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Prelude



• We study PVDIS asymmetries in NC cross sections at the EIC and NC DIS cross 
sections at the LHeC.


• BSM effects are parametrized in the model-independent SMEFT framework.


• Higher-dimensional operators are built using the existing SM particles with Wilson 
coefficients introduced as effective couplings at a UV scale :





• All new physics is assumed to be heavier than all the SM states and well beyond 
accessible collider energy. 


• We focus on SMEFT corrections to the  vertices, as well as semi-leptonic 4-
fermion operators at .

Λ

ℒSMEFT = ℒSM + ∑
n>4

1
Λn−4 ∑

k

C(n)
k O(n)

k

ffV
n = 6
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We find that


• the EIC can probe complementarily and competitively to the LHC NC Drell-Yan, 
resolving blind spots observed;


• the EIC can barely compete with the LHeC; nonetheless, they yield distinct 
correlations, showing complementarity;


• flat directions observed in the fit one LHeC run can be resolved by other runs and 
even by the EIC; and


• the LHeC seems promising in resolving flat directions in the  sector observed 
in the EW pole-observable (EWPO) fits.

ffV
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EIC and LHeC



Next-gen electron-hadron colliders: EIC and LHeC
Electron-hadron colliders: [Brüning et al. FPhy (2022)]


• Ultimate tool for high-precision QCD studies


• Ultimate microscope for probing internal structure of hadrons


•  is an ideal probe of proton structure due to unmatched precision of QED interaction:


• Virtual photon and vector bosons probe proton structure in a clean environment


• Kinematics is uniquely determined by  beam and scattered lepton


• Hadron-Elektron-Ringanlage (HERA @ DESY, Germany) was the only  collider ever 
operated (1991-2007).


• Electron-Ion Collider (EIC) is currently under construction at BNL @ NY.


• Large Hadron-electron Collider (LHeC @ CERN, Switzerland) is awaiting approval.

e−

e−

e−H
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EIC
• A US DOE project under construction in Brookhaven 

National Laboratory, Upton, NY.


• It will use the Relativistic Heavy Ion Collider (RHIC @ BNL, 
in operation since 2000) accelerator complex. (RHIC is the 
first heavy-ion collider and also the world’s only spin-
polarized proton collider.)


• It will combine the experience from HERA to deliver 
polarized  beams with the experience from RHIC to be 
the first machine that provides the collision of polarized  
with polarized , and at a later stage, polarized  and .


• It is planned to start operating in a decade.

e−

e−

p 2H 3He
Image credit: bnl.gov

[Accardi et al. 1212.1701]
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EIC

Unique features:


• Designed to collide  to  polarized  beams with  to  polarized  
beams, polarized light ions with energies up to  ( ), and unpolarized heavy 
ion beams up to . 


• CM energies between fixed-target scattering and high-energy colliders,  to 


• First lepton-ion collider to polarize both beams


• First collider with fast spin-flip capacity

5 18 GeV e− 41 275 GeV p
166 GeV 3He

110 GeV

70 140 GeV

[Accardi et al. 1212.1701]
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EIC

From these unique features:


• Extraction of PVDIS asymmetries in EW NC cross section


• Reduced uncertainties from luminosity and detector acceptance/efficiency


• Explore issues in QCD


• Probes of BSM physics


Also a positron beam in the future to study electron-positron (lepton-charge) 
asymmetries.

[Accardi et al. 1212.1701]
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LHeC
• 1984: Idea of an  collider in the LEP-LHC tunnel was first discussed (around the same time HERA was 

approved).


• 2005: It was found feasible to simultaneously operate  in the LHC and  in the new machine termed 
LHeC, which would be complementary to the LHC (just as HERA was to Tevatron). Integrated luminosity 
was projected to be , a factor of 100 more than HERA had collected over its lifetime of 15 years.


• Center of mass energies of  for DIS measurements:


• Searches and analysis for BSM physics


• Novel measurements in QCD


• EW physics to unprecedented precision


• DIS physics at low Bjorken 


• Suggested electron beam energies:  to ; the chosen default value 


    is .

e−p

pp ep

O(100) fb−1

s ≃ 1.5 TeV

x

50 150 GeV

60 GeV

[Fernandez et al. 1206.2913]

W. Kandinsky, Circles in a circle. 

Image credit: wassilykandinsky.net
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LHeC
• 2011: First complete draft of conceptual design of the LHeC


• The LHeC will be an upgrade of the LHC. 


• Substantially enriches the physics harvest related to huge investment in the LHC


• An  collider operating at an energy frontier


• Guaranteed to deepen the understanding of TeV-scale physics


• The LHeC needs the LHC proton/ion beams  synchronous  and  operation, 
as well as  and , including deuterons.


• The earliest realistic operational period coincides with the LHC Run 5 period in 
2032. 

e−p

⇒ pp e−p
HH e−H

[Fernandez et al. 1206.2913]
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Review of the SMEFT



Standard Model Effective Field Theory:


• A model-independent extension to the Standard Model.


• Operators of dimensions higher than 4 built of the existing spectrum of SM.


• Wilson coefficients as effective couplings at UV scale  beyond accessible collider 
energies:





• Focus on .


• Consider only SM-SMEFT interference in cross sections for consistency.

Λ

ℒSMEFT = ℒSM + ∑
n>4

1
Λn−4 ∑

k

C(n)
k O(n)

k

n = 6
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• Modifying  vertices in a 
nonuniversal manner:




















ffV

O(1)
φℓ = (φ†i

↔
Dμ φ)(ℓ̄γμℓ)

O(3)
φℓ = (φ†i

↔
Dμ τIφ)(ℓ̄γμτIℓ)

Oφe = (φ†i
↔
Dμ φ)(ēγμe)

O(1)
φq = (φ†i

↔
Dμ φ)(q̄γμq)

O(3)
φq = (φ†i

↔
Dμ φ)(q̄γμτIq)

Oφu = (φ†i
↔
Dμ φ)(ūγμτIu)

Oφd = (φ†i
↔
Dμ φ)(d̄γμd)

16 operators affecting DIS at leading order in the Warsaw basis [Misiak et al. 1008.4884]:

• Inducing semi-leptonic 4-
fermion interaction:




















Oeu = (ēγμe)(ūγμu)

Oed = (ēγμe)(d̄γμd)

O(1)
ℓq = (ℓ̄γμℓ)(q̄γμq)

O(3)
ℓq = (ℓ̄γμτIℓ)(q̄γμτIq)

Oℓu = (ℓ̄γμℓ)(ūγμu)

Oℓd = (ℓ̄γμℓ)(d̄γμd)

Oqe = (ēγμe)(q̄γμq)

• Modifying  vertices in 
a universal manner:





ffV

OφWB = (φ†τIφ)WI
μνBμν

OφD = (φ†Dμφ)*(φ†Dμφ)

φ†i
↔
Dμ φ = φ†iDμφ + h . c .

φ†i
↔
Dμ τIφ = φ†iDμτIφ + h . c .
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! !′

q q′

V = γ, Z

! !′

q q′

Review of the 

DIS formalism



DIS cross section at LO

NC DIS in the process , where  is ,  is  or .


LO partonic process: 

ℓ(k) + H(P) → ℓ′￼(k′￼) + X ℓ e± H p D

ℓ(k) + q(p) → ℓ′￼(k′￼) + q′￼(p′￼)

! !′

q q′

V = γ, Z

! !′

q q′

Possible gluon-initiated contact interaction: , but 
operators do not show up below dimension 8.

ℓ(k) + g(p) → ℓ′￼(k′￼) + g′￼(p′￼)
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Parametrization of  and  vertex factors in  basis:


,          


where 


•  in subscript


•   means vector (axial) in superscript


•  indicates structure of lepton and quark currents at the contact point 
(e.g.  for coupling of  and )


• all BSM effects are contained in  for generalization to higher dimensions 


Propagator:


ffV ℓℓqq V − A

VV,A
fV = iCVQV,A

fV VPP′￼

×q = iCPP′￼

×q

V = γ, Z, ×

V (A)

P, P′￼ = V, A
CVA

×q ℓ̄γμℓ q̄γμγ5q

QV,A
fV

PV =
1

Q2 + M2
V

quantum numbers

strength of couplings
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Coupling strengths:




















Cγ = − e = − 4πα

CZ = − gZ = −
e

2cWsW
= − 2GFM2

Z

CVV
×q =

Ceu/d + (C(1)
ℓq ∓ C(3)

ℓq ) + Cℓu/d + Cqe

4Λ2

CVA
×q =

Ceu/d − (C(1)
ℓq ∓ C(3)

ℓq ) + Cℓu/d − Cqe

4Λ2

CAV
×q =

Ceu/d − (C(1)
ℓq ∓ C(3)

ℓq ) − Cℓu/d + Cqe

4Λ2

CAA
×q =

Ceu/d + (C(1)
ℓq ∓ C(3)

ℓq ) − Cℓu/d − Cqe

4Λ2

Quantum numbers:














in the input basis .

QV
fγ = Qf + 𝒪(C2

k )

QA
fγ = 0

QV
fZ = gf

V [1 +
M2

Z

4παΛ2
c f

V(CV
k , MZ)]

QV
fZ = gf

A [1 +
M2

Z

4παΛ2
c f

A(CA
k , MZ)]

{GF, α, MZ}

CV,A
k ∈ {CφWB, CφD, C(1)

φℓ , C(3)
φℓ , Cφe, C(1)

φq , C(3)
φq , Cφu, Cφd}

Relative couplings and propagators:


,          ηV =
C2

VPV

C2
γ Pγ

ηPP′￼

×q =
CPP′￼

×q

C2
γ Pγ
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Ṽ = γγ, γZ, ZZ, γ × (0), γ × (1), Z × (0), Z × (1)

SMEFT LO structure functions:







F Ṽ
1 (x, Q2) =

1
2 ∑

q

λ Ṽ
V q(x, Q2)

F Ṽ
3 (x, Q2) = ∑

q

− sgn(q)λ Ṽ
A q(x, Q2)

F Ṽ
L (x, Q2) = 0







g Ṽ
1 =

1
2 ∑

q

λ Ṽ
V Δq(x, Q2)

g Ṽ
5 (x, Q2) =

1
2 ∑

q

sgn(q)λ Ṽ
A Δq(x, Q2)

g Ṽ
L (x, Q2) = 0
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NC DIS cross sections in structure-function formalism:








Reduced cross sections:








From here on, cross section means reduced cross section.

d2σℓ
NC

dx dQ2
=

2πα2

xQ4
{[1 + (1 − y)2]2xFNC

1 + sgn(ℓ)[1 − (1 − y)2]xFNC
3 + (1 − y)2FNC

L }

d2Δσℓ
NC

dx dQ2
=

8πα2

xQ4
{[1 + (1 − y)2]xgNC

5 − sgn(ℓ)[1 − (1 − y)2]xgNC
1 + (1 − y)gNC

L }

d2σℓ
r,NC

dx dQ2
= { 4πα2

xQ4
[1 + (1 − y)2]}

−1
d2σℓ

NC

dx dQ2

d2Δσℓ
r,NC

dx dQ2
= { 4πα2

xQ4
[1 + (1 − y)2]}

−1
d2Δσℓ

NC

dx dQ2
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DIS cross section at NLO QCD

! !′

q q′

V = γ, Z,W

! !′

q q′

V = γ, Z,W

! !′

q q′

! !′

q q′

Feynman diagrams describing NLO QCD corrections at parton level for the process 
:ℓ + H → ℓ′￼+ X

NLO QCD corrections take place only along the quark line  identical corrections to 
both SM and SMEFT structure functions. These corrections are well known [de 
Florian et al. 1210.7203].

⇒
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SMEFT NLO structure functions:







F Ṽ
1 =

1
2 ∑

q

λ Ṽ
V [q +

αs

2π ( C̃ q1
⊗ q + C̃ g1

⊗ g)]
F Ṽ

3 = ∑
q

− sgn(q)λ Ṽ
A [q +

αs

2π ( C̃ q3
⊗ q + C̃ g3

⊗ g)]
F Ṽ

L = x∑
q

sgn(q)λ Ṽ
V [0 +

αs

2π ( C̃ qL
⊗ q + C̃ gL

⊗ g)]







g Ṽ
1 =

1
2 ∑

q

λ Ṽ
V [Δq +

αs

2π (Δ̃Cq1
⊗ Δq + Δ̃Cg1

⊗ g)]
g Ṽ

5 =
1
2 ∑

q

sgn(q)λ Ṽ
A [Δq +

αs

2π (Δ̃Cq3
⊗ Δq + Δ̃Cg3

⊗ Δg)]
g Ṽ

L =
1
2 ∑

q

sgn(q)λ Ṽ
A [0 +

αs

2π (Δ̃CqL
⊗ Δq + Δ̃CgL

⊗ Δg)]
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PVDIS asymmetries to NLO QCD
Parity-violating DIS asymmetries in cross sections at the EIC:


• Lepton left-right asymmetries of unpolarized hadrons:





• Hadron left-right asymmetries with unpolarized leptons:





where  and . 

Aℓ
PV =

σ+ − σ−

σ+ + σ−

ΔAPV =
Δσ0

σ0

σ± =
d2σℓ

NC

dx dQ2
λℓ=±|Pℓ|

(Δ)σ0 =
d2(Δ)σℓ

NC

dx dQ2
λℓ=0

24



Generic form of cross sections:





For consistency, asymmetries must be linearized:


σ = σSM + ∑
k

Ck δσk

A = ASM + ∑
k

Ck δAk

25



Data analysis

Image credit: xkcd.com

http://xkcd.com


Pseudodata sets

• Most recent publicly available official LHeC pseudodata sets for NC DIS cross 
sections of  collisions [Klein (2013)].


• The entire error matrices are given.


• Preliminary EIC data sets used in [Boughezal et al. 2204.07557].


• We do not consider the 10-fold luminosity upgrade scenario at the EIC this time.

e±p
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Restrict ourselves to the bins with











to avoid large uncertainties 

nonperturbative QCD and 

nuclear dynamics occurring at


low  and high .


Call them the good bins.

x ≤ 0.5

Q ≥ 10 GeV

0.1 ≤ y ≤ 0.9

Q x

28



Kinematic coverage of the LHeC and EIC data sets:

Darker regions are good regions 

considered in our analysis.

Lowest and highest CM energies are shown.

0.1 ≤ y =
Q2

xs
≤ 0.9

LHeC, s = 490 GeV
LHeC, s = 1300 GeV
EIC, s = 70 GeV
EIC, s = 140 GeV

10-5 10-4 0.001 0.010 0.100 1
1

5
10

50
100

500
1000

x

Q
[G

eV
]
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Anticipated uncertainties:

LHeC:

• statistical, 

• uncorrelated efficiency, 

• full correlated systematics, :


• lepton energy scale, 

• lepton polar angle, 

• hadron energy scale, 

• radiative corrections, 

• photoproduction, 

• global efficiency, 

• luminosity, , assumed  rel. in 

δσstat
δσueff

δσsys

δσlen
δσlpol

δσhen
δσrad

δσgam

δσgeff

δσlum 1 % σNC

EIC:

• statistical, 


,     


• uncorrelated systematics, , assumed  rel. in 

• fully correlated beam polarization, , 

   assumed  for lepton beam,  for hadron beam,

   rel. in 

Assume  and .

δAstat =
1

|Pℓ |
1

N
δΔAstat =

|Pℓ |
|PH |

1

N
δσsys 1 % APV

δApol

1 % 2 %
APV
|Pℓ | = 80 % |PH | = 70 %

Fully correlated PDF uncertainties, 

 and , are considered, as well.δσpdf δApdf
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0 5 10 15 20 25 30 35
10-6

10-5

10-4

0.001

0.010

0.100

bin

ΔP4: 10 GeV  275 GeV e-p, Pℓ = 0, ℒ = 100 fb-1

ΔAPV

δAstat δAsys δApol

δApdf

0 5 10 15 20

0.001

0.010

0.100

1

bin

LHeC3: 60 GeV  7000 GeV e-p, Pℓ = +80%, ℒ = 30 fb-1

σNC

δσstat δσueff δσsys

δσpdf

0 5 10 15 20 25 30 35

10-4

0.001

0.010

0.100

bin

P4: 10 GeV  275 GeV e-p, Pℓ = 0, ℒ = 100 fb-1

APV

δAstat δAsys δApol

δApdf

Size and rank of various uncertainty components going into the diagonal entries of the error matrix for the good bins:

• Stat uncertainties are better controlled at the LHeC, constitute a minuscule part of total uncertainties. They 
are the leading source of errors for unpolarized asymmetries at the EIC.


• Other uncorrelated uncertainties compete with systematics and PDF errors at the LHeC. Systematics are 
among the lowest sources of errors at the EIC.


• Systematics, correlated at the LHeC, forms the largest source of errors at the LHeC. Correlated errors, due 
to beam polarization, are a tiny part of total uncertainties at the EIC.


x = 0.000085

Q = 10 GeV

x = 0.40

Q = 548 GeV


x = 0.013
Q = 10 GeV


x = 0.46
Q = 65 GeV


x = 0.013
Q = 10 GeV


x = 0.46
Q = 65 GeV
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Numerical analysis

Numerical input:


• Input scheme: 


• Number of active quark flavors, 


• UV cut-off scale: 


• PDF sets: NNPDF3.1 NLO, NNPDFPOL1.1


• 2-loop running 

{GF, α, MZ}

Nf = 5

Λ = 1 TeV

αs(Q2)
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Fitting procedure:


1. Form the error matrix (experimental + PDF).


2. Write down a  function.


3. Minimize it and derive the covariance matrix of fitted parameters.

χ2
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Construction of the experimental error matrix:


• Uncorrelated errors:


,                    at  bin


• Correlated errors:








• Matrix elements:


          : observable


where we assume full correlations among bins, . 

δσunc,b = δσstat,b ⊕ δσueff,b δAunc,b = δAstat,b ⊕ δAsys,b bth

δσcor,b = δσlen,b ⊕ δσlpol,b ⊕ δσhen,b ⊕ δσrad,b ⊕ δσgam,b ⊕ δσgeff,b ⊕ δσcal,b ⊕ δσlum,b

δAcor,b = δApol,b

Eexp,bb′￼
= {(δQunc ⊕ δQcor)2

bb′￼
, b = b′￼

ρbb′￼
δQcor,b δQcor,b′￼

, b ≠ b′￼

Q = σ, A

ρbb′￼
= 1

34



Construction of the PDF error matrix:





where  is the observable evaluated at the central ( ) member of the PDF set at 

the  bin and  is the number of replica PDF members.

Epdf,bb′￼
=

1
Npdf

Npdf

∑
m=1

(Qm,b − Q0,b)(Qm,b′￼
− Q0,b′￼

)

Q0(m),b mth

bth Npdf = 100
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Total error matrix:





 test statistic for the  pseudoexperiment:





Pseudoexperimental observable:


,          

E = Eexp + Epdf

χ2 eth

χ2
e =

Nbin

∑
b,b′￼=1

(QSMEFT
b − Qe,b)E−1

bb′￼
(QSMEFT

b′￼
− Qe,b′￼

)

Qe,b = QSM
b + re,b δQunc,b + r′￼e δQcor,b re,b, r′￼e ∼ 𝒩(0,1)
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SMEFT fit results



• LHeC imposes significantly stronger bounds than EIC with few exceptions. When one run yields weaker bounds, the 
others make up for it.


• Low-luminosity  collisions with RH electrons (LHeC3 and LHeC6) provide the optimal configuration for  and .


• High-luminosity  collisions with LH electrons (LHeC2 and LHeC5) is the optimal configuration for  and .


•  collisions (LHeC4 and LHeC7) yield the optimal configuration for  and .


•  collisions with unpolarized positrons (LHeC7) serve as the optimal configuration for .


• No single LHeC run seems to be the best configuration to constrain all semi-leptonic 4-fermion Wilson coefficients.

e−p Ceu Ced

e−p C(1)
ℓq C(3)

ℓq

e+p Cℓu Cℓd

e+p Cqe

Ceu Ced Cℓq
(1) Cℓq

(3) Cℓu Cℓd Cqe

-2

-1

0

1

2
Ck at 95% CL, Λ = 1 TeV , 7d fit

P4 LHeC1 LHeC2 LHeC3 LHeC4 LHeC5 LHeC6 LHeC7
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Ceu Ced Cℓq
(1) Cℓq

(3) Cℓu Cℓd Cqe
0
2
4
6
8

10
12

Λ/ Ck [TeV ] at 95% CL, 7d fit

P4 LHeC1 LHeC2 LHeC3 LHeC4 LHeC5 LHeC6 LHeC7

• EIC can probe UV scales up to 2 TeV, and does so with its strongest data set, P4.


• A large subset of LHeC runs can go beyond 5 TeV.


• Only few LHeC runs can exceed 10 TeV at 95% CL. 
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-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Cℓq
(1)

C ℓ
u

95% CL, Λ = 1 TeV , 7d fit

P4 LHeC5 LHeC7

Strongest EIC and two strongest LHeC:

• The LHeC runs are significantly more 
constraining than the EIC.


• These data sets exhibit distinct 
correlations, complementary to each 
other. 


• Even the two strongest LHeC runs can 
yield nearly orthogonal correlations.
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Strongest EIC and two strongest LHeC:

• LHC NC DY is , not 
and HL; adapted from 

[Boughezal et al. 2104.03979].


• When LHC NC DY is blind to a part of 
the parameter space, EIC and LHeC 
can resolve these blind spots, 
imposing strong bounds. 


• LHeC fits can lead to correlations 
parallel to LHC NC DY, whereas EIC 
yields a new correlation axis.

8 TeV 20 fb−1

13 TeV

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Cℓq
(1)

C q
e

95% CL, Λ = 1 TeV , 7d fit

P4 LHeC7 LHeC6 LHC NC DY
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Strongest EIC and two strongest LHeC:

• LHC NC DY is , not 
and HL; adapted from 

[Boughezal et al. 2104.03979].


• LHC NC DY is again blind to this part 
of the parameter space. 


• There is a slight degeneracy at the 
LHeC, as well.


• LHeC and EIC may yield correlations 
in the same directions, though in a 
different direction than LHC NC DY.

8 TeV 20 fb−1

13 TeV

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Cℓq
(1)

C ℓ
q(3
)

95% CL, Λ = 1 TeV , 7d fit

P4 LHeC5 LHeC2 LHC NC DY 42



Which parameter is the most important?

• Luminosity? 

• Beam polarization? 

• Lepton species?

• Compare LHeC2 to LHeC5 and LHeC3 to LHeC6 to check importance of luminosity.


• Compare LHeC1 to LHeC2 to understand effects of beam polarization.


• Compare LHeC1 to LHeC7 and LHeC3 to LHeC4 to investigate consequences of 
lepton species.
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-0.10 -0.05 0.00 0.05 0.10
-0.10

-0.05

0.00

0.05

0.10

Cℓq
(1)

C ℓ
q(3
)

95% CL, Λ = 1 TeV , 7d fit

LHeC2 LHeC5

-0.2 -0.1 0.0 0.1 0.2
-0.2

-0.1

0.0

0.1

0.2

Cℓq
(1)

C q
e

95% CL, Λ = 1 TeV , 7d fit

LHeC3 LHeC6

Luminosity increase: 

2 to 5 and 3 to 6

LHeC2: 60 GeV × 7000 GeV e−p, Pℓ = − 80 % , ℒ = 100 fb−1

LHeC5: 60 GeV × 7000 GeV e−p, Pℓ = − 80 % , ℒ = 1000 fb−1

LHeC3: 60 GeV × 7000 GeV e−p, Pℓ = + 80 % , ℒ = 30 fb−1

LHeC6: 60 GeV × 7000 GeV e−p, Pℓ = + 80 % , ℒ = 300 fb−1
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• Converting from low- to high-luminosity 
 collisions can improve the bounds in 

a noticeable manner; however, the 
improvements are not sharp.

e−p
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LHeC3 LHeC6

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Cℓq
(1)

C ℓ
u

95% CL, Λ = 1 TeV , 7d fit

LHeC1 LHeC2

Luminosity increase: 

2 to 5 and 3 to 6

Beam polarized from

unpolarized to LH : 


1 to 2
e−

• Shifting from unpolarized to LH 
electrons can lead to more 
distinguishable improvements than 
increasing luminosity.

LHeC1: 60 GeV × 1000 GeV e−p, Pℓ = 0 % , ℒ = 100 fb−1

LHeC2: 60 GeV × 7000 GeV e−p, Pℓ = − 80 % , ℒ = 100 fb−1

• Converting from low- to high-luminosity 
 collisions can improve the bounds in 

a noticeable manner; however, the 
improvements are not sharp.

e−p
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LHeC1 LHeC7
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LHeC3 LHeC4

Luminosity increase: 

2 to 5 and 3 to 6

Beam polarized from

Unpolarized to LH : 


1 to 2
e−

Lepton species

from  to :


1 to 7 and 3 to 4
e− e+

• The most drastic improvements on 
the bounds occur when we change 
lepton species from electrons to 
positrons. LHeC1: 60 GeV × 1000 GeV e−p, Pℓ = 0 % , ℒ = 100 fb−1

LHeC7: 60 GeV × 7000 GeV e+p, Pℓ = 0 % , ℒ = 100 fb−1

LHeC3: 60 GeV × 7000 GeV e−p, Pℓ = + 80 % , ℒ = 30 fb−1

LHeC4: 60 GeV × 7000 GeV e+p, Pℓ = + 80 % , ℒ = 10 fb−1
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• Converting from low- to high-luminosity 
 collisions can improve the bounds in 

a noticeable manner; however, the 
improvements are not sharp.

e−p

• Shifting from unpolarized to LH 
electrons can lead to more 
distinguishable improvements than 
increasing luminosity.



Joint LHeC run

• Join all 7 LHeC runs with nontrivial correlations.


• We assume only a subset of correlated uncertainties of individual data sets are 
correlated between runs:


• lepton energy scale and polar angle, hadron energy scale, radiative corrections, 
global efficiency, calorimetry noise, luminosity, and PDF errors


• photoproduction is excluded because said background consists of different 
events for each run; therefore, if we run an experiment multiple times, number of 
background events fluctuates without any correlations.
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 function for the  run: 


 function for the joint run: 


where





,     





with  the same as for a single run defined before but with photoproduction errors 
removed.

χ2 nth χ2
n = (LHeCn) (En)−1 (LHeCn)

χ2 χ2 = (LHeC1 ⋯ LHeC7)
E1 ⋯ J17
⋮ ⋱ ⋮

J71 ⋯ E7

−1
LHeC1

⋮
LHeC7

Jnn′￼
= Jexp,nn′￼

+ Jpdf,nn′￼

Jexp,nn′￼,bb′￼
= ρnn′￼,bb′￼

δ̃σn,cor,b δ̃σn′￼,cor,b′￼
ρnn′￼,bb′￼

= 1

Jpdf,nn′￼,bb′￼
=

1
Npdf

Npdf

∑
m=1

(σn,m,b − σn,0,b)(σn′￼,m,b′￼
− σn′￼,0,b′￼

)

δ̃σn,cor,b
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Ceu Ced Cℓq
(1) Cℓq

(3) Cℓu Cℓd Cqe

-2

-1

0

1

2
Ck at 95% CL, Λ = 1 TeV , 7d fit

P4 LHeC2 LHeC3 LHeC4 LHeC5 LHeC6 LHeC7 Joint LHeC

• Allowed bound from the joint run is significantly more restricting than the weakest 
LHeC set for any Wilson coefficient.


• Nonetheless, it is comparable to the strongest LHeC data set.

Strongest EIC, strongest and weakest LHeC, and the joint LHeC for each Wilson coefficient:
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Strongest EIC, strongest and weakest LHeC, and the joint LHeC for each Wilson coefficient:

• UV scales present a clearer picture of comparison.


• In a joint run, the LHeC can probe UV scales beyond 15 TeV.


• Compared to the strongest LHeC run, UV scales that can be probed get deeper by 20 to 30%.

Ceu Ced Cℓq
(1) Cℓq

(3) Cℓu Cℓd Cqe
0

5

10

15

Λ/ Ck at 95% CL, 7d fit

P4 LHeC2 LHeC3 LHeC4 LHeC5 LHeC6 LHeC7 Joint LHeC
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Two strongest LHeC sets and the joint fit for double Wilson coefficient:

• The joint fit seems to offer bounds just comparable to the strongest LHeC run in  parameter subspaces. 
Its real power emerges in  parameter subspaces.


• Constraints are highly restricting and correlations are different than those of the two strongest LHeC sets.

1d
2d
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Two strongest LHeC sets and the joint fit for double Wilson coefficients:

• The joint fit still offers considerably stronger bounds.


• It may not always yield remarkably distinct correlations than the individual runs.
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Flat-direction analysis
SMEFT part of unpolarized hadronic cross section:





Set SMEFT contributions equal to zero to investigate blind spots.


Two structures,  and , and two types of quarks,  and   four equations  number of free Wilson 
coefficients becomes .


We focus on four different bases spanned by free Wilson coefficients:


• Basis 1:   all LH quarks


• Basis 2:   all RH leptons


• Basis 3:   all LH leptons with a focus on the up-quark channel


• Basis 4:  all LH leptons with a focus on the down-quark channel

d2σℓH(λℓ)
dx dQ2

⊃ ∑
q

1
2

d2σγ×+Z×
ℓq (λℓ, λH = 1)

dx dQ2
+

d2σγ×+Z×
ℓq (λℓ, λH = − 1)

dx dQ2
fq/H

1 (1 − y)2 ui di ⇒ ⇒
7 − 4 = 3

{C(1)
ℓq , C(3)

ℓq , Cqe} ⇒

{Ceu, Ced, Cqe} ⇒

{C(1)
ℓq , C(3)

ℓq , Cℓu} ⇒

{C(1)
ℓq , C(3)

ℓq , Cℓd}⇒
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Flat directions defined by these relations are only approximate due to the energy-
dependent eta factors:





They become exact only in the limit . Thus, we assume


ηγηZ =
GFM2

Z

2 2πα

Q2

Q2 + M2
Z

Q2/M2
Z → ∞

ηγηZ ≈
GFM2

Z

2 2πα

Examples to flat-direction relations:
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Examples to flat-direction relations:

Moreover, the LHeC runs have only very specific polarization values: 


• Case 1: Unpolarized leptons, : LHeC1 and 7


• Case 2: RH/LH electrons/positrons, : LHeC2, 4, and 5


• Case 3: LH/RH electrons/positrons, : LHeC3 and 6 


Shown data sets are in each case are enforced to exhibit flat directions. 


We want to see if the EIC can resolve these blind spots; therefore, we now include 
other EIC sets in our comparison, as well.

Pℓ = 0

Pℓ = ± 80 %

Pℓ = ∓ 80 %
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D4 P4
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7
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50

Basis 1 Case 2, Λ/ Cℓq
(3) at 95% CL, 3d fit

Pℓ  -80 %, Ce u ≈ -13 Cℓ q
(1) - Cℓ q

(3), Cℓ u ≈ -0.052 Cq e, Ce d ≈ -22 Cℓ q
(1) + Cℓ q

(3), Cℓ d ≈ 0.12 Cq e

D4 P4
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LHeC

7
0
5

10
15
20
25
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35

Basis 2 Case 3, Λ/ Ceu at 95% CL, 3d fit
Pℓ  +80 %, Cℓ q

(1) ≈ -1.9 Ce d - 3.1 Ce u, Cℓ q
(3) ≈ -1.9 Ce d + 3.1 Ce u, Cℓ u ≈ -4.2 Cq e, Cℓ d ≈ 10 Cq e

D4 P4
ΔD

4
ΔP

4
LHeC

1
LHeC

2
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3
LHeC

4
LHeC

5
LHeC

6
LHeC

7
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15

Basis 3 Case 1, Λ/ Cℓq
(3) at 95% CL, 3d fit

Pℓ  0, Ce u ≈ -1.4 Cℓ q
(1) - Cℓ q

(3), Ce d ≈ -2.4 Cℓ q
(1) + Cℓ q

(3), Cℓ d ≈ -2.4 Cℓ u, Cq e ≈ -2.1 Cℓ u
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Basis 4 Case 2, Λ/ Cℓq
(3) at 95% CL, 3d fit

Pℓ  -80 %, Ce u ≈ -13 Cℓ q
(1) - Cℓ q

(3), Ce d ≈ -22 Cℓ q
(1) + Cℓ q

(3), Cℓ u ≈ -0.42 Cℓ d, Cq e ≈ 8.1 Cℓ d

LHeC2, 4, and 5 are forced

to exhibit blind spots. 

LHeC3 and 6 are forced

to exhibit blind spots. 

LHeC1 and 7 are forced

to exhibit blind spots. 

LHeC2, 4, and 5 are forced

to exhibit blind spots. 

We indeed observe weaker constraints or diminished UV probes in the expected cases of flat directions. The 
good news is, other LHeC runs seem promising in resolving these blind spots; in fact, LHeC3 and LHeC6 
appear highly enthusiast to in most cases.


However, the four strongest EIC data sets can barely compete in resolving degeneracies with LHeC runs that 
survive flat-direction conditions. 56



Extended parameter space

• Turn on Wilson coefficients in the  sector now.


• Purpose is to see if the LHeC can resolve the degeneracies observed the EWPO fits.


• 9 operators shifting the  vertices  16 fitted parameters now. 

ffV

ffV ⇒
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[1909.02000] [2012.02779]

 fit to 

joint LHeC runs

16d  global fit to EW,

diboson, Higgs, and top 

data

34d

Joint LHeC Dawson's Mimasu's
CφWB [-0.020, 0.020] [-0.0088, 0.0013] [-0.0043, 0.0026]
CφD [-0.030, 0.030] [-0.025, 0.0019] [-0.023, 0.0027]
Cφℓ

(3) [-0.067, 0.067] [-0.012, 0.0029] [-0.01, 0.003]
Cφℓ

(1) [-0.067, 0.067] [-0.0043, 0.012] [-0.0044, 0.013]
Cφe [-0.11, 0.11] [-0.013, 0.0094] [-0.015, 0.0071]
Cφq

(3) [-0.080, 0.080] [-0.011, 0.014] [-0.017, 0.012]
Cφq

(1) [-0.16, 0.16] [-0.027, 0.043] [-0.1, 0.14]
Cφd [-0.22, 0.22] [-0.16, 0.060] [-0.13, 0.071]
Cφu [-0.091, 0.091] [-0.072, 0.091] [-0.075, 0.073]

 CL bounds in single-parameter fits at 95 % Λ = 1 TeV

 global fit to  and  

pole observables

9d Z W

EWPO fits better constrain the relevant

Wilson coefficients in the  sector

in single-parameter fits.


Shown bounds are for single Wilson

coefficients activated one at a time.

ffV

Comments on actual fits:
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Comparison of double-parameter fits:
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ℓ(3
)

95% CL at Λ = 1 TeV

LHeC5 LHeC6 Joint LHeC EWPO

Comments:


• Shown are the non-marginalized ellipses.


(Only 2 Wilson coefficients are activated at a time.)


• EWPO fits are adapted from [Mimasu et al. 2012.02779].
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Resolution of flat directions observed in EWPO fits:

Comments:


• Shown are the non-marginalized ellipses. (Only 2 Wilson coefficients are activated at a time.)


• EWPO fits are adapted from [Mimasu et al. 2012.02779].
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Coda



• We have studied the BSM potential of the EIC and LHeC to NLO QCD within the model-
independent framework of the SMEFT.


• We have focused on the semi-leptonic 4-fermion operators first and then extended our parameter 
space to include the SMEFT  corrections, all at dimension 6. 


• We have found that


• the EIC can probe UV scales  and the LHeC  and even  with a 
joint fit;


• the bounds from the EIC may barely compete with the ones from the LHeC; nevertheless, they 
lead to distinct correlations, indicating complementarity; 


• both the EIC and LHeC can strongly resolve degeneracies observed in the LHC NC Drell-Yan fits;


• one LHeC fit may suffer from blind spots itself, but another LHeC fit or even the EIC resolves it;


• the LHeC seems promising in resolving flat directions observed in the  sector in the EWPO fits.

ffV

∼ 2 TeV > 10 TeV > 15 TeV

ffV

Conclusion
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• Promotion of the EIC data sets to include SMEFT  corrections (in progress)


• Upgrade of both EIC and LHeC to include dimension-8 SMEFT operators


• 54 operators but not all independent


• Vertex factors already extracted


• A possible LanHEP code to more systematically obtain Feynman rules, allowing one to 
channel them into FeynArts directly


• EW corrections to study HERA data


• Switching from Mathematica to a faster language and writing a comprehensive package 
for cross sections

ffV

Outlook
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