Precision Phenomenology and New Physics Probes at Future Colliders

Dissertation Talk

Kaan Şimşek

Committee members: John Joseph M. Carrasco André Luiz de Gouvêa Francis John Petriello

June 16, 2025

Prelude

Particle physics at a crossroads in the quest to uncover physics beyond the Standard Model.

Particle physics at a crossroads in the quest to uncover physics beyond the Standard Model.

Standard Model:

- Successfully describing known particles and their interactions
- Complete spectrum with the discovery of Higgs in 2012
- No conclusive evidence for new particles

No clear new signals

 $m_{
m LHC}$

collider energy

No clear new signals \Rightarrow new physics must be heavy, $\Lambda > m_{LHC}$, or weakly coupled, hiding subtly within precise measurements

- \Rightarrow precision pheno is a powerful approach to indirectly probe new physics
- \Rightarrow need for bigger machines with utmost precision

No clear new signals \Rightarrow new physics must be heavy, $\Lambda > m_{LHC}$, or weakly coupled, hiding subtly within precise measurements

 \Rightarrow precision pheno is a powerful approach to indirectly probe new physics

 \Rightarrow need for bigger machines with utmost precision

Precision in what?

Deep inelastic scattering (DIS)

Lepton-hadron collisions: clean QED probe of nucleon structure

Kinematics reconstructable from scattered lepton

Access to PDFs, spin structure, and EW couplings

Historically: HERA $(e^-p, 1991-2007)$

Future: EIC, LHeC, FCC-eh

Deep inelastic scattering (DIS)

Lepton-hadron collisions: clean QED probe of nucleon structure

Kinematics reconstructable from scattered lepton

Access to PDFs, spin structure, and EW couplings

Historically: HERA (e^-p) , 1991-2007)

Future: EIC, LHeC, FCC-eh

Drell-Yan (DY) lepton pairs via virtual γ/Z Simple final state with high very high energies at LHC and HL-LHC kinematic distributions

- Hadron-hadron collisions producing
- precision in dilepton invariant mass
- Clean probe of EW interactions at
- Backbone of precision measurements
- Sensitive to small deviations in

Deep inelastic scattering (DIS)

Lepton-hadron collisions: clean QED probe of nucleon structure

Kinematics reconstructable from scattered lepton

Access to PDFs, spin structure, and EW couplings

Historically: HERA (e^-p) , 1991-2007)

Future: EIC, LHeC, FCC-eh

Drell-Yan (DY) lepton pairs via virtual γ/Z Simple final state with high precision in dilepton invariant mass very high energies at LHC and HL-LHC kinematic distributions

- Hadron-hadron collisions producing
- Clean probe of EW interactions at
- Backbone of precision measurements
- Sensitive to small deviations in

We consider DY+jet (DYj)!

$pp \rightarrow j\gamma/Z^* \rightarrow je^-e^+$

Deep inelastic scattering (DIS)

Lepton-hadron collisions: clean QED probe of nucleon structure

Kinematics reconstructable from scattered lepton

Access to PDFs, spin structure, and EW couplings

Historically: HERA (e^-p) , 1991-2007)

Future: EIC, LHeC, FCC-eh

Drell-Yan (DY) lepton pairs via virtual γ/Z Simple final state with high very high energies at LHC and HL-LHC kinematic distributions

- Hadron-hadron collisions producing
- precision in dilepton invariant mass
- Clean probe of EW interactions at
- Backbone of precision measurements
- Sensitive to small deviations in

e^+e^- annihilation

Point-like initial state with tunable energy and beam polarization No hadronic initial-state uncertainties Precision measurements of Z, W,Higgs, and top properties Legacy: LEP, SLD

Future: FCC-ee

Ideal environment for ultra-clean EW physics

Electron-Ion Collider

- At Brookhaven National Lab (BNL), NY
- First ever dedicated *e*⁻*A* collider in the USA
- Both beams polarized:
 - Electrons: 85% at the source, 70% in the ring
 - Ions: up to 70% for light nuclei
- Approved by DOE in 2020
- Construction starting at the end of 2025
- First collisions expected in early 2030s

• Collides polarized e⁻ with protons and light/heavy ions: ¹H, ²H, ³He, ⁴He, ¹⁹⁷Au, ²³⁸U

Electron-Ion Collider

- Electron beam: up to 18 GeV
- Proton beam: up to 275 GeV, heavier ions ≤ 137 GeV
- $\sqrt{s} = 20$ to 140 GeV
- Luminosity: 100 fb⁻¹/yr (~1000× HERA)
- Reuses RHIC tunnel (3.9 km); new electron ring added
- Physics goals:
 - 3D imaging of nucleon structure
 - Gluon saturation, small-x dynamics
 - Precision electroweak observables in polarized DIS
 - Strong constraints on PDFs \Rightarrow improves precision at all colliders

Large Hadron-electron Collider

- Proposed upgrade to LHC
- Adds a 60-GeV e⁻ beam in a new energy recovery linac
- Uses existing LHC 7-TeV proton beam
- First discussed in 1984 (LEP-LHC); LHeC study launched in 2007 • Conceptual design completed in 2011
- Awaiting approval; timeline tied to LHC Long Shutdown 3
- If approved, installation during 2026-2027
- Potential operation along side HL-LHC (Run 4) around 2027-2030

Large Hadron-electron Collider

- Electron beam: 60 GeV
- Proton beam: 7 TeV
- $\sqrt{s} = 1.3$ TeV
- Luminosity: 10 fb⁻¹/yr
- Polarization: Electron beam only, 80%
- Physics goals:
 - Extend PDFs to high x and high Q
 - Precision Higgs, W, and top studies in clean environment
 - Explore electroweak structure at high energies via DIS

- Strong complement to LHC measurements, especially for BSM effects in leptonic channels

Future Circular Collider

- CERN-led long-term project for post-LHC colliders
- 91 km tunnel near Geneva; staged operation plan
- Feasibility report published May 2025
- Approval decision expected around 2027-2028
- FCC-ee: starts around 2045, runs for 15 years
- FCC-hh: follows in 2070s, 100 TeV pp collider
- FCC-eh: operates concurrently with FCC-ee
- Shared infrastructure between e^+e^- , pp, and e^-p modes

Future Circular Collider

FCC-ee (lepton mode):

- threshold (365 GeV)
- Luminosity: 10 ab⁻¹/stage
- Transverse beam polarization at low energies; longitudinal optional ($\geq 40\%$)
- Goals: ultra-precise Z, W, Higgs, and top studies FCC-eh (lepton-proton mode):
- 60 GeV × 50 TeV e^-p collisions, $\sqrt{s} = 3.5$ TeV
- Luminosity: 100 fb⁻¹/yr
- Electron beam polarized (80%); proton beam unpolarized
- Goals: PDFs at extreme x and Q, electroweak couplings

• e^+e^- collisions at Z pole (91 GeV), WW threshold (160 GeV), Higgsstrahlung peak (240 GeV), $t\bar{t}$

High-Luminosity LHC

- \bullet Next-phase pp program at CERN
- Builds on current LHC, extending to around 2039
- Designed for 10× integrated luminosity: 3 ab^{-1} at 14 TeV
- Detector upgrades, improved pileup mitigation
- Focus on rare SM processes, precision, and discovery
- Major input for global fits and new physics searches

High-Luminosity LHC

- $\sqrt{s} = 14 \text{ TeV}$
- Luminosity: 3 ab^{-1} (total)
- \bullet Unpolarized pp beams
- Physics goals:
 - Precision measurements in high-mass Drell-Yan $(m_{\ell\ell}\gg m_Z)$
 - Constraints on vector boson scattering, contact interactions
 - High-statistics studies of Higgs, top, Z/W
 - Direct searches and indirect probes via tail distributions

Kinematic coverage

Toolbox

 $C_{k}^{(n)}$ as effective couplings:

$$\mathscr{L} = \mathscr{L}_{\text{SM}} + \sum_{n>4} \frac{1}{\Lambda^{n-4}} \sum_{k} C_k^{(n)} O_k^{(n)}$$

Model-independent extension of the SM Lagrangian with higher-dimensional operators $O_{k}^{(n)}$ built up of SM fields at an energy scale Λ heavier than all SM fields and beyond accessible collider energy, introducing Wilson coefficients

 $C_{k}^{(n)}$ as effective couplings:

$$\mathscr{L} = \mathscr{L}_{\text{SM}} + \sum_{n>4} \frac{1}{\Lambda^{n-4}} \sum_{k} C_k^{(n)} O_k^{(n)}$$

Focus on n = 6 for DIS \implies Operators with two leptons, two quarks \blacktriangleright First leading contribution at dimension 6

Model-independent extension of the SM Lagrangian with higher-dimensional operators $O_{k}^{(n)}$ built up of SM fields at an energy scale Λ heavier than all SM fields and beyond accessible collider energy, introducing Wilson coefficients

 $C_{k}^{(n)}$ as effective couplings:

$$\mathscr{L} = \mathscr{L}_{SM} + \sum_{n>4} \frac{1}{\Lambda^{n-4}} \sum_{k} C_k^{(n)} O_k^{(n)}$$

25

Model-independent extension of the SM Lagrangian with higher-dimensional operators $O_{k}^{(n)}$ built up of SM fields at an energy scale Λ heavier than all SM fields and beyond accessible collider energy, introducing Wilson coefficients

- Focus on n = 6 for DIS and n = 8 for DY $j \Rightarrow$ Operators with two leptons, two quarks, one gluon
 - \implies We want $p_T(\ell\ell) = p_T(V) = p_T(g)$ bins
 - \implies gluon field strength \therefore dimension 8

 $C_{k}^{(n)}$ as effective couplings:

$$\mathscr{L} = \mathscr{L}_{\text{SM}} + \sum_{n>4} \frac{1}{\Lambda^{n-4}} \sum_{k} C_k^{(n)} O_k^{(n)}$$

Model-independent extension of the SM Lagrangian with higher-dimensional operators $O_{k}^{(n)}$ built up of SM fields at an energy scale Λ heavier than all SM fields and beyond accessible collider energy, introducing Wilson coefficients

Focus on n = 6 for DIS and n = 8 for DY *j*. Restrict to leading order SMEFT.

SMEFT contributions to DIS:

Semi-leptonic four-fermion operators:

$$O_{XY} = [\bar{\ell}\gamma^{\mu}P_X\ell][\bar{q}\gamma_{\mu}P_Yq]$$

For nontrivial SM-SMEFT interference, we need helicity-preserving currents.

SMEFT contributions to DIS:

SM vertices are shifted in a gauge-invariant manner. $_{28}$

Semi-leptonic four-fermion operators:

$$O_{XY} = [\bar{\ell}\gamma^{\mu}P_X\ell][\bar{q}\gamma_{\mu}P_Yq]$$

For nontrivial SM-SMEFT interference, we need helicity-preserving currents.

Corrections to ffV vertices:

$$V^{\mu} = V^{\mu}_{\rm SM} \left(1 + \sum_{k} C_{k} V_{k} \right)$$

SMEFT contributions to DIS:

$$\begin{split} ffV & \text{semi-leptonic four-fermion}\\ O_{\varphi WB} &= (\varphi^{\dagger}\tau^{I}\varphi)W_{\mu\nu}^{I}B^{\mu\nu} & O_{\ell q}^{(1)} &= (\bar{\ell}\gamma^{\mu}\ell)(\bar{q}\gamma_{\mu}q) \\ O_{\varphi D} &= (\varphi^{\dagger}D^{\mu}\varphi)^{*}(\varphi^{\dagger}D_{\mu}\varphi) & O_{\ell q}^{(1)} &= (\bar{\ell}\gamma^{\mu}\tau^{I}\ell)(\bar{q}\gamma_{\mu}\tau^{i}q) \\ O_{\varphi \ell}^{(1)} &= (\varphi^{\dagger}i\stackrel{\leftrightarrow}{D}{}^{\mu}\varphi)(\bar{\ell}\gamma_{\mu}\ell) & O_{eu} &= (\bar{e}\gamma^{\mu}e)(\bar{u}\gamma_{\mu}u) \\ O_{\varphi \ell}^{(3)} &= (\varphi^{\dagger}i\stackrel{\leftrightarrow}{D}{}^{\mu}\varphi)(\bar{\ell}\gamma_{\mu}\tau^{I}\ell) & O_{ed} &= (\bar{e}\gamma^{\mu}e)(\bar{d}\gamma_{\mu}d) \\ O_{\varphi e} &= (\varphi^{\dagger}i\stackrel{\leftrightarrow}{D}{}^{\mu}\varphi)(\bar{e}\gamma_{\mu}e) & O_{\ell u} &= (\bar{\ell}\gamma^{\mu}\ell)(\bar{u}\gamma_{\mu}u) \\ O_{\varphi q}^{(1)} &= (\varphi^{\dagger}i\stackrel{\leftrightarrow}{D}{}^{\mu}\varphi)(\bar{q}\gamma_{\mu}q) & O_{\ell d} &= (\bar{\ell}\gamma^{\mu}\ell)(\bar{d}\gamma_{\mu}d) \\ O_{\varphi q}^{(3)} &= (\varphi^{\dagger}i\stackrel{\leftrightarrow}{D}{}^{\mu}\varphi)(\bar{q}\gamma_{\mu}\tau^{I}q) & O_{qe} &= (\bar{e}\gamma^{\mu}e)(\bar{q}\gamma_{\mu}q) \\ O_{\varphi u} &= (\varphi^{\dagger}i\stackrel{\leftrightarrow}{D}{}^{\mu}\varphi)(\bar{u}\gamma_{\mu}u) \\ O_{\varphi u} &= (\varphi^{\dagger}i\stackrel{\leftrightarrow}{D}{}^{\mu}\varphi)(\bar{d}\gamma_{\mu}d) & O_{qe} &= (\bar{e}\gamma^{\mu}e)(\bar{q}\gamma_{\mu}q) \\ O_{\ell \ell} &= (\bar{\ell}\gamma^{\mu}\ell)(\bar{\ell}\gamma_{\mu}\ell) & \end{split}$$

SMEFT contributions to DY*j*:

Semi-leptonic four-fermion operators coupled to gluon field strength tensor:

$$O_{XYg} = [\bar{\ell}\gamma^{\mu}P_{X}\ell][\bar{q}\gamma^{\nu}P_{Y}T^{A}q]G^{A}_{\mu\nu}$$
$$\tilde{O}_{XYg} = [\bar{\ell}\gamma^{\mu}P_{X}\ell][\bar{q}\gamma^{\nu}P_{Y}T^{A}q]\tilde{G}^{A}_{\mu\nu}$$

SMEFT contributions to DY*j*:

CP-even		CP-odd	
$\widetilde{O}^{(1)}_{\ell^2 q^2 g}$	$(\bar{\ell}\gamma^{\mu}\ell)(\bar{q}\gamma^{\nu}T^{a}q)\widetilde{G}^{a}_{\mu\nu}$	$O^{(1)}_{\ell^2 q^2 g}$	$(\bar{\ell}\gamma^{\mu}\ell)(\bar{q}\gamma^{\nu}T^{a}q)G$
$\widetilde{O}^{(3)}_{\ell^2 q^2 g}$	$\left(\bar{\ell}\tau^{i}\gamma^{\mu}\ell)(\bar{q}\tau^{i}\gamma^{\nu}T^{a}q)\widetilde{G}^{a}_{\mu\nu}\right)$	$O_{\ell^2 q^2 g}^{(3)}$	$\left (\bar{\ell}\tau^i\gamma^\mu\ell)(\bar{q}\tau^i\gamma^\nu T^a q) \right $
$\widetilde{O}_{e^2u^2g}$	$(\overline{e}\gamma^{\mu}e)(\overline{u}\gamma^{\nu}T^{a}u)\widetilde{G}^{a}_{\mu u}$	$O_{e^2u^2g}$	$(\overline{e}\gamma^{\mu}e)(\overline{u}\gamma^{\nu}T^{a}u)G$
$\widetilde{O}_{e^2d^2g}$	$(\overline{e}\gamma^{\mu}e)(\overline{d}\gamma^{\nu}T^{a}d)\widetilde{G}^{a}_{\mu u}$	$O_{e^2d^2g}$	$(\overline{e}\gamma^{\mu}e)(\overline{d}\gamma^{\nu}T^{a}d)G$
$\widetilde{O}_{\ell^2 u^2 g}$	$(\overline{\ell}\gamma^{\mu}\ell)(\overline{u}\gamma^{\nu}T^{a}u)\widetilde{G}^{a}_{\mu\nu}$	$O_{\ell^2 u^2 g}$	$(\overline{\ell}\gamma^{\mu}\ell)(\overline{u}\gamma^{\nu}T^{a}u)G$
$\widetilde{O}_{\ell^2 d^2 g}$	$(\overline{\ell}\gamma^{\mu}\ell)(\overline{d}\gamma^{\nu}T^{a}d)\widetilde{G}^{a}_{\mu\nu}$	$O_{\ell^2 d^2 g}$	$(\overline{\ell}\gamma^{\mu}\ell)(\overline{d}\gamma^{\nu}T^{a}d)G$
$\widetilde{O}_{q^2e^2g}$	$(\overline{e}\gamma^{\mu}e)(\overline{q}\gamma^{\nu}T^{a}q)\widetilde{G}^{a}_{\mu\nu}$	$O_{q^2e^2g}$	$(\overline{e}\gamma^{\mu}e)(\overline{q}\gamma^{\nu}T^{a}q)G$

All SMEFT observables \mathcal{O} are linearized in SMEFT parameters. XSection:

$$\sigma = F \int |\mathscr{A}|^2 \, \mathrm{dLIPS} = \sigma_{\mathrm{SM}} + \sum_k C_k \sigma_k$$

Asymmetry:

A = ratio of polarized to unj

polarized x
section
$$= A_{\text{SM}} + \sum_{k} C_k A_k$$

Statistical analysis

A standard χ^2 test function:

$$\chi^2 = \sum_{bb'} (\mathcal{O} - \mathcal{O}^{(p)})_b \mathcal{H}_{bb'} (\mathcal{O} - \mathcal{O}^{(p)})_{b'}$$

 \mathcal{O} : SMEFT observable/model, $\mathcal{O}^{(p)}$: pseudodata, \mathcal{H} : inverse uncertainty matrix $\mathcal{O}_{b}^{(p)} = \mathcal{O}_{b}^{\text{SM}} + r_{b} \,\delta\mathcal{O}_{b}^{\text{uncorr}} + \sum r'_{j} \,\delta\mathcal{O}_{b}^{\text{corr}_{j}}, \quad r_{b}, r'_{j} \sim \mathcal{N}(0, 1)$

Statistical analysis

A standard χ^2 test function:

$$\chi^2 = \sum_{bb'} (\mathcal{O} - \mathcal{O}^{(p)})_b \mathcal{H}_{bb'} (\mathcal{O} - \mathcal{O}^{(p)})_{b'}$$

Various experimental uncertainty components: EIC: statistical; uncorrelated systematic; fully correlated beam polarization or luminosity LHeC/FCC-eh: statistical; global efficiency; fully correlated systematic (lepton energy and polar angle; hadron energy; radiative corrections; photoproduction background; calorimetry noise; luminosity) HL-LHC: statistical

 \mathcal{O} : SMEFT observable/model, $\mathcal{O}^{(p)}$: pseudodata, \mathcal{H} : inverse uncertainty matrix $\mathcal{O}_{b}^{(p)} = \mathcal{O}_{b}^{\text{SM}} + r_{b} \,\delta\mathcal{O}_{b}^{\text{uncorr}} + \sum r'_{j} \,\delta\mathcal{O}_{b}^{\text{corr}_{j}}, \quad r_{b}, r'_{j} \sim \mathcal{N}(0, 1)$

Statistical analysis

A standard χ^2 test function:

$$\chi^2 = \sum_{bb'} (\mathcal{O} - \mathcal{O}^{(p)})_b \mathcal{H}_{bb'} (\mathcal{O} - \mathcal{O}^{(p)})_{b'}$$

Best-fit values:

Fisher information matrix:

 \mathcal{O} : SMEFT observable/model, $\mathcal{O}^{(p)}$: pseudodata, \mathcal{H} : inverse uncertainty matrix $\mathcal{O}_{b}^{(p)} = \mathcal{O}_{b}^{\text{SM}} + r_{b} \,\delta\mathcal{O}_{b}^{\text{uncorr}} + \sum r'_{j} \,\delta\mathcal{O}_{b}^{\text{corr}_{j}}, \quad r_{b}, r'_{j} \sim \mathcal{N}(0, 1)$

 $\nabla \gamma^2(\hat{\mathbf{C}}) = 0$

• Neutral-current parity-violating DIS asymmetries at EIC:

- Neutral-current parity-violating DIS asymmetries at EIC:
 - Semi-leptonic four-fermion operators $O_{XY} = [\bar{\ell}\gamma^{\mu}P_X\ell][\bar{q}\gamma_{\mu}P_Yq]$

OIS asymmetries at EIC: rators $O_{XY} = [\bar{\ell}\gamma^{\mu}P_X\ell][\bar{q}\gamma_{\mu}P_Yq]$

- Neutral-current parity-violating DIS asymmetries at EIC:
 - Semi-leptonic four-fermion operators $O_{XY} = [\bar{\ell}\gamma^{\mu}P_X\ell][\bar{q}\gamma_{\mu}P_Yq]$
 - parameters

- Simultaneous fits with beam polarization and luminosity difference

- Neutral-current parity-violating DIS asymmetries at EIC:
 - Semi-leptonic four-fermion operators $O_{XY} = [\bar{\ell}\gamma^{\mu}P_X\ell][\bar{q}\gamma_{\mu}P_Yq]$
 - Simultaneous fits with beam polarization and luminosity difference parameters
 - Resolve flat directions in neutral-current DY at the LHC

• Neutral-current parity-violating DIS asymmetries at EIC:

D4: 10 GeV × 137 GeV e^-D , 100 fb⁻¹

P4: 10 GeV × 275 GeV e^-p , 100 fb⁻¹

LHC: 8 TeV, 20 fb^{-1} , not 13 TeV and HL, adapted from Boughezal+[2104.03979]

- Neutral-current parity-violating DIS asymmetries at EIC: - Semi-leptonic four-fermion operators $O_{XY} = [\bar{\ell}\gamma^{\mu}\ell][\bar{q}\gamma_{\mu}q]$ - Simultaneous fits with beam polarization and luminosity difference

 - parameters

 - Resolve flat directions in neutral-current DY at the LHC - Effective UV scales 1 to 4 TeV in single Wilson coefficient fits

xsection at LHeC and FCC-eh with NLO QCD corrections:

• Neutral-current parity-violating DIS asymmetries at EIC + polarized

- Neutral-current parity-violating DIS asymmetries at EIC + polarized xsection at LHeC and FCC-eh with NLO QCD corrections:
 - Semi-leptonic four-fermion operators $O_{XY} = [\bar{\ell}\gamma^{\mu}P_X\ell][\bar{q}\gamma_{\mu}P_Yq]$

- Neutral-current parity-violating DIS asymmetries at EIC + polarized xsection at LHeC and FCC-eh with NLO QCD corrections:
 - Semi-leptonic four-fermion operators $O_{XY} = [\bar{\ell}\gamma^{\mu}P_X\ell][\bar{q}\gamma_{\mu}P_Yq]$
 - Operators modifying *ffV* vertices

- Neutral-current parity-violating DIS asymmetries at EIC + polarized xsection at LHeC and FCC-eh with NLO QCD corrections:
 - Semi-leptonic four-fermion operators $O_{XY} = [\bar{\ell}\gamma^{\mu}P_X\ell][\bar{q}\gamma_{\mu}P_Yq]$
 - Operators modifying *ffV* vertices
 - Resolve flat directions in global EWPO fits

• Neutral-current parity-violating DIS asymmetries at EIC + polarized xsection at LHeC and FCC-eh with NLO QCD corrections:

95% CL, $\Lambda = 1$ TeV, 17 d fit

Effective UV scales, Λ / \sqrt{C} at 95% CL, $\Lambda = 1$ TeV $C^{(3)}_{arphi\ell}$ $C^{(3)}_{\varphi q}$ $C^{(1)}_{arphi\ell}$ $C^{(1)}_{arphi q}$ $C_{\varphi u}$ $C_{\varphi d}$ $C_{\varphi e}$ EWPO Joint LHeC Joint FCCeh Joint EIC

EWPO: 34d fit using Higgs, diboson, top data adapted from Ellis+[2012.02779]

- Angular distribution of $pp \to je^-e^+$ encodes rich structure when written in Collins-Soper (CS) basis.
- The moments A_6 and A_7 are naive *T*-odd.
 - Vanish at tree level in SM
 - Activated at $O(\alpha_s^2)$, or with two or more jets at tree level
- \bullet SMEFT introduces operators that can generate $CP\-$ violating observables.
- No one has looked at this sector at HL-LHC; studies focus on inclusive DY.
- Goal: Use the clean null prediction for A_6 and A_7 in SM to probe new physics with high statistics.

- Process of interest: $pp \rightarrow j\gamma/Z^* \rightarrow je^-e^+$
- Jet enables construction of CS frame

• Process of interest: $pp \rightarrow j\gamma/Z^* \rightarrow je^-e^+$

Semi-leptonic four-fermion operators coupled to gluon field strength tensor:

 $O_{XYg} = [\bar{\ell}\gamma^{\mu}P_X\ell][\bar{q}\gamma^{\nu}P_YT^Aq]G^A_{\mu\nu}$ $\tilde{O}_{XYg} = [\bar{\ell}\gamma^{\mu}P_X\ell][\bar{q}\gamma^{\nu}P_YT^Aq]\tilde{G}^A_{\mu\nu}$

51

XSectio

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega^{\star}} = \frac{3\sigma}{16\pi} \left[1 \right]$$

Angular

on in terms of CS moments:

$$\frac{d\sigma}{d\Omega^{\star}} = \frac{3\sigma}{16\pi} \left[1 + c_{\theta^{\star}}^{2} + \sum_{m=0}^{7} A_{m}Y_{m}(\Omega^{\star}) \right]$$

$$Y_{1} \propto Y_{1}^{1}$$

$$Y_{2} \propto Y_{1}^{1}$$

$$Y_{3} \propto Y_{1}^{1}$$

$$Y_{0} \propto Y_{2}^{0}$$

$$Y_{0} \propto Y_{2}^$$

CS moments:

$$A_{0} = \frac{20}{3} \langle Y_{0} \rangle + \frac{2}{3}, A_{1} = 5 \langle Y_{1} \rangle, A_{2} = 20 \langle Y_{2} \rangle, A_{3} = 4 \langle Y_{3} \rangle, A_{4} = 4 \langle Y_{4} \rangle,$$
$$A_{5} = 5 \langle Y_{5} \rangle, A_{6} = 5 \langle Y_{6} \rangle, A_{7} = 4 \langle Y_{7} \rangle \qquad \qquad \langle Y_{m} \rangle = \frac{\int Y_{m}}{K_{52}}$$

 $\{\tilde{O}_{XYg}\}$: studied with inclusive xsection (Boughezal+ [2207.01703]). Focus on $\{O_{XYg}\}$.

 $\{O_{XYg}\}$: studied with inclusive xsection (Boughezal+ [2207.01703]). Focus on $\{O_{XYg}\}$.

Observables: A_6 and A_7

- A_0 through A_4 are proportional to $\Gamma_Z \Rightarrow$ vanish at high end tail

- A_5 doesn't require Γ_Z but shows strong cancellations due to kinematics

 $\{O_{XYg}\}$: studied with inclusive xsection (Boughezal+ [2207.01703]). Focus on $\{O_{XYg}\}$.

Observables: A_6 and A_7

- A_0 through A_4 are proportional to $\Gamma_Z \Rightarrow$ vanish at high end tail

Observables are linearized:

$$A = N\langle Y \rangle = N \frac{\int Y \, \mathrm{d}\sigma}{\sigma} = \frac{N}{D}$$

- A_5 doesn't require Γ_Z but shows strong cancellations due to kinematics

 $\frac{N_{\rm SM} + \sum_k C_k N_k}{D_{\rm SM} + \sum_k C_k D_k} = A_{\rm SM} + \sum_k C_k A_k$ 55

 $\{O_{XYg}\}$: studied with inclusive xsection (Boughezal+ [2207.01703]). Focus on $\{O_{XYg}\}$.

Observables: A_6 and A_7

- A_0 through A_4 are proportional to $\Gamma_Z \Rightarrow$ vanish at high end tail

Observables are linearized:

$$A = N\langle Y \rangle = N \frac{\int Y \, \mathrm{d}\sigma}{\sigma} = \frac{N}{D}$$

- A_5 doesn't require Γ_Z but shows strong cancellations due to kinematics

 $\frac{N_{\rm SM} + \sum_k C_k N_k}{D_{\rm SM} + \sum_k C_k D_k} = A_{\rm SM} + \sum_k C_k A_k$ 56

57

HL-LHC simulation: $\sqrt{s} = 14$ TeV, L = 3 ab⁻¹ Detector cuts:

- Leading electron: $p_T > 25$ GeV, subleading electron $p_T > 20$ GeV
- Both electrons: $|\eta| < 2.4$
- Jet: $p_T > 30$ GeV, |y| > 2.4
- Jet-electron separation: $\Delta R_{ie} > 0.4$ for all jet-electron pairs
- Dilepton system: $p_T > 100$ GeV, |y| < 2.4

Coarse and fine bins: $300 < m_{\ell\ell} < 2600 \text{ GeV}$, $100 < p_T < 7000 \text{ GeV}$

coarse bins, $\delta \sigma_{\text{stat}}$ [%]

$$\frac{m}{N}\sqrt{\langle Y_m^2 \rangle}, N = \sigma L, \langle Y_m^2 \rangle = \frac{\int Y_m^2 \, \mathrm{d}\sigma}{\sigma}, m = 6,7$$

- Statistical uncertainties: $\delta A_m = \frac{N_m}{\sqrt{\Lambda}}$
- Any relative uncertainty in $\sigma \Rightarrow$ relative uncertainty in $A_m \Rightarrow 0$

$$\frac{m}{N}\sqrt{\langle Y_m^2 \rangle}, N = \sigma L, \langle Y_m^2 \rangle = \frac{\int Y_m^2 \, \mathrm{d}\sigma}{\sigma}, m = 6,7$$

- Statistical uncertainties: $\delta A_m = \frac{N_m}{\sqrt{\Lambda}}$
- Any relative uncertainty in $\sigma \Rightarrow$ relative uncertainty in $A_m \Rightarrow 0$ Theoretical uncertainties:
- PDF variations: Based on SM value of x section $\Rightarrow 0$

$$\frac{m}{N}\sqrt{\langle Y_m^2 \rangle}, N = \sigma L, \langle Y_m^2 \rangle = \frac{\int Y_m^2 \, \mathrm{d}\sigma}{\sigma}, m = 6,7$$

- Statistical uncertainties: $\delta A_m = \frac{N_m}{\sqrt{\Lambda}}$
- Any relative uncertainty in $\sigma \Rightarrow$ relative uncertainty in $A_m \Rightarrow 0$ Theoretical uncertainties:
- PDF variations: Based on SM value of x section $\Rightarrow 0$
- Scale variations: Based on SM value of x section $\Rightarrow 0$

$$\frac{m}{N}\sqrt{\langle Y_m^2 \rangle}, N = \sigma L, \langle Y_m^2 \rangle = \frac{\int Y_m^2 \, \mathrm{d}\sigma}{\sigma}, m = 6,7$$

- Statistical uncertainties: $\delta A_m = \frac{N_m}{\sqrt{N}}$
- Any relative uncertainty in $\sigma \Rightarrow$ relative uncertainty in $A_m \Rightarrow 0$ Theoretical uncertainties:
- PDF variations: Based on SM value of x section $\Rightarrow 0$
- Scale variations: Based on SM value of x section $\Rightarrow 0$
- . We have only statistical uncertainties.

$$\frac{m}{N}\sqrt{\langle Y_m^2 \rangle}, N = \sigma L, \langle Y_m^2 \rangle = \frac{\int Y_m^2 \, \mathrm{d}\sigma}{\sigma}, m = 6,7$$

Error budget:

Bins are sorted by $m_{\ell\ell}$ first and then by p_T .

coarse bins, $\Lambda = 1$ TeV, 95% CL, nonmarginalized

 A_6 fit A_7 fit for $A_6 + A_7$ fit

 A_6 fit A_7 fit 67 combined A_6+A_7 fit

 A_6 fit A_7 fit 68 combined A_6+A_7 fit

Previously unexplored sector of dimension-8 SMEFT:

- Tight bounds $\Rightarrow \Lambda_{\text{eff}} \sim 9$ TeV in single-parameter fits
- Bounds weakened by two orders \Rightarrow strong correlations

Previously unexplored sector of dimension-8 SMEFT:

- Tight bounds $\Rightarrow \Lambda_{\text{eff}} \sim 9$ TeV in single-parameter fits
- Bounds weakened by two orders \Rightarrow strong correlations

Future plans for this work:

- UV matching
- New operators

Probing y_e via transverse spin asymmetries at the FCC-ee
- Measuring this = one of the most precise tests

• Electron Yukawa coupling, $y_e^{\text{SM}} = \frac{\sqrt{2}m_e}{v} \approx 2.9 \times 10^{-9}$, the tiniest in SM

- Electron Yukawa coupling, $y_{\rho}^{SM} =$
- Measuring this = one of the most precise tests
- Bounds from DY at LHC: $|y_e| \le 260 |y_e^{SM}|$ at 2- σ
- Projected bounds from HL-LHC: $|y_e| \ge 120 |y_e^{SM}|$
- Challenging because x section $\propto y_{\rho}^2$

$$\frac{\sqrt{2}m_e}{v} \approx 2.9 \times 10^{-9}$$
, the tiniest in SM

- More direct access at FCC-ee near Higgs resonance, $\sqrt{s} = 125$ GeV
- Most complete analysis of inclusive x section: $|y_e| \le 1.6 |y_e^{\text{SM}}|$ (d'Enterria+ [2107.02686])

- More direct access at FCC-ee near Higgs resonance, $\sqrt{s} = 125$ GeV
- Most complete analysis of inclusive x section: $|y_e| \le 1.6 |y_e^{\text{SM}}|$ (d'Enterria+ [2107.02686]) can't escape y_{ρ}^2 suppression!

- More direct access at FCC-ee near Higgs resonance, $\sqrt{s} = 125$ GeV
- Most complete analysis of inclusive x section: $|y_e| \le 1.6 |y_e^{SM}|$ (d'Enterria+ [2107.02686]) can't escape y_{ρ}^2 suppression!

large EW continuum background!

- A new avenue: transverse spin asymmetries
 - Chiral mass suppression: still an obstacle
 - Arise from Higgs-background interference \therefore linear y_e suppression
 - With a proper weight \Rightarrow can isolate signal from background

- A new avenue: transverse spin asymmetries
 - Chiral mass suppression: still an obstacle
 - Arise from Higgs-background interference \therefore linear y_{ρ} suppression
 - With a proper weight \Rightarrow can isolate signal from background
- Processes of interest:

 $e^+e^- \rightarrow bb$ highest branching ratios $e^+e^- \rightarrow WW \rightarrow \ell \nu j j$ in $e^+e^- \rightarrow h$

- A new avenue: transverse spin asymmetries
 - Chiral mass suppression: still an obstacle
 - Arise from Higgs-background interference \therefore linear y_{ρ} suppression
 - With a proper weight \Rightarrow can isolate signal from background
- Processes of interest:

- Construct asymmetry observables and assess statistical significance.
- Realistic experimental effects: beam energy spread, initial state radiation, optimized kinematic cuts 80
- $e^+e^- \rightarrow b\bar{b}$ highest branching ratios in $e^+e^- \to h$ $e^+e^- \rightarrow WW \rightarrow \ell \nu j j$

$$\sigma^{\lambda\bar{\lambda}} = F \int |\mathscr{A}^{\lambda\bar{\lambda}}|^2 \,\mathrm{dLIPS}$$

electron: transverse polarization positron: longitudinal polarization

$$u_{\lambda}\bar{u}_{\lambda} = (\gamma \cdot p + m)\mathbb{P}_{\lambda}^{+}(S_{T})$$
$$v_{\lambda}\bar{v}_{\lambda} = (\gamma \cdot p - m)\mathbb{P}_{\lambda}^{-}(S_{L})$$
$$\mathbb{P}_{\lambda}^{\pm}(S^{\mu}) = \frac{1 \pm \lambda\gamma_{5}}{2}$$
$$S_{T}^{\mu} = (0, \cos(\varphi), \sin(\varphi), 0)$$

$$S_L^{\mu} = \frac{1}{m} (\left| \vec{p} \right|, E\hat{p})$$

 u_ℓ

l 81

 \mathcal{U}_{f}

 u_ℓ

Asymmetry observables: $A = \frac{N}{D}$ $N = \frac{1}{\Lambda} (\sigma^{++} - \sigma^{+-} - \sigma^{-+} + \sigma^{--}): \text{ double polarization (DP)}$ $N = \frac{1}{2}(\sigma^{+0} - \sigma^{-0}):$ single polarization with unpolarized positron (SP⁰) $N = \frac{1}{2}(\sigma^{++} - \sigma^{-+}):$ single polarization with LH positron (SP⁺) $N = \frac{1}{2}(\sigma^{+-} - \sigma^{--}):$ single polarization with RH positron (SP⁻)

D: same as N with all the contributions added

Asymmetry observables: $A = \frac{N}{D}$ $N = \sum F \int w N^c \, \mathrm{dLIPS},$ c: channels $(h, \gamma, Z, \nu, h\gamma, hZ, h\nu, \gamma Z, \gamma \nu, Z\nu)$

w: angular weight to eliminate interference channels, isolate y_{ρ}

Asymmetry observables:
$$A = \frac{N}{D}$$

 $N = \sum_{c} F \int w N^{c} dLIPS,$

c: channels $(h, \gamma, Z, \nu, h\gamma, hZ, h\nu, \gamma Z, \gamma \nu, Z\nu)$ w: angular weight to eliminate interference channels, isolate y_{ρ} Best angular weight:

 $w = \sin(\varphi)$

 φ : azimuthal angle of b or $W(\ell\nu)$ in the c.m. frame of e^+e^-

Completely isolates y_e in bb, maximally isolates in WW in hZ interference.

Dilution of the signal:

$$\sigma(E_{\text{coll}}) = \int_{-\infty}^{\infty} d\hat{E} \, \frac{dL(E_{\text{coll}}, \hat{E}, \delta)}{d\hat{E}} \int_{0}^{1} d\hat{E}$$
$$\frac{dL(E_{\text{coll}}, \hat{E}, \delta)}{d\hat{E}} = \frac{1}{\sqrt{2\pi\delta^2}} \exp\left[-\frac{(\hat{E} - \delta)}{(1-\delta)^2}\right]$$

 $f(x, \hat{E})$: JWW ISR function

 $dx f(x, \hat{E}) \sigma(\sqrt{x}\hat{E})$

 $E_{\text{coll}} = m_h$ $\delta = \Gamma_h$

Sensitivity estimates:

$$A^{\exp} = \frac{1}{P_{e^-}P_{e^+}} \frac{N_N}{N_D}: \text{ experimental re}$$

 $N_N = \eta LN$, $N_D = \eta LD$: event counts

$$\delta A^{\exp} = \frac{\delta P_{e^-}}{P_{e^-}} A^{\exp} \oplus \frac{\delta P_{e^+}}{P_{e^+}} A^{\exp} \oplus \frac{P_{e^+}}{P_{e^+}} A^{\exp} \oplus \frac{P_{e^+}}{P_{$$

 $P_{\rho^-} = 80\%$, $P_{\rho^+} = 30\%$, 3% relative uncertainties,

 $L = 10 \text{ ab}^{-1}$, $\eta = 80\%$ (100%) for $b\bar{b}$ (WW)

econstruction of asymmetry

 $\frac{1}{P_{e}-P_{e^{+}}\sqrt{N_{D}}}$

Sensitivity estimates:

$$A^{\exp} = \frac{1}{P_{e^-}P_{e^+}} \frac{N_N}{N_D}: \text{ experimental re}$$

 $N_N = \eta LN$, $N_D = \eta LD$: event counts

$$\delta A^{\exp} = \frac{\delta P_{e^-}}{P_{e^-}} A^{\exp} \oplus \frac{\delta P_{e^+}}{P_{e^+}} A^{\exp} \oplus \frac{P_{e^+}}{P_{e^+}} A^{\exp} \oplus \frac{P_{e^+}}{P_{$$

 $P_{\rho^{-}} = 80\%, P_{\rho^{+}} = 30\%, 3\%$ relative uncertainties,

 $L = 10 \text{ ab}^{-1}$, $\eta = 80\%$ (100%) for $b\bar{b}$ (WW)

econstruction of asymmetry

 $\frac{1}{P_{e}-P_{e^{+}}\sqrt{N_{D}}}$

87

 $S = \frac{A \exp}{SA \exp}$

Realistic experimental cuts:

 $5^{\circ} < \theta < 175^{\circ}$ for *bb*

Optimization cuts:

 $m_{\rm inv} > m_h - x\Gamma_h$

39% symmetric cut on $\theta \in [0, 180^\circ]$ for b 28% symmetric cut on $\theta \in [0, 180^\circ]$ for $W(\ell\nu)$

$E_{i_1,i_2} < 52, 45 \text{ GeV}, E_{\ell} > 10 \text{ GeV}, E_{\text{miss}} > 20 \text{ GeV}, m_{\ell\nu} > 12 \text{ GeV}$ for WW

S for $b\overline{b}$

dark: optimization cuts light: no optimization cuts

Yellow line: from inclusive xsection using boosted decision tree analysis to remove background, from d'Enterria+ [2107.02686]

Coda

Summary

- physics?
- machine can.
- testing SMEFT directions beyond the reach of LEP or low-energy DIS.
- couplings like the electron Yukawa.

• Motivation: Can future colliders, via precision observables, reveal or constrain BSM

• Collider diversity = different tools needed for different bolts: Each collider targets a different direction in SMEFT parameter space. Together, they close gaps no single

• DIS (EIC, LHeC, and FCC-eh): Covers distinct kinematic regimes. When combined, they lift flat directions in global fits and set powerful bounds on new interactions.

• DY (HL-LHC): Pushes high invariant mass tails $(m_{\ell\ell} \gg m_Z)$ with enormous statistics,

• e^+e^- (FCC-ee): Precision machine par excellence. Clean initial state. Sensitive to subtle

Summary

What's the point of constraining SMEFT parameters?

- We haven't found new particles yet: New physics must be either too heavy to produce or too weakly coupled to resolve.
- But new physics still leaves footprints: Even if we can't see the particles, we can detect their effect as tiny deviations in precision observables.
- SMEFT is our translator: It tells us how unknown heavy physics would subtly deform SM predictions:
 - Deviations are encoded in Wilson coefficients.
 - Constraining these coefficients = testing every possible UV completion, all at once.

Contributions

Papers:

- arXiv:2204.07557
- **108** (2023) 075007, arXiv:2306.05564
- FCC-ee, Phys. Rev. D **110** (2024) 075026, arXiv:2407.12975
- DY+jet project: in progress

Other publications:

- arXiv:2203.13199
- DIS2023 Proceedings, arXiv:2307.09459

• R. Boughezal, A. Emmert, T. Kutz, S. Mantry, M. Nycz, F. Petriello, K. Şimşek, D. Wiegand, X. Zheng, Neutral-current electroweak physics and SMEFT studies at the EIC, Phys. Rev. D 106 (2022) 016006,

• C. Bissolotti, R. Boughezal, K. Şimşek, SMEFT probes in future precision DIS experiments, Phys. Rev. D

• R. Boughezal, F. Petriello, K. Şimşek, Transverse spin asymmetries and the electron Yukawa coupling at an

• R. Abdul Khalek et al., Snowmass 2021 White Paper: Electron Ion Collider for high energy physics,

• C. Bissolotti, R. Boughezal, K. Şimşek, SMEFT analysis with LHeC, FCC-eh, and EIC DIS pseudodata,

top physics • NLOFCNC top decays andsingle top production• BSM within extradimensional models

top physics • NLOFCNC top decays andsingle top production• BSM within extradimensional models

top physics • NLOFCNC top decays andsingle top production• BSM within extradimensional models

QCD/EW precision pheno • collider physics • BSM within SMEFT

universal packages

> numerical methods statistical analysis machine learning more packages

hadron physics • QCD light-cone sum rules • formfactors and strong couplings

top physics • NLO FCNC top decays and single top production • BSM within extra dimensional models

> universal packages

hadron physics • QCD light-cone sum rules • formfactors and strong couplings

numerical methods statistical analysis machine learning more packages

QCD/EW precision pheno • collider physics • BSM within SMEFT

top physics • single top, top pair, associated top-h/Zproduction • NNLO/ $aN3LO + resummation \bullet$ next-gen CTEQ fits • PDF-SMEFT combined fits

Thank you.