Neutral-current SMEFT studies at the EIC

Kağan Şimşek

High-Energy Physics Seminar Northwestern University Monday April 18, 2022

Reference: 2204.07557

Northwestern University

Collaborators: R. Boughezal F. Petriello D. Wiegand X. Zheng *et al*. (JLab EIC Group)

- Introduction
- Neutral-current DIS and SMEFT
- Projections of PV and LC asymmetry data
- Uncertainties
- Framework of the SMEFT analysis
- SMEFT fit results
- Conclusion

Outline

Introduction

Standard Model

SM of particle physics:

- Successful in all lab phenomena
- Spectrum completely observed
- No new particles observed so far

energy.gov

Standard Model

SM of particle physics:

- Successful in all lab phenomena
- Spectrum completely observed
- No new particles observed so far

Shortcomings:

- Dark matter
- Baryon-antibaryon asymmetry
- Neutrino mass
- Hierarchy problem

An experimental program under design: the Electric-Ion Collider (EIC) • Brookhaven National Laboratory, Upton, NY

- electron + proton/nuclei collisions

The Electron-Ion Collider

A machine that will unlock the secrets of the strongest force in Nature

bnl.gov

An experimental program under design: the Electric-Ion Collider (EIC)

- Brookhaven National Laboratory, Upton, NY
- electron + proton/nuclei collisions

Unique features:

- Energy between fixed-target scattering and high-energy colliders
- Luminosity orders of magnitude higher than HERA
- First lepton-ion collider to polarize both beams
- First collider with fast spin-flip capacity

From these unique features:

- Extraction of $A_{PV}^{(\ell)}$ and $A_{PV}^{(H)}$ in EW NC cross section
- Reduced uncertainties from luminosity and detector acceptance/efficiency
- Explore issues in QCD
- Probes of BSM physics

From these unique features:

- Extraction of $A_{PV}^{(\ell)}$ and $A_{PV}^{(H)}$ in EW NC cross section
- Reduced uncertainties from luminosity and detector acceptance/efficiency
- Explore issues in QCD
- Probes of BSM physics

What's new:

• Positron beam in the future: $A_{LC}^{(H)}$

Neutral-current DIS and SMEFT

NC DIS in the process $\ell' + H \rightarrow \ell' + X$:

l

NC DIS in the process $\ell' + H \rightarrow \ell' + X$:

NC DIS in the process $\ell' + H \rightarrow \ell' + X$:

С	95 % CL, $\Lambda = 1$ Te	
$C_{arphi WB}$	[-0.0088, 0.0013]	
$C_{\varphi u}$	[-0.072, 0.091]	
$C^{(3)}_{arphi q}$	[-0.011, 0.014]	
$C^{(1)}_{arphi q}$	[-0.027, 0.043]	
$C^{(3)}_{arphi\ell}$	[-0.012, 0.0029]	
$C^{(1)}_{arphi\ell}$	[-0.0043, 0.012]	
$C_{arphi e}$	[-0.013, 0.0094]	
$C_{arphi d}$	[-0.16, 0.060]	
from Z and W pole observables		

Dawson, Giardino 1909.02000

NC DIS in the process $\ell' + H \rightarrow \ell' + X$:

 C_r O_r $C^{(1)}_{\ell q}$ $O_{\ell q}^{(1)} = [\bar{\ell} \gamma^{\mu} \ell] [\bar{q} \gamma_{\mu} q]$ $C^{(3)}_{\ell q}$ $O_{\ell q}^{(3)} = [\bar{\ell} \gamma^{\mu} \tau^{I} \ell] [\bar{q} \gamma_{\mu} \tau^{I} q]$ C_{eu} $O_{eu} = [\bar{e}\gamma^{\mu}e][\bar{u}\gamma_{\mu}u]$ C_{ed} $O_{ed} = [\bar{e}\gamma^{\mu}e][\bar{d}\gamma_{\mu}d]$ $O_{\ell u} = [\bar{\ell}\gamma^{\mu}\ell][\bar{u}\gamma_{\mu}u]$ $C_{\ell u}$ $O_{\ell d} = [\bar{\ell} \gamma^{\mu} \ell] [\bar{d} \gamma_{\mu} d]$ $C_{\ell d}$ $O_{qe} = [\bar{q}\gamma^{\mu}q][\bar{e}\gamma_{\mu}e]$ C_{qe}

 $\mathscr{L}_{\text{SMEFT}} = \frac{1}{\Lambda^2} \sum C_r O_r$

NC DIS in the process $\ell' + H \rightarrow \ell' + X$:

 $\mathcal{M} = \mathcal{M}_{\gamma} + \mathcal{M}_{Z} + \mathcal{M}_{X}$

 $|\mathcal{M}|^{2} = \mathcal{M}_{\gamma\gamma} + \mathcal{M}_{\gamma Z} + \mathcal{M}_{ZZ} + \mathcal{M}_{\gamma\times} + \mathcal{M}_{Z\times} + \mathcal{O}(C^{2})$

 $\mathrm{d}\sigma^{\lambda_{\ell}\lambda_{H}} = \frac{\mathrm{d}^{2}\sigma(\lambda_{\ell},\lambda_{H})}{\mathrm{d}x \ \mathrm{d}Q^{2}}$

 q_f

C_r	O _r
$C^{(1)}_{\ell q}$	$O_{\ell q}^{(1)} = [\bar{\ell} \gamma^{\mu} \ell] [\bar{q} \gamma_{\mu} q]$
$C^{(3)}_{\ell q}$	$O_{\ell q}^{(3)} = [\bar{\ell} \gamma^{\mu} \tau^{I} \ell] [\bar{q} \gamma_{\mu} \tau^{I} q]$
C _{eu}	$O_{eu} = [\bar{e}\gamma^{\mu}e][\bar{u}\gamma_{\mu}u]$
C_{ed}	$O_{ed} = [\bar{e}\gamma^{\mu}e][\bar{d}\gamma_{\mu}d]$
$C_{\ell u}$	$O_{\ell u} = [\bar{\ell}\gamma^{\mu}\ell][\bar{u}\gamma_{\mu}u]$
$C_{\ell d}$	$O_{\ell d} = [\bar{\ell} \gamma^{\mu} \ell] [\bar{d} \gamma_{\mu} d]$
C_{qe}	$O_{qe} = [\bar{q}\gamma^{\mu}q][\bar{e}\gamma_{\mu}e]$

Polarized and unpolarized cross sections

$$\mathrm{d}\sigma_0 = \frac{1}{4} \Big[\mathrm{d}\sigma^{++} + \mathrm{d}\sigma^{+-} + \mathrm{d}\sigma^{-+} + \mathrm{d}\sigma$$

$$\mathrm{d}\sigma_{\ell} = \frac{1}{4} \Big[\mathrm{d}\sigma^{++} + \mathrm{d}\sigma^{+-} - \mathrm{d}\sigma^{-+} - \mathrm{d}\sigma^{--} \Big]$$

$$\mathrm{d}\sigma_{H} = \frac{1}{4} \left[\mathrm{d}\sigma^{++} - \mathrm{d}\sigma^{+-} + \mathrm{d}\sigma^{-+} - \mathrm{d}\sigma^{--} \right]$$

$$\mathrm{d}\sigma_{\ell H} = \frac{1}{4} \Big[\mathrm{d}\sigma^{++} - \mathrm{d}\sigma^{+-} - \mathrm{d}\sigma^{-+} + \mathrm{d}\sigma\Big]$$

 $\mathrm{d}\sigma^{\lambda_{\ell}\lambda_{H}} = \frac{\mathrm{d}^{2}\sigma(\lambda_{\ell},\lambda_{H})}{\mathrm{d}x\ \mathrm{d}O^{2}}$

unpolarized lepton + unpolarized hadron

polarized lepton + unpolarized hadron

unpolarized lepton + polarized hadron

polarized lepton + polarized hadron

Polarized and unpolarized cross sections

$$\mathrm{d}\sigma_0 = \frac{1}{4} \left[\mathrm{d}\sigma^{++} + \mathrm{d}\sigma^{+-} + \mathrm{d}\sigma^{-+} + \mathrm{d}\sigma^{--} \right]$$

$$\mathrm{d}\sigma_{\ell} = \frac{1}{4} \left[\mathrm{d}\sigma^{++} + \mathrm{d}\sigma^{+-} - \mathrm{d}\sigma^{-+} - \mathrm{d}\sigma^{--} \right]$$

$$\mathrm{d}\sigma_{H} = \frac{1}{4} \left[\mathrm{d}\sigma^{++} - \mathrm{d}\sigma^{+-} + \mathrm{d}\sigma^{-+} - \mathrm{d}\sigma^{--} \right]$$

$$\mathrm{d}\sigma_{\ell H} = \frac{1}{4} \Big[\mathrm{d}\sigma^{++} - \mathrm{d}\sigma^{+-} - \mathrm{d}\sigma^{-+} + \mathrm{d}\sigma\Big]$$

$$A_{\rm PV}^{(\ell)} := \frac{{\rm d}\sigma_\ell}{{\rm d}\sigma_0} \quad \text{unpolarized} \, A_{\rm PV}$$

$$A_{\rm PV}^{(H)} := \frac{{\rm d}\sigma_H}{{\rm d}\sigma_0} \qquad \text{polarized} A_{\rm PV}$$

$$A_{\mathrm{LC}}^{(H)} := \frac{\mathrm{d}\sigma_0(e^+H) - \mathrm{d}\sigma_0(e^-H)}{\mathrm{d}\sigma_0(e^+H) + \mathrm{d}\sigma_0(e^-H)}$$

lepton-charge A

 $d\sigma = d\sigma_0 + P_\ell d\sigma_e + P_H d\sigma_H + P_\ell P_H d\sigma_{\ell H}$

 $P_{\mathcal{C}}, P_H \leftrightarrow \lambda_{\mathcal{C}}, \lambda_H$ \downarrow $-1 \leq \leq 1$

 $d\sigma = d\sigma_0 + P_{\ell}d\sigma_{\rho} + P_H d\sigma_H + P_{\ell}P_H d\sigma_{\ell H}$ $P_{\ell}, P_H \leftrightarrow \lambda_{\ell}, \lambda_H$ $-1 \leq \leq 1$ luminosity $N^{++} = a_{\det}L^{++} \left[d\sigma_0 + |P_{\ell}^{++}| d\sigma_{\ell} + |P_H^{++}| d\sigma_H + |P_{\ell}^{++}| |P_H^{++}| d\sigma_{\ell H} \right]$ $N^{+-} = a_{\det}L^{+-} \left[d\sigma_0 + |P_{\ell}^{+-}| d\sigma_{\ell} - |P_H^{+-}| d\sigma_H - |P_{\ell}^{+-}| |P_H^{+-}| d\sigma_{\ell H} \right]$ $N^{-+} = a_{\det}L^{-+} \left| d\sigma_0 - |P_{\ell}^{-+}| d\sigma_{\ell} + |P_H^{-+}| d\sigma_H - |P_{\ell}^{-+}| |P_H^{-+}| d\sigma_{\ell H} \right|$ $N^{--} = a_{\det} L^{--} \left[d\sigma_0 - |P_{\ell}^{--}| d\sigma_{\ell} - |P_H^{--}| d\sigma_H + |P_{\ell}^{--}| |P_H^{--}| d\sigma_{\ell H} \right]$ detector phase space event acceptance and efficiency count

 $d\sigma = d\sigma_0 + P_{\ell}d\sigma_{\rho} + P_H d\sigma_H + P_{\ell}P_H d\sigma_{\ell H}$

Assuming P_{ℓ}^{ij} , P_{H}^{ij} , L^{ij} , and a_{det} are constant: $d\sigma^{ij} = N^{ij}/L^{ij}/a_{det}$ $d\sigma_0 = \frac{1}{4} \left[d\sigma^{++} + d\sigma^{+-} + d\sigma^{-+} + d\sigma^{--} \right]$ $\mathrm{d}\sigma_{\ell} = \frac{1}{4|P_{\mathcal{I}}|} \left[\mathrm{d}\sigma^{++} + \mathrm{d}\sigma^{+-} - \mathrm{d}\sigma^{-+} - \mathrm{d}\sigma^{--} \right]$ $\mathrm{d}\sigma_{\!H} = \frac{1}{4 \left| P_{\!H} \right|} \left[\mathrm{d}\sigma^{++} - \mathrm{d}\sigma^{+-} + \mathrm{d}\sigma^{-+} - \mathrm{d}\sigma^{--} \right]$ $d\sigma_{\ell H} = \frac{1}{4 |P_{\ell}| |P_{H}|} \left[d\sigma^{++} - d\sigma^{+-} - d\sigma^{-+} + d\sigma^{--} \right]$

 $P_{\ell}, P_H \leftrightarrow \lambda_{\ell}, \lambda_H$ $-1 \leq < 1$

 $d\sigma = d\sigma_0 + P_{\ell} d\sigma_e + P_H d\sigma_H + P_{\ell} P_H d\sigma_{\ell H}$

Assuming P_{ℓ}^{ij} , P_{H}^{ij} , L^{ij} , and a_{det} are constant: $d\sigma_{0} = \frac{1}{4} \Big[d\sigma^{++} + d\sigma^{+-} + d\sigma^{-+} + d\sigma^{--} \Big]$ $d\sigma_{\ell} = \frac{1}{4|P_{\ell}|} \Big[d\sigma^{++} + d\sigma^{+-} - d\sigma^{-+} - d\sigma^{--} \Big]$ $d\sigma_{H} = \frac{1}{4|P_{H}|} \Big[d\sigma^{++} - d\sigma^{+-} + d\sigma^{-+} - d\sigma^{--} \Big]$ $d\sigma_{\ell H} = \frac{1}{4|P_{\ell}||P_{H}|} \Big[d\sigma^{++} - d\sigma^{+-} - d\sigma^{-+} + d\sigma^{--} \Big]$

 $P_{\ell}, P_H \leftrightarrow \lambda_{\ell}, \lambda_H$ $-1 \leq \leq 1$

$$A_{\rm PV}^{(\ell)} = \frac{\mathrm{d}\sigma_{\ell}}{\mathrm{d}\sigma_{0}} = \frac{1}{|P_{\ell}|} \frac{Y^{++} + Y^{+-} - Y^{-+} - Y^{--}}{Y^{++} + Y^{+-} + Y^{-+} + Y^{--}}$$

$$A_{\rm PV}^{(H)} = \frac{\mathrm{d}\sigma_{H}}{\mathrm{d}\sigma_{0}} = \frac{1}{|P_{H}|} \frac{Y^{++} - Y^{+-} + Y^{-+} - Y^{--}}{Y^{++} + Y^{+-} + Y^{-+} + Y^{--}}$$

 $d\sigma = d\sigma_0 + P_\ell d\sigma_e + P_H d\sigma_H + P_\ell P_H d\sigma_{\ell H}$

Assuming P_{ℓ}^{ij} , P_{H}^{ij} , L^{ij} , and a_{det} are constant:

$$A_{\rm PV}^{(\ell)} = \frac{\mathrm{d}\sigma_{\ell}}{\mathrm{d}\sigma_{0}} = \frac{1}{|P_{\ell}|} \frac{Y^{++} + Y^{+-} - Y^{-+} - Y^{--}}{Y^{++} + Y^{+-} + Y^{-+} + Y^{--}}$$
$$A_{\rm PV}^{(H)} = \frac{\mathrm{d}\sigma_{H}}{\mathrm{d}\sigma_{0}} = \frac{1}{|P_{H}|} \frac{Y^{++} - Y^{+-} + Y^{-+} - Y^{--}}{Y^{++} + Y^{+-} + Y^{-+} + Y^{--}}$$

 $P_{\ell}, P_H \leftrightarrow \lambda_{\ell}, \lambda_H$ \downarrow $-1 \leq \leq 1$

point-to-point luminosity uncertainty $\sim 10^{-4}$

dominant uncertainty: polarimetry

PV asymmetries:

- Compare scattering yields of LH and RH beams •
- Short-time scale •
- Dominant uncertainty: polarimetry •

PV asymmetries:

- Compare scattering yields of LH and RH beams
- Short-time scale
- Dominant uncertainty: polarimetry

LC asymmetries:

- Compare between e^- and e^+ runs
- Two independent cross-section measurements
- Reverse detector magnet polarity to minimize systematic errors in e^- and e^+ detection •
- Dominant uncertainty: luminosity difference

Projections of PV and LC asymmetry data

ECCE detector configuration for inclusive NC study

• Hybrid tracking detector and EM calorimetry: $|\eta| \leq 3.5$ with full azimuthal coverage

- Determination of inclusive DIS kinematics:
 - Single- e^- simulations in full detector: $p_{\rho}, \theta_{\rho}, \varphi_{\rho}$
 - Detected vs. true values: smearing
 - Apply smearing to simulated events without involving full detector
 - \Rightarrow "fast-smearing"

https://wiki.bnl.gov/eic/index.php/Smearing

Accardi et al. 1212.1701

$\theta = 90^{\circ}$ $\eta = +3.5$ $\theta = 3.5^{\circ}$

Simulation with fast-smearing

- Djangoh MC event generator: full EW radiative effects
- Apply fast-smearing to inclusive *e*⁻ events
- Get number of e^- using σ and L

Simulation with fast-smearing

- Djangoh MC event generator: full EW radiative effects
- Apply fast-smearing to inclusive *e*⁻ events
- Get number of e^- using σ and L
- Bin migration: PHENIX Collaboration 1402.1209
 - Due to radiative effects
 - Unfold

Simulation with fast-smearing

- Bin migration: PHENIX Collaboration 1402.1209
 - Due to radiative effects
 - Unfold
- Background reactions:
 - Due to hadronic final state
 - High at large values of y

Event selection Q > 1 GeVy > 0.1 y < 0.9 $-3.5 < \eta < 3.5$ E' > 2 GeV

- to avoid nonperturbative region of QCD
- to avoid bin migration and unfolding uncertainty
- to avoid high photoproduction background
- to restrict events in main acceptance of ECCE detector
- to ensure high purity of e^- samples

Event selection Q > 1 GeVy > 0.1 y < 0.9 $-3.5 < \eta < 3.5$ E' > 2 GeVx < 0.5 $Q > 10 \,\,{\rm GeV}$

- to avoid nonperturbative region of QCD
- to avoid bin migration and unfolding uncertainty
- to avoid high photoproduction background
- to restrict events in main acceptance of ECCE detector
- to ensure high purity of e^- samples
- additional cuts for SMEFT analysis:
- to remove *large* uncertainties from non-perturbative QCD and nuclear dynamics

Data sets

analysis:

eD scattering

Beam energy, beam type, and nominal annual luminosity (NL) assumed for the EIC

ep scattering

YR reference setting [2103.05419]

Statistical uncertainty projection for PV asymmetries

For a given value of integrated luminosity:

 $\delta A_{\text{stat}}^{\text{measured}} = \frac{1}{\sqrt{N}}$

34

Statistical uncertainty projection for PV asymmetries

For a given value of integrated luminosity:

$$\delta A_{\rm stat}^{\rm measured} = \frac{1}{\sqrt{N}}$$

For PV asymmetries, corrections for beam polarization:

$$\left[\delta A_{\rm PV}^{(\ell)}\right]_{\rm stat} = \frac{1}{|P_{\ell}|} \frac{1}{\sqrt{N}}, \quad \left[\delta A_{\rm PV}^{(H)}\right]_{\rm stat}$$

Assume:

- $P_{\ell} = 80\%$ with 1 % rel. systematic uncertainty
- $P_H = 70\%$ with 2% rel. systematic uncertainty

 $\begin{bmatrix} I \\ I \end{bmatrix}_{\text{stat}} = \frac{1}{|P_H|} \frac{1}{\sqrt{N}}$

Statistical uncertainty projection for PV asymmetries

For a given value of integrated luminosity:

$$\delta A_{\rm stat}^{\rm measured} = \frac{1}{\sqrt{N}}$$

For PV asymmetries, corrections for beam polarization:

$$\left[\delta A_{\rm PV}^{(\ell)}\right]_{\rm stat} = \frac{1}{|P_{\ell}|} \frac{1}{\sqrt{N}}, \quad \left[\delta A_{\rm PV}^{(H)}\right]_{\rm stat}$$

Assume:

- $P_{\ell} = 80\%$ with 1 % rel. systematic uncertainty
- $P_H = 70\%$ with 2% rel. systematic uncertainty

 $\begin{bmatrix} I \\ I \end{bmatrix}_{\text{stat}} = \frac{1}{|P_H|} \frac{1}{\sqrt{N}}$

Statistical uncertainty projection for LC asymmetries

- Dominant uncertainty: luminosity difference between e^- and e^+ runs
- Assume 2 % : relative in luminosity, absolute in $A_{\rm LC}^{(H)}$
- Reverse detector magnet polarity:
- \Rightarrow detection of DIS $e^+ \sim$ detection of DIS $e^ \Rightarrow \left[\delta A_{\rm LC}^{(H)} \right]_{\rm stat} \text{ determined by luminosity of } e^+ \text{ run}$
- Assume $L^{e^+} = \frac{1}{10}L^{e^-}$.
 - Polarimetry is irrelevant for $A_{\rm LC}$ measurements.

QED uncertainty projection for LC asymmetries

- Higher-order QED effects in e^- and e^+ DIS cross sections
- LO and NLO $A_{IC}^{(H)}$ computed using Djangoh

QED uncertainty projection for LC asymmetries

- Higher-order QED effects in e^- and e^+ DIS cross sections
- LO and NLO $A_{IC}^{(H)}$ computed using Djangoh
- Introduce 5 % of $\left[A_{LC}^{(H)}\right]_{NLO} \left[A_{LC}^{(H)}\right]_{LO}$ as QED NLO uncertainty

Projection for High-Luminosity EIC

- Possibility of additional 10 × increase in annual luminosity beyond initial run
 Assuming all experimental systematic effects remain the same:
- Assuming all experimental systematic $\sigma_{\text{stat}} \rightarrow \frac{1}{\sqrt{10}} \sigma_{\text{stat}}$

Uncertainties

Anticipated uncertainties

PV asymmetries:

• $\sigma_{\rm pdf}^{\rm cor}$

Anticipated uncertainties

PV asymmetries:

• $\sigma_{\rm pdf}^{\rm con}$

LC asymmetries:

- $\sigma_{\rm stat}$ • $\frac{\sigma_{\text{sys}}^{\text{unc}}}{\Lambda} = 1\%$ rel.
 - $\sigma_{\text{lum}}^{\text{cor}} = 2\%$ abs.
- $\sigma_{\rm nlo}^{\rm unc} = 5\% \cdot (A_{\rm LC}^{\rm NLO} A_{\rm LC}^{\rm Born})$
- $\sigma_{\rm pdf}^{\rm cor}$

 $---\sigma_{
m pdf}$

Uncertainty assumptions

Brief summary:

- Quark flavors: up to strange or only at up and down.
- σ_{stat} : dominant for unpolarized A_{PV} in NL; comparable to σ_{sys} in HL.
- PDF uncertainties: negligible for unpolarized $A_{\rm PV}$, significant for polarized $A_{\rm PV}$.
- Luminosity effects > σ_{stat} .
- Higher-order QED corrections to lepton-charge A are negligible.

Framework of the SMEFT analysis

Data sets

Concentrate on the two highest-energy settings:

- 10 GeV × 137 GeV eD 100 fb⁻¹
- 10 GeV \times 275 GeV *ep* 100 fb⁻¹
- 18 GeV × 137 GeV eD 15.4 fb⁻¹
- 18 GeV \times 275 GeV *ep* 15.4 fb⁻¹

Data sets

Concentrate on the two highest-energy settings:

- 10 GeV × 137 GeV eD 100 fb⁻¹
 10 GeV × 275 GeV ep 100 fb⁻¹
- 18 GeV × 137 GeV eD 15.4 fb⁻¹
 18 GeV × 275 GeV ep 15.4 fb⁻¹

low energy high luminosity

high energy low luminosity

Data sets

Concentrate on the two highest-energy settings:

- 10 GeV × 137 GeV eD 100 fb⁻¹: D4, Δ D4, LD4
- 10 GeV × 275 GeV *ep* 100 fb⁻¹: P4, Δ P4, LP4
- 18 GeV × 137 GeV eD 15.4 fb⁻¹: D5, $\Delta D5$, LD5
- 18 GeV × 275 GeV *ep* 15.4 fb⁻¹: P5, Δ P5, LP5

unpolarized A_{PV}

Pseudodata generation

For b^{th} bin:

where

 A_{b}^{theo} : Born-level SM prediction $\sigma_{b}^{\text{unc}} = \begin{cases} \sigma_{\text{stat},b} \oplus \sigma_{\text{sys},b}^{\text{unc}} \\ \sigma_{\text{stat},b} \oplus \sigma_{\text{sys},b}^{\text{unc}} \oplus \sigma_{\text{nlo},b}^{\text{unc}}, & \sigma_{b}^{\sigma_{b}} \end{cases}$ $r_b, r' \sim \mathcal{N}(0,1)$: random numbers

 $A_{b}^{\text{pseudo}} = A_{b}^{\text{theo}} + r_{b}\sigma_{b}^{\text{unc}} + r'\sigma_{b}^{\text{cor}}$

$$\sigma_{b}^{\rm cor} = \begin{cases} \sigma_{\rm pol,b}^{\rm cor} & (\rm PV) \\ \sigma_{\rm lum,b}^{\rm cor} & (\rm LC) \end{cases}$$

SMEFT asymmetry corrections

- Set $\Lambda = 1$ TeV.
- Turn on only one or two Wilson coefficients at a time and linearize:
 - $A_{\text{SMEFT}}(x, Q^2, C) =$
 - $A_{\text{SMEFT}}(x, Q^2, C_1, C_2) = A_{\text{SM}}(x, Q^2, C_2) = A_{\text{SM}}(x, Q^2, C_2) = A_{\text{SM}}(x, Q^2, C_2) = A_{\text{SM}}(x, Q^2$

$$= A_{\rm SM}(x, Q^2) + C \,\delta A(x, Q^2)$$

(x, Q²) + C₁ $\delta A_1(x, Q^2) + C_2 \,\delta A_2(x, Q^2)$

Sensitivity of SMEFT terms

unpolarized A_{PV}

polarized $A_{\rm PV}$

$A_{\text{SMEFT}}(x, Q^2, C) = A_{\text{SM}}(x, Q^2) + C \,\delta A(x, Q^2)$

lepton-charge $A_{\rm PV}$

Sensitivity of SMEFT terms

$A_{\text{SMEFT}}(x, Q^2, C) = A_{\text{SM}}(x, Q^2) + C \,\delta A(x, Q^2)$

lepton-charge $A_{\rm PV}$

Distribution of best-fit values of Wilson coefficients

59

 χ^2 test statistic for the fits of Wilson coefficients:

$$\chi^2 = \sum_{b=1}^{N_{\text{bin}}} \sum_{b'=1}^{N_{\text{bin}}} \left[A_{\text{SMEFT}} - A_{\text{SMEFT}}\right]$$

PV asymmetries:

 χ^2 test statistic for the fits of Wilson coefficients:

$$\chi^{2} = \sum_{b=1}^{N_{\text{bin}}} \sum_{b'=1}^{N_{\text{bin}}} \left[A_{\text{SMEFT}} - A^{\text{pseudo}} \right]_{b} H_{bb'} \left[A_{\text{SMEFT}} - A^{\text{pseudo}} \right]_{b'}$$

Polarimetry and luminosity difference can be limiting factors.

 \Rightarrow use data itself to constrain these systematic effects

 \Rightarrow simultaneous fits of Wilson coefficients with beam polarization, *P*

 \Rightarrow simultaneous fits of Wilson coefficients with luminosity difference, A_{lum}

 χ^2 test statistic for the fits of Wilson coefficients:

$$\chi^{2} = \sum_{b=1}^{N_{\text{bin}}} \sum_{b'=1}^{N_{\text{bin}}} \left[A_{\text{SMEFT}} - A^{\text{pseudo}} \right]_{b} H_{bb'} \left[A_{\text{SMEFT}} - A^{\text{pseudo}} \right]_{b'} \qquad \begin{array}{c} \text{assumed 1.0} \\ \text{for simplicity} \end{array}$$

$$(A_{\text{PV}})_{\text{SMEFT}} - A^{\text{pseudo}} \right]_{b} \left[H \Big|_{\sigma_{\text{pol}} \to 0} \right]_{bb'} \left[P(A_{\text{PV}})_{\text{SMEFT}} - A^{\text{pseudo}} \right]_{b'} + \frac{(P - \bar{P})^{2}}{\sqrt{\delta P^{2}}}$$

$$\begin{array}{c} \text{beam polarization} \\ \text{as a nuance parameter} \end{array}$$

$$\begin{array}{c} \text{beam polarization uncertainty} \\ 1\% \text{ for lepton beam} \end{array}$$

$$\chi^{2} = \sum_{b=1}^{N_{\text{bin}}} \sum_{b'=1}^{N_{\text{bin}}} \left[A_{\text{SMEFT}} - A^{\text{pseudo}} \right]_{b} H_{bb'} \left[A_{\text{SMEFT}} - A^{\text{pseudo}} \right]_{b'} \text{ for simplicity}$$

$$\chi^{2} = \sum_{b=1}^{N_{\text{bin}}} \sum_{b'=1}^{N_{\text{bin}}} \left[P(A_{\text{PV}})_{\text{SMEFT}} - A^{\text{pseudo}} \right]_{b} \left[H \Big|_{\sigma_{\text{pol}} \to 0} \right]_{bb'} \left[P(A_{\text{PV}})_{\text{SMEFT}} - A^{\text{pseudo}} \right]_{b'} + \frac{(P - \bar{P})^{2}}{\sqrt{\delta P^{2}}}$$
beam polarization
as a nuance parameter beam polarization uncertainty
1 % for lepton beam

2% for hadron beam

 χ^2 test statistic for the fits of Wilson coefficients:

$$\chi^2 = \sum_{b=1}^{N_{\text{bin}}} \sum_{b'=1}^{N_{\text{bin}}} \left[A_{\text{SMEFT}} - A_{\text{SMEFT}}\right]$$

$$\chi^{2} = \sum_{b=1}^{N} \sum_{b'=1}^{N_{bin}} \left[A_{\text{SMEFT}} - A^{\text{pseudo}} \right]_{b} H_{bb'} \left[A_{\text{SMEFT}} - A^{\text{pseudo}} \right]_{b'}$$
$$\chi^{2} = \sum_{b=1}^{N_{bin}} \sum_{b'=1}^{N_{bin}} \left[P(A_{\text{PV}})_{\text{SMEFT}} - A^{\text{pseudo}} \right]_{b} \left[H \Big|_{\sigma_{\text{pol}} \to 0} \right]_{bb'} \left[P(A_{\text{PV}})_{\text{SMEFT}} - A^{\text{pseudo}} \right]_{b'} + \frac{(P - \bar{P})^{2}}{\delta P^{2}}$$

$$\chi^{2} = \sum_{b=1}^{N_{\text{bin}}} \sum_{b'=1}^{N_{\text{bin}}} \left[(A_{\text{LC}})_{\text{SMEFT}} - A^{\text{pseudo}} - A_{\text{lum}} \right]_{b} \left[H \Big|_{\sigma_{\text{lum}} \to 0} \right]_{bb'} \left[(A_{\text{LC}})_{\text{SMEFT}} - A^{\text{pseudo}} - A_{\text{lum}} \right]_{b'}$$
shift in pseudodata

by a residual amount

nominal luminosity

strong correlations between C_r and Pin unpolarized A_{PV} data sets

weak correlations between C_r and Pin polarized A_{PV} data sets

nominal luminosity

 $ep \ 10 \ \text{GeV} \times 275 \ \text{GeV} \ 100 \ \text{fb}^{-1}$

nominal luminosity

nominal luminosity

Simultaneous fits with luminosity difference

- 0.5

weak to mild correlations between C_r and A_{lum}

- -0.5
- -1.0

Simultaneous fits with luminosity difference

SMEFT fit results

Single Wilson coefficients

Single Wilson coefficients

Г	C_{eu}	C_{ed}	$C_{\ell q}^{(1)}$	$C_{\ell q}^{(3)}$	$C_{\ell u}$	$C_{\ell d}$	C_{qe}
C_{eu}	1.00	0.71	0.98	-0.97	0.27	-0.09	-0.38
C_{ed}	0.71	1.00	-0.56	0.85	-0.49	0.69	0.21
$C_{\ell q}^{(1)}$	0.98	-0.56	1.00	0.91	-0.26	-0.07	0.47
$C_{\ell q}^{(3)}$	-0.97	0.85	0.91	1.00	0.40	-0.29	-0.40
$C_{\ell u}$	0.27	-0.49	-0.26	0.40	1.00	0.74	0.85
$C_{\ell d}$	-0.09	0.69	-0.07	-0.29	0.74	1.00	-0.29
C_{qe}	-0.38	0.21	0.47	-0.40	0.85	-0.29	1.00

P4 (NL)

Г	C_{eu}	C_{ed}	$C_{\ell q}^{(1)}$	$C_{\ell q}^{(3)}$	$C_{\ell u}$	$C_{\ell d}$	C_{qe}
C_{eu}	1.00	0.99	0.99	-1.00	0.54	-0.53	-0.58
C_{ed}	0.99	1.00	-0.97	1.00	-0.59	0.60	0.59
$C_{\ell q}^{(1)}$	0.99	-0.97	1.00	0.99	-0.60	0.56	0.67
$C_{\ell q}^{(3)}$	-1.00	1.00	0.99	1.00	0.60	-0.59	-0.61
$C_{\ell u}$	0.54	-0.59	-0.60	0.60	1.00	0.98	0.94
$C_{\ell d}$	-0.53	0.60	0.56	-0.59	0.98	1.00	-0.86
C_{qe}	-0.58	0.59	0.67	-0.61	0.94	-0.86	1.00

D4 (NL)

Г	C_{eu}	C_{ed}	$C_{\ell q}^{(1)}$	$C_{\ell q}^{(3)}$	$C_{\ell u}$	$C_{\ell d}$	C_{qe}
C_{eu}	1.00	-0.98	1.00	-1.00	-0.52	-0.28	0.48
C_{ed}	-0.98	1.00	0.98	-0.98	-0.55	-0.27	0.50
$C_{\ell q}^{(1)}$	1.00	0.98	1.00	1.00	0.51	0.26	-0.47
$C_{\ell q}^{(3)}$	-1.00	-0.98	1.00	1.00	-0.57	-0.34	0.53
$C_{\ell u}$	-0.52	-0.55	0.51	-0.57	1.00	-0.94	1.00
$C_{\ell d}$	-0.28	-0.27	0.26	-0.34	-0.94	1.00	0.96
C_{qe}	0.48	0.50	-0.47	0.53	1.00	0.96	1.00

 $\Delta P4$ (NL)

Г	C_{eu}	C_{ed}	$C_{\ell q}^{(1)}$	$C_{\ell q}^{(3)}$	$C_{\ell u}$	$C_{\ell d}$	C_{qe}
C_{eu}	1.00	1.00	0.99	-1.00	-0.65	0.68	0.61
C_{ed}	1.00	1.00	-0.98	1.00	0.65	-0.67	-0.61
$C_{\ell q}^{(1)}$	0.99	-0.98	1.00	0.99	0.73	-0.76	-0.68
$C_{\ell q}^{(3)}$	-1.00	1.00	0.99	1.00	-0.69	0.71	0.64
$C_{\ell u}$	-0.65	0.65	0.73	-0.69	1.00	0.99	0.99
$C_{\ell d}$	0.68	-0.67	-0.76	0.71	0.99	1.00	-0.98
C_{qe}	0.61	-0.61	-0.68	0.64	0.99	-0.98	1.00

 $\Delta D4$ (NL)

76

LHC Drell-Yan adapted from RB, FP, DW 2104.03979

LHC: 8 TeV and 20 fb⁻¹ not 13 TeV and HL

LHC Drell-Yan adapted from RB, FP, DW 2004.00748

LHC: 8 TeV and 20 fb^{-1} not 13 TeV and HL

LHC Drell-Yan adapted from RB, FP, DW 2004.00748

LHC: 8 TeV and 20 fb^{-1} not 13 TeV and HL

Summary of SMEFT fits

- Bound strength: proton > deuteron
- Bound strength: unpolarized A_{PV} > polarized A_{PV} > lepton-charge A
- All distinct correlations
- Complementary to LHC
- Flat directions in LHC Drell-Yan resolved by EIC
- Even stronger bounds by EIC than LHC

Conclusion

Philosophy and methodology

- BSM potential of EIC
- Model-independent SMEFT framework
- Semi-leptonic four-fermion operator sector
- Detailed accounting of anticipated uncertainties
- Simultaneous fits of Wilson coefficients with beam polarization and luminosity difference

Findings

- UV scales > 3 TeV with nominal annual luminosity
- UV scales > 4 TeV with 10 × luminosity upgrade
- Strongest bounds from polarized electron + unpolarized proton scattering • Complementary and competitive to LHC: EIC can
 - resolve degeneracies
 - impose even stronger bounds

EIC: designed as a QCD machine, also a powerful probe of BSM

The End