to require more and more points to achieve a lower variance, which
would increase the run time by insane amounts. Thus, we want to write down the my,

and pt integrals as the two outermost integrals to pump up the efficiency. We then haven

2 2
mjy S —myy

Vs mjv T
/ dmjv / dmgg / dp‘r —
0 0 0

(6.54) v W
6.54 / dmgg/ de/ dmy .
0 0 pray/prTrma?

We can impose custom limits for my, and pt integrals, which makes sure that the MC

integration uses a lot bigger portion of the desired sampling points.
As a sanity check, we note that the amplitudeless cross-section integrals agree; that is

to say, we have

/dxa dz, dLIPS; F =

1 1 N 1 ™ 2
/ dz, / dz, / dmyy / deg / do* / dy*
0 0 0 —1 0 0

1 Mge? . 1
2 2 1-— 0"
x (2m) (2048%5) (2mee) ( xaxbs) sin() <2xaa:bs)
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s— mfl

/ dmu/ / dmjV
P/ P13 me®
log 6‘/2
" / " / 46* / dg*
7710g -
1 7 . 1 1
_ 2 2 1-— 0 = o3
(6.55) x (27) (2048#5) (2m4) ( mjv2) sin(0").J <2mjv2> 51273

Essentially, these are the cross-section integrals without the amplitudes or the parton

distribution functions (PDFs). Note that in the original expression, we have cge running
from —1 to 1 and we split this integral into two, by emphasizing the sign of the variable,
when we switch to the new variables. This means, we need to carry out the integrals with
the new variables twice, one with sgn = 1 and one with sgn = —1, where sgn is the sign

in front in (6.47)).

Furthermore, the symmetry requirements are confirmed; that is, we have

/ dx, day ALIPS; F[s1, S13, S23) =

2 2
myS—myy

\/g m;y W log(§7L — sv2) T 27
/ dmjv/ dmgg/ dpr/ ! dy/ d@*/ dy*
0 0 0 —%bg(% s ) 0 0

m]-V
1 me*\ ., 1
< 2m) (s ) ) (1= 225 Y sin0)9 (s ) s
S
(6.56) 614473’
and

/dxadxdeIPSS Fpa - p1,Pa - D2,Pa * P3, Db - P1, Db - D2, Db - P3]
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/e . myjy2-me® 1 (ﬂ s ) . o
iv 2my 2 08\ F— miy 2 . .
= dmy dmye dpr B dy dé dep
0 0 0 f%log(%m;‘ﬁ) 0 0

X(zﬁ)<2m;w5>(%n”)(1_7Zﬁ2)5hmyvj(2niv2)

X [Pa * P15 Da * P2, Pa - P35 Db - P1, Db - P2, Db - D3]

. S
1228873

As for the momenta, we just write them in some c.m. frame, whichever is the easiest,

relate the frames by boosts, and express the components in terms of z,, x, Mg, 0°, 0%,

and p*. We take care of the change of variables only during the numerical integration—we

just want to see the CS angular structures of the cross section, and 6* and ¢* do not mix

with other variables, so all the change of variables happen inside the structure coefficients,

or the moments. Ergo, for analytical purposes, all we want is to express the unpolarized

squared amplitude in terms of CS angles. Below, we summarize all the momenta:

(6.58)

(6.59)

(6.60)

(6.61)

with

(6.62)

mjv
2

o Myv
=y

2 2 2 2

. m;y -+ My msyv= — My

DPos 9 P 9 (89'7 , Coe )
mjv mgy

Py =

(17 07 07 1)7

(Loaoa _1)a

2 2 2 2

. mjv — Myy mjv — Myy

— _ 0 )

b1 = 9 ) 9 (59‘7 , Coe ;
mjv Hljv

p; — A*()Aoop;,
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(6.63) py = NA%p;,

(6.64) Do = mu(1,0),

(6.65) py = NA%py,

(6.66) Pl = %(1, (89-Cor S5 Cov)),
(6.67) Py = %(1, —(8xCyr, SorSpr, Cov ).

The Lorentz transformation matrices are as given earlier. As for the components of the

EW vector boson in the lab frame, we calculate p$; = A°*p3; to obtain

(TTLjVQ + mgf)(xa + xb) + (mjV2 — mggz)(xa — l‘b)CQo

6.68 Ey =
(6.68) v ORI |

B
(6.69) b= (myv™ — me”)sg 7

2mjv
2 2 B o,
_ J

(6.70) D, = (myv? + me®) (xa — x3) + (Myv° — me”) (T4 + Tp)Coe

dmjy\/To Ty
6.4. SMEFT formalism

The SMEFT is a model-independent extension of the SM Lagrangian. In this frame-
work, we build operators O,(Cn) of mass dimension n > 4 and introduce Wilson coefficients
C’,g”) as the effective strength of the interaction at a UV scale beyond accessible collider

reach:

An

n>4

1 n n
(6.71) Lovprr = Lsn + Y g O OO,
k
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In this study, we focus on the case n = 8 and restrict ourselves to the leading-order
SMEFT effects, namely we consider only the SM-SMEFT interference at the amplitude
level and linearize our observables with respect to the SMEFT parameters.

The dimension-8 SMEFT operators of interest are presented in Table [140, 134].
We inlucde the corresponding sibling operators that involve the dual field strength only

for completeness. In Table , ¢ and q are left-handed SU(2) doublets and e, u, and d

Table 6.1. Dimension-8 four-fermion operators with a gluon field that con-
tribute to the Drell-Yan transverse momentum spectrum classified accord-

ing to their C'P signature.

C P-even C'P-odd
Oy | (0@ Tq)G2, | Oploy | ((v0) (@7 T9)GE,,
Ofiray | Cry0)(@r'y" Teq) G, | Opin, | (Eriy0)(@riy" Toq) G,

Op2y2 g | (&v*e) (ﬂfy”T“u)éfw Oe22g | (@Y'e) (U T u)Gy,

)
Oe2azg | (erte)(dy"Ted)GE, | Oczazg (eyte)(dy*Ted
)

)
Opuzg | (00)(@y'Tu)GY, | Opyzg | (0y0) (@ Tu
Oppy | ((y"0)(dy'Td)

(@ye)( )

Oy2ezy

are right-handed singlets; in what follows, we switch back to the usual notation that says
¢ (q) is a Dirac lepton (quark) that appears in the partonic processes. Note that we are
not introducing any operator that affects the f fV vertices, thus we just borrow the usual
SM vertices for the SM amplitude and focus on the aforementioned SMEFT operators

for the SMEFT amplitude. To derive the Feynman rules, we assume the convention
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0, — —ip,, outgoing momenta, and multiplication by +i, which are all consistent with
the sign convention of FeynArts. Note that the SMEFT operators have the gluon field

strength tensor, which can be taken of the form
(6.72) Gl = 09, — Oy,

for all practical purposes, for the nonabelian term gives us two gluons, which is not of

interest. We have

(673) GZZ/ = _ipgugs + ipgugz = _i(pgugup - pgz/gul?)gap

in the momentum space, where p, is the gluon momentum. Noting that ézu = %ewagGmﬁ ,

we obtain the vertex factors as follows:

(Cae, F C2 YV Pelely” Prly + Coaa V" Prldn” Prl,

pabc 2q ?g[
p2u?,
F | 4Gz, [ PLD Prly + Gy by Prliy P,
X Tbci:(pgugvp - pgugup)
(Chaneg F Chom Y PLlely” Prly + Coauz v Prlely” Prlq
+ 2
+C£2%g[7#PL]Z[7VPR]q + Czezg[Y" Prle[y" Prlq
u 1
(6.74) X Tye(Pgadpp — pgﬁgap>§€wocﬁv

where we have now considered the cases ¢ = u or d separately because there is a sign

difference in the first term of each type of interaction.
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6.5. Collins-Soper moments
The differential cross section can be parametrized in terms of the CS moments as [15]

do 30 !
) —=—|1 .2 ALY, (QF
(6 75) dQ* 167T +09 +Z m m( ) )

m=0
where (* = (6*, p*) are the CS angles, the Y,, are just orthogonal combos of the spherical

harmonics Y, Y £ Y1 Y2, Y £V, and Y2 £V, 2, namely

1 1
(6.76) Y= 5(1 —3cg:?), V1= SopeCyr, Yo= 580*2%0*7 Y3 = speCpr, Yy = copr,

(677) Y:r, = 89*25250*, Y'é = 820* S, Y7 = Sgx S,

and the A,, are the CS moments. Using the orthogonality of the spherical harmonics, we

obtain

20 2
(678) Av=T(Yo)+3, Ai=5(Y), A=20(%), As=4(¥s), Ai=4(Y),
(6.79) As =5(Ys), Ag=05(Ys), Ar=4(Y7),

where we have defined

(6.80) (Y,,) =

We note the following.
e We do not obtain novel angular structures. We get them only for the derivative
operators involving the lepton current, so the said derivatives can turn into lepton

momenta, giving us additional factors of sines and cosines of the CS angles. In
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our case, we have the gluon momentum coming into the game, which can be
rewritten in terms of the lepton-pair momentum at best, which doesn’t contain
any angles.

e The Lam-Tung relation [131] Ag = A, is satisfied.

e The moments As, Ag, and A; are nonzero only for final states with two or more
jets within the SM, and in our case they are generated by the SMEFT operators

of interest.

6.6. Numerical analysis

The coupling strengths are given by

L/R
(6.81) Cpy=—€Qs, Cfly =egrrs,  Cogg = —9s:
where
Ts¢ — swQ —s2Q
SWwCw SwCw

with Typ- = T3y, = —1/2 and T3,, = 1/2. We employ the input scheme {Gr, sy?, mz}.

We have
(6.83) Gr = 1.1663787 x 107° GeV_2, sw = 0.23113, myz = 91.1876 GeV,

and the derived parameters are

s 2 m2 /D
(6.84) cw =1\/1—s%, a= FSWCWmZ\/_, e = Vira,
7r
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2 4 2
my my  ammy

+ .
2 4 GpV2

(6.85) my =

As for the strong coupling, we need 1-loop running «,, which has a closed-form solution;
however, to be consistent with the PDF set chosen, we call a,, from the PDF set on the
fly.

We use the NNPDF3.1 NLO [32] PDFs through LHAPDF [59] on Python. For the
numerical routines, the Vegas module [133), [132] is employed.

We cross-validate our SM results with independent tools. For this purpose, MadGraph
[24] is a great choice for snake-lovers and MCFM [60] for old-schoolers. Benchmark values
agree within 0.5% among these packages.

The hadronic cross section can be written as

Let’s define the Z point as the SM cross section integrated around the Z point, 76 <
me < 106 GeV and denote it by 0;. Now we can just keep the SM part or activate
the Wilson coefficients one at a time by setting C; = 1 or 5’1 =1 (on top of turning off
the SM part, so we have a pure SMEFT contribution characterized by some C; or 6’2),
and plot the cross section at invariant mass bins beyond the Z point as a function of pr,
normalized with respect to the Z-point cross section. We call this the ratio to the peak
and denote it by o1 /0%, where o}, is any one of ogy, 03, and 7;. In Figures and ,
we plot the ratios to the peak for the invariant mass bins [170, 350] GeV and [350, 1000]

GeV in conjunction with the pt bins [50, 100], [100, 150], ..., [950, 1000] GeV. In these
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A= 2 TeV,Cx10?, Cx 10
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0.02
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_004_, 76<m‘a(<106GeV
N T T 1
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apnnnl Cq2€2g

pr [GeV]

Figure 6.2. SM cross section and SMEFT corrections characterized by Wil-

son coefficients of interest as functions of dilepton transverse momentum

for 170 < my, < 350 GeV, normalized with the SM cross section at the

Z-peak.
figures, the black lines are the SM parts and the color lines are the SMEFT corrections.
The solid color lines are the Wilson coefficients corresponding to the C'P-even operators
and the dashed ones are those corresponding to the C'P-odd operators. We have a c.m.
energy of /s = 13 TeV, we set A = 2 TeV, and we enhance the SMEFT contributions d;

by a factor of 10? and o; by 10*. We avoid a log-log plot to display the SMEFT corrections
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A= 2 TeV,Cx10?, Cx 10*
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Figure 6.3. The same as in Figure [6.2] but for 350 < my, < 1000 GeV.
with signs. The numerical integration of the SM part and the high-p+ SMEFT corrections
can be performed with 40000 points in 1-2 second, while the low-p+ SMEFT corrections
are essentially noise for the integrator with bad statistics. As for the physics going on in
these plots, we observe the following:

e The SMEFT corrections are meaningful for higher p+ values.
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e The SMEFT corrections characterized by Wilson coefficients corresponding to
the C'P-even operators are significantly larger compared to the C'P-odd opera-
tors. This makes sense because the SM Drell-Yan cross section is an C'P-even
observable (because the phase space and the squared amplitude are C'P-even,
o~ [|AJ]* dLIPS)) and the C'P-even operators are expected to contribute to the
cross section (because the SM-SMEFT interference amplitude is also C'P-even,
o ~ [re(AfAsurrr) dLIPS). The C'P-odd operators are not fully activated
until a C'P-odd observable joins the game.

e The SMEFT corrections characterized by the operators involving the interaction

of two left-handed currents have the greatest sensitivity to pr.

Next, we investigate the SMEFT corrections to the CS moments as functions of my, and
pr. In doing this, we note that any given CS moment is essentially the ratio of two cross-
section section integrals, one with a particular angular structure and one with unit weight,
both of which can be written as an SM part plus some correction linearly propotional to

a Wilson coefficient:

_JYdo NO4CONO

o DO 1+ DO’

(6.87) A

where A is a CS moment, Y is the corresponding angular structure, and C' is some Wilson

coefficient, which needs linearizing so as to write

(6.88) A=A 1AW,
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Now we focus on our observables of interest, namely the CS moments Ag and A7, and

in Figures and , we present the plots demonstrating AM) across the same my and

pT

bins as in the previous figures (because the SM part of these moments are analytically

zero). The colors correspond to the same Wilson coefficient. We note that the SMEFT

As SMEFT

A=1 Te\/'7 170 < My < 350 GeV A=1 TeV, 350 < My < 1000 GeV
' ; 0.2F ]
._l—'_'_ __,_n—'_'_'_
0.02 '_,_I_'_ 0.1 T

r—'_'_._‘ ,—l—'_'_l ——rr

0.00 | —— i £ 0-0%
_‘—|_|_‘\_|_|_| y—-—-_._l_l_l_‘_ E . _‘_h‘—!l—l_ hh-__

002 - Z s

< ]

-0.2
—-0.04f ] I_l_‘
-0.3 I_I|_|_|_
-0.06[ — ]

. ! -0.4L, ;
0 200 400 600 800 1000 0 200 400 600 800 1000
pr [GeV] pr [GeV]
9 1 3
Cipng L Ci;)ng w22, C[zdzg Cez"zg mlep, m szezg L] Ciyz)ng - C;z)ng L] C{zuzg C(zd“'g Cezuzg L] Ce“’dzg - que"g

Figure 6.4. SMEFT contributions to Ag characterized by Wilson coefficients
of interest as functions of dilepton transverse momentum at the dilepton

invariant mass bins of 170 < my, < 350 GeV and 350 < my, < 1000 GeV.

contributions to As are all proportional to I'y. We recall that we must activate the

decay width of the Z boson only near the Z point, e.g. 76 < my < 106 GeV, and for

higher bins, these contributions are practically zero. Therefore, even though the angular

structure corresponding to As is also C'P-odd, it is negligible in the dilepton invariant

masses assumed in our analysis.

6.7. HL-LHC simulation

In this section, we crunch in the numbers to simulate high-luminosity LHC (HL-LHC)

following [45]. We set the collider energy to /s = 14 TeV and assume the integrated
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A =1 TeV, 350 < m;, < 1000 GeV

. : 2T
0.5 ’_'_'—l'_
1
. —
0.0 0
e T = L
= g
Z os = - = —l_l_l_l'—u_|_|_l
< I_l_‘ l—l— < 9 ._l —
-1.0] l -3 —I_l_l_
s s -4 L L L
0 200 400 600 800 1000 0 200 400 600 800 1000
pr [GeV] pr [GeV]
L] Cipng - Cﬁz»ng - C,zuzg C,zdzg L ng"zg L Cezzfzg - quezg L] Cg)ng - CS)ng ] C{‘zuzg Cr"zd‘g ] Cezu'zg ] Cezdzg - quezg

Figure 6.5. The same as in Figure [6.4] but for A;.

luminosity to be £ = 3 ab™'. We assume the input scheme {Gp, sy, mz}. We employ

all the CMS cuts [60] in our calculations:

e Leading electron: pr > 25 GeV

e Subleading electron: pt > 20 GeV

e Both electrons: |n| < 2.4

e Jet: pr > 30 GeV, |y| < 2.4

e Jet-electron separation: AR, > 0.4 for all jet-electron pairs

e Dilepton system: pr > 100 GeV, |y| < 2.4

Given two particle momenta k and k', we have

1 k| + K
6.89 kr = k.2 +k,° =—log | —"
1 E.+ k., k
(6.90) W= log (EZ i_ kz) , ¢ = arctan (k—i> ,

(6'91) Ay = M — My, Adpry = O — G, ARpp = \/Ankk’z + Adpi?.
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We note that even though our process of interest is pp — je~e™, i.e. we have an electron
and a positron pair coming out, the CMS language is to refer to these particles simply
as electrons. We note that all these cuts are required to correctly generate statistical
uncertainties.

We assume two types of bins: coarse and fine. The coarse bins presented in Table
have relative statistical uncertainties smaller than 5% in cross section, whereas the fine

bins presented in Table have relative statistical uncertainties smaller than 10%.

6.8. Fits of Wilson coefficients on HL-LHC pseudodata

Following [45], we assume uncorrelated statistical, uncorrelated systematic, and cor-
related systematic uncertainties on the experimental side, and correlated PDF and un-

correlated scale uncertainties on the theoretical side when we build the error matrix, &
(692) & = @@exp + éaPDF + Cgascale~

Let’s discuss statistical uncertainties. The CS moments are defined by

[ Y., do -

o

(6.93) Ay = Ny, : Np(Yo), m=6,1,

where Y, is some angular structure and N,, is some numerical factor, Ng¢ = 5 and N; = 4.

We now derive the formula for the statistical uncertainties in A,,, denoted § A5%*. We have

Y

N
1
94 Am = Np(Y) = N, —E Y,
(69) m m< m> m[NE_l m,E




Table 6.2. Coarse bins used in our HL-LHC simulations.

mee [GeV] | pr [GeV]

(300, 360] [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
210, 220, 230, 250, 270, 290, 310, 330, 360, 380, 410,
440, 490, 570, 7000]

[360, 450] [100, 110, 120, 130, 140, 150, 160, 170, 180, 200, 230,
250, 270, 290, 310, 330, 350, 370, 400, 440, 490, 580,
7000]

[450, 600] [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 210,
230, 250, 270, 290, 320, 340, 360, 390, 430, 480, 580,
7000]

[600, 800] [100, 110, 120, 130, 150, 170, 200, 220, 250, 290, 320,
360, 420, 520, 7000]

[800, 1100] | [100, 110, 120, 150, 170, 200, 230, 270, 330, 430, 7000]

[1100, 1500] | [100, 200, 290, 7000]

[1500, 2000] | [100, 7000]

2000, 2600] | [100, 7000]
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where E is the event number and N = oL is the total number of events. This gives us

(6.95)

N,, N,,
Var[A,,] = Cov[A4,,, A,,] = Cov A XE: Yo B, N ; Yo B

N2

Z COV[Ym,E, Ym,E"]~

E,E'



Table 6.3. Fine bins used in our HL-LHC simulations.

mee [GeV] | pr [GeV]

(300, 360] [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
210, 220, 230, 250, 270, 290, 310, 330, 350, 370, 400,
420, 440, 470, 500, 530, 560, 600, 660, 760, 7000]

[360, 450] [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
210, 220, 240, 260, 290, 310, 330, 350, 370, 390, 410,
440, 470, 500, 530, 560, 610, 670, 770, 7000]

[450, 600] [100, 110, 120, 130, 140, 150, 160, 190, 210, 230, 250,
270, 290, 320, 340, 370, 390, 420, 460, 490, 520, 550,
580, 620, 680, 780, 7000

[600, 800] [100, 110, 120, 130, 150, 170, 200, 220, 240, 260, 280,
310, 340, 380, 410, 440, 470, 510, 550, 620, 730, 7000]

[800, 1100] | [100, 110, 120, 140, 160, 180, 200, 220, 250, 270, 300,
330, 360, 410, 460, 540, 660, 7000]

[1100, 1500] | [100, 130, 160, 190, 230, 270, 320, 400, 520, 7000]

[1500, 2000] | [100, 210, 330, 7000]

2000, 2600] | [100, 7000]
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Assuming that the {Y,, g}%_, are independent and identically distributed (so the cross

terms vanish), we obtain

Var[A,,] =

N,,2
N2

N,,2
> CovlYinp, Y] = N > Var[Y,, k]
E E
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Ny? Ny®
(6.96) =z X N Varly,,] = N Var|Y,,],
and hence

N,

6.97 AR = 22 §Y,,,
(6.97) m =N
where
(6.98) Yy =/ (Yin2) — (Yoo)2.

Here, we have defined

B me2 do

g

(6.99) (Vi)

Bin by bin, we compute statistical uncertainties and we use the minimum of 5% (10%)
relative uncertainty in A,, for the coarse (fine) bins or the one we compute as describe
here. We note that a relative uncertainty from the cross section in the denominator reflects
back as a relative uncertainty in the CS moment. As for the systematics, we assume 1%
uncorrelated and 2% correlated systematic uncertainties in the cross section and hence
in the CS moments. In the pseudodata generation (to create statistics), we use only the
experimental uncertainties, i.e. uncorrelated statistical (stat), uncorrelated systematic

(usys), and correlated systematic uncertainties (csys):

(6.100) Ay = A0V 41y GAS @ SANY + 17 SATY

m,b m,b
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bin by bin, b, for a given pseudoexperiment. Here, ry, 7" ~ A47(0,1) are unit normal
variates and while the uncorrelated uncertainties are generated with a different random
number for each bin, the correlated ones are generated with a single random number for
a given pseudoexperiment so all the bins feel this shift uniformly.

Next, let us discuss the theoretical uncertainties. We start with PDF uncertainties.
For replica-based PDF sets, the correlated PDF uncertainty matrix is built such that the

bt entry reads

Nppr
1

(6101) (€PDF)bb’ = NPDF Z (Aysnl\,/lmem - Arswz%)b (Ail\,/[mem - ASml\,/{))b/ 3
mem=0
where Ai%(mem) is the SM CS moment A,, evaluated at the PDF set member 0 (mem)

and Nppr = 100. The central value corresponds to the PDF member 0. On top of the
PDF uncertainties, we also consider variations in renormalization and factorization scales,
wr and pp, respectively. We introduce uncorrelated scale uncertainties according to

HUR F
Ho

el
13

(6.102) < <2, -—<H<o

DN | —
DN | —

where we have defined

(6103) Mo = \/pTQ + mgg2.

Assuming steps of 1/2, we evaluate the CS moments are various scales, A,, ,

11 1 1 3
(6.104) (pg,pr) = (575) to,  (tr, pir) = (§>1> to, (fr, pir) = (§,§> Hos -

(6.105) (R, pir) = (2> g) to,  (pr, ) = (2,2) o
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that satisfiy 5 < Z—? < 2, so we have 12 possibilities. Then, we find the largest variation

1
2
within this range and form a symmetric scale uncertainty using this largest variation at

each bin:

(6.106) SAS — max {|Aps — Amy|}

s,8'=1"

The central value corresponds to (g, ur) = (1, 1) uo-

It is important to remark that said errors are borrowed from the cross-section analysis
of our main reference for the present work, namely [45]. In the current study, our observ-
ables of interest are Ag and A;, whose SM predictions are zero. Noting that pseudodata
and hence the error matrix is generated using uncertainties based on SM predictions, we
see that all the uncertainties are zero here, except for the uncorrelated statistical uncer-
tainties. To be more precise, the SM predictions for Ag and A; are zero, and therefore
there cannot be any relative systematic uncertainties (1% or 2% of zero is zero); PDF and
scale variations do not touch parity, and therefore PDF and scale uncertainties are zero.
Even the term (Y;,) in § A%%** ig zero. Therefore, the error matrix consists of uncorrelated

statistical uncertainties only:

Npin
b=1 "

(6.107) & = diag {5 A7}

where we now suppress the CS moment index m to keep the discussion general. In
Figures and [6.7] we present the error budget plots. Here, we plot the bin-by-bin
statistical uncertainties by the black line and the SMEFT contribution to the observables

characterized by the indicated Wilson coefficient by the color lines. The bins are sorted
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first in increasing order of my, and then within each my, bin, in increasing order of pr.

This explains the waves.

coarse bins, A =1 TeV
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Figure 6.6. The error budget plot for the observable Ag. The SM value for
this observable is zero. The black line is the statistical uncertainty. We

also present the SMEFT corrections characterized by Wilson coefficients of

interest to compare to the size of the uncertainty.
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Figure 6.7. The same as in Figure [6.6] but for A;.

For the statistical analysis, we define a standard x? function:

(6.108)

Nyin Nbin

o3 () (34,

b=1 b'=1

274
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where J# = &~ is the inverse uncertainty matrix, A is the SMEFT observable, namely
our linearized SMEFT expression for the CS moments Ag or A7, and A is the pseudodata,

which are of the form

Nw 7

o RS SR S
w=1 w=1

(6.110) A, = AEM oy GASRE = gy SASHRE,

The 2 function can be expressed in the form

7 7 7
(6.111) X =ko+ > k1wCo+ D D kpwwCuCu = ko + k1 - C + C - kyC.

w=1 w=1w'=1
The vanishing gradient of this expression gives us the values of the Wilson coefficients

that minimize the x? function,

(6.112) Vx*(C) =0,

and the Hessian evaluated at these values give us the Fisher information matrix,
1 o =

(6.113) F = §VVX (C).

Here, all the derivatives are with respect to the SMEFT parameters. With the quadratic

form of the y? function presented above, we obtain

— 1
(6.114) C = Ek:glkzl,
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and
(6.115) F = ko.

Since real data is not available yet and since our analysis strongly relies on pseudodata,
we run multiple pseudoexperiments to generate statistics. Since our observable is linear
in SMEFT parameters, the Fisher matrix is constant and we manage to avoid averaging
over pseudoexperiments.

We present the nonmarginalized 2-sigma bounds in Figure [6.8] the corresponding
effective scales in Figure the marginalized 2-sigma bounds in Figure [6.10] and the

corresponding effective scales in Figure [6.11] From these figures, we note the following:

e The Ag fits yield weaker bounds on the Wilson coefficients of interest compared
to the A; fits. The reason is the competition between the size of the SMEFT
corrections to the observables and the anticipated statistical uncertainties, which
is the only source of uncertainty in this study.

e The combined fit results resemble the A, fits because of its dominance.

e The fine binning leads to bounds twice as strong as the coarse binning.

e In 1d fits, we can obtain effective scales up to 9 TeV. These scales are computed
using the 2-sigma bounds on Wilson coefficients as A/ Cy 4, with A =1 TeV.

e Once we activate all the Wilson coefficients (so as to perform a 7d fit), we see that
the allowed intervals grow dramatically. This signals strong interplay between
the SMEFT parameters.

e In the 7d fit, the fine binning still leads to stronger bounds but the ratio is now

slightly less than 2.
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We present representative confidence ellipses in Figures [6.12| and [6.13] Each figure

contain four plots. On the top row, we present the case of coarse (left) and fine (bins) in
the nonmarginalized fit, and on the bottom row, we have the corresponding marginalized

ellipses. From these figures, we note the following:

e The remarks from the bound plots apply.

e The Ag and A fit results are complementary, namely they yield distinct correla-
tions.

e The nonmarginalized ellipses, namely the confidence ellipses of 2d fits yield nearly
flat directions, i.e. ellipses elongated wildly.

e The confidence ellipses projected from the 7d fit do not display flat directions,

which can be explained by the interplay between the SMEFT parameters.

Finally, the correlation matrices are presented in Figures [6.14{H6.16]

6.9. Coda

In this study, we have studied the C'P-odd dimension-8 SMEFT operators of semi-
leptonic four-fermion interactions coupled to the gluon field strength tensor. The interfer-
ence of the amplitudes arising from these operators with the SM terms generate C' P-odd
observables. To investigate the effects of said operators, we considered the DY production
with a single jet at the HL-LHC. We used the anticipated dilepton invariant mass and
transverse momentum bins at the CMS, together with the detector cuts. Our observables
of interest were the C'P-odd CS moments, As, Ag, and A7, which are zero at tree level or
with a single jet at the SM. However, since Aj is linear in the Z-boson decay width, it was

negligible at the energy levels considered, we carried out the fitting for Ag and A;. Using
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Figure 6.8. 95% CL bounds of C'P-odd Wilson coefficients from single-
parameter fits at A = 1 TeV for the observables Ag and A7, as well as the
combined fit assuming independence, with coarse (top) and fine (bottom)

bins.
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Figure 6.9. Effective UV cut-off scales, A/ cy 4 corresponding to the non-

marginalized 95% CL bounds given in Figure
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Figure 6.10. 95% CL bounds of C'P-odd Wilson coefficients from multi-
parameter fits at A = 1 TeV for the observables Ag and A, as well as the
combined fit assuming independence, with coarse (top) and fine (bottom)

bins.



281

coarse bins, A =1 TeV, A / c1/4 [TeV1, 95% CL, marginalized

C(3)

g

m A fit m A7 fit g combined Ag+A7 fit

C{Q w? g 0[2 d? g

¢’y

fine bins, A =1 TeV, A/Cvlv/4 [TeV], 95% CL, marginalized

T

2q’g

cY Crzy Cez,g Cay Coy

g u’g

m A fit m A7 fit @ combined Ag+A7 fit

Figure 6.11. Effective UV cut-off scales, A/C'*  corresponding to the

marginalized 95% CL bounds given in Figure
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Figure 6.13. The same as in Figure but for Cp2,24 and Cizy2.

simulated HL-LHC data with a collider energy of 14 TeV and an integrated luminosity of

3 ab™!, we performed a comprehensive analysis for the fits of the SMEFT parameters.
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Figure 6.16. The same as in Figure but for the joint fit of Ag and A.

The single-parameter fits yielded bounds at the order of O@(0.01), translating into ef-

fective UV scales reaching up to approximately 8 TeV with coarse binning and 9 TeV with

fine binning. However, when all seven Wilson coefficients were activated simultaneously,

these constraints weakened significantly, namely by two to three orders of magnitude,

bringing the effective scales down to about 1.5 TeV for the coarse binning and 2 TeV with

the fine binning. This substantial shift implies strong interplay among the SMEFT oper-

ators. Despite this weakening, our study clearly highlights the capability and importance

of using angular observables at the HL-LHC to probe C'P-odd dimension-8 operators.

These results set concrete benchmarks, motivating further detailed investigations into

subtle signals of C'P-violating new physics.
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CHAPTER 7

Conclusion

I think I could stand anything, any suffering, only to be able to say and to repeat to
myself every moment, “I exist.” In thousands of agonies, I exist. I'm tormented on the
rack, but I exist! Though I sit alone in a pillar, I exist! I see the sun, and if I don’t see
the sun, I know it’s there. And there’s a whole life in that, in knowing that the sun is

there.

Fyodor Dostoyevsky, The Brothers Karamazov

7.1. Summary of work and findings

This thesis was written in the service of a clear question. Can future colliders, through
the tools of precision phenomenology, offer new ways to constrain physics beyond the
Standard Model (SM)? That question shaped each project, each calculation, and each
decision in the chapters that followed. The analyses were grounded in the projected
capabilities of machines of tomorrow still under construction or under consideration. The
aim was to understand what these colliders could realistically probe, and how far they
could extend current theoretical frameworks when paired with well-defined observables.

Each chapter served a distinct purpose. Together, they contribute to a broader picture
of how future collider programs can support precision tests of the SM and guide new

physics searches.
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Chapter |3| focused on the Electron-Ion Collider and examined whether it could access
new physics scenarios that are otherwise difficult to probe. By studying neutral-current
(NC) parity-violating observables, we showed that the Electron-Ion Collider (EIC) has
the potential to lift degeneracies in the parameter space left open by NC Drell-Yan (DY)
process at the Large Hadron Collider (LHC). This required a careful treatment of beam
polarization and luminosity uncertainties, which were included as fit parameters for the
first time in this context. The study confirmed that with moderate energies and high con-
trol over initial states, the EIC could provide access to unique directions in the Standard
Model Effective Field Theory (SMEFT) parameter space.

Chapter [ extended that effort. The operator set was expanded, next-to-leading order
corrections from quantum chromodynamics (QCD) were included, and two additional
machines, the Large Hadron-electron Collider (LHeC) and the Future Circular Collider
(FCC), were incorporated into the analysis. Each collider brings access to a distinct
kinematic regime. The central aim was to test whether these machines, when treated
collectively, can explore the SMEFT parameter space in a complementary way. The
result is promising. Their differences in energy and kinematic coverage offer a route
to reducing parameter degeneracies and imposing stronger bounds on several SMEFT
parameters relevant to NC deep inelastic scattering. The interplay with global fits based
on electroweak (EW) precision observables is nontrivial. These future lepton-hadron
colliders are positioned to resolve flat directions that persist in the global fits with Higgs,
top, diboson, and Z-pole measurements. In that sense, they can clarify the underlying

structure of new physics constraints and expand the reach of precision phenomenology.
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Chapter [5|shifted gears and introduced a new observable in electron-positron collisions
at the FCC. The focus was on transverse spin asymmetries and their potential to improve
sensitivity to the electron Yukawa coupling. This quantity is notoriously small, and no
direct measurement has yet been made. The asymmetries proposed in this study provide
a clean and statistically enhanced signal, grounded in expected detector capabilities and
polarization configurations. Although this analysis was carried out outside the SMEFT
formalism, the overall purpose remained aligned with the rest of the thesis, namely finding
observables at future colliders that can isolate small, theoretically clean effects.

Chapter [0 returned to the SMEFT but moved into less explored territory. We studied
DY production with an associated jet and investigated CP-violating gluonic operators
at dimension eight. This region of parameter space has not received much attention, in
part because it lies outside the dominant directions constrained by inclusive processes.
Our study showed that with carefully chosen observables, particularly dilepton angular
distributions, it is possible to achieve meaningful sensitivity. The backbone analysis is
complete. Work continues on matching to ultraviolet models, along with potential connec-
tions to spin-2 extensions. These are still being explored with care, but the path forward
is now concrete.

Across four chapters, we investigated the potential reach of the EIC, LHeC, FCC, and
the high-luminosity LHC. It proposed observables tailored to the structure and strengths
of each machine. We introduced methods for resolving degeneracies in global SMEFT
fits. We expanded the parameter space considered in precision collider studies. These
contributions were not guided by abstraction. They were shaped by collider realities and

theoretical clarity. At the end of the day, taxpayers’ money is well spent.
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7.2. Contributions and perspective

This thesis led to several publications:

e R. Boughezal, A. Emmert, T. Kutz, S. Mantry, M. Nycz, F. Petriello, K. Simsek,
D. Wiegand, X. Zheng
Neutral-current electroweak physics and SMEFT studies at the EIC
Phys. Rev. D 106 (2022) 016006, arXiv:2204.07557
e C. Bissolotti, R. Boughezal, K. Simsek
SMEFT probes in future precision DIS experiments
Phys. Rev. D 108 (2023) 075007, arXiv:2306.05564
e R. Boughezal, F. Petriello, K. Simsek
Transverse spin asymmetries and the electron Yukawa coupling at an FCC-ee

Phys. Rev. D 110 (2024) 075026, arXiv:2407.12975
We also contributed to:

o FElectron lon Collider for High Energy Physics, Snowmass 2021 White Paper,
arXiv:2203.13199.
e SMEFT analysis with LHeC, FCC-eh, and EIC DIS pseudodata, DIS2023 Pro-

ceedings, arXiv:2307.09459

Work continues on the DY plus jet process. The backbone analysis is complete. Further
development is ongoing.

The focus of this thesis has been precision and collider phenomenology as tools for
exploring new physics. The methods developed are not confined to the examples studied.

They offer a modular and transparent approach to interpreting the capabilities of future
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machines. The emphasis throughout has been on theoretical consistency, experimental
feasibility, and numerical reproducibility. The computational infrastructure created in
the process, ranging from simulation and fit pipelines to integration routines and analysis
frameworks, is general and can be adapted to future problems.

One of the main goals of this thesis has been to understand what we can say about
new physics when we haven’t seen any new particles yet. So far, experiments at the LHC
and elsewhere have not found direct evidence of particles beyond the SM (BSM). This
could mean new physics is either too heavy to produce with current colliders or too weakly
coupled to stand out in the data. But just because we do not see new particles does not
mean there is nothing there. Heavy particles can still leave indirect effects by slightly
changing the behavior of known processes.

This is where SMEFT comes in. It gives us a way to describe how unknown heavy
physics would show up as small deviations from SM predictions. These deviations are
captured by a set of parameters called Wilson coefficients. Each coefficient tells us how
strongly a certain type of new interaction could affect measurable quantities. By putting
limits on these coefficients, we are not just testing one model at a time, we are testing
broad classes of possible theories all at once. That is what makes SMEFT a powerful
tool. It gives us a model-independent way to look for signs of new physics, even if the
new particles themselves are out of reach.

These efforts are part of a broader research direction that I plan to continue. The core
objective remains the same: identify clean observables, develop realistic predictions, and

constrain physics beyond the SM through precision.
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7.3. Outlook and Future Directions

The next steps in my research will extend the work presented here. The central focus
will include precision calculations for top-quark observables, resummation techniques,
and the development of global parton distribution functions (PDFs). These projects are
conceptually aligned with the work in this thesis. They continue the same logic, structure,
and purpose.

My early work explored rare top-quark decays and BSM models. The PhD years
added a deep engagement with SMEFT, collider physics, and QCD and EW precision.
The growth that followed was shaped by the opportunity to work with and learn from
some of the most brilliant particle physicists who guide the field. That collaboration
sharpened my thinking, expanded my tools, and deepened my understanding of precision
phenomenology.

The technical components are ready. The work in this thesis provided extensive expe-
rience in Monte-Carlo routines, statistical analysis, uncertainty quantification, and theo-
retical interpretation. I developed and maintained several computational frameworks, all
structured for modularity and reproducibility. These are now being adapted to include
resummation techniques and higher-order corrections at hadron colliders.

A related direction is the development of new PDF fitting strategies, especially in
kinematic regions relevant for Run II and III of the LHC. This includes examining the

interplay between PDF uncertainties and SMEFT parameter extractions. As shown in
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Chapters [3| and [4], this interference is not negligible. I plan to contribute to fitting proce-
dures that integrate new physics parametrizations and precision constraints more system-
atically. These goals will also involve resummation improvements, modified factorization
theorems, and potentially new parameter bases.

My first steps in particle physics were in BSM scenarios. I studied rare processes
involving the top quark and searched for signals of extra dimensional models. That
early work pulled together ideas from many corners and taught me how to move be-
tween frameworks. Over the years, my focus shifted toward EW fits, gluon operators, and
collider-specific SMEFT observables. Precision and collider physics became the founda-
tion. Along the way, I learned how to build simulations, design computational workflows,
and connect theoretical calculations with the kinds of observables collider experiments
can access. The next steps will build on this foundation. Resummation for top physics,
as well as and global PDF fits, will be part of the next chapter of my life. So will improved
uncertainty treatment and closer integration between theoretical inputs and experimental
constraints. In that sense, the circle closes. But maybe it was never a circle. Maybe it

has always been a helix, moving forward.
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