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Abstract
In this paper, we discuss the common problems brought upon by the students for the midterm

of the course Physics 135-2 in the summer quarter of the academic year 2021-2022.
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I. ELECTRIC FIELD CREATED BY A SOLID, CONDUCTING CYLINDER SURROUNDED

BY A CONCENTRIC, NONCONDUCTING CYLINDRICAL SHELL

The problem is given as follows:

FIG. 1.

Nobody asked a question on the details of the calculations regarding the usage of the

Gauss law, so it seems safe to assume that everybody is okay with that. However, there

appears to be a confusion about the last part.

As many of the students indicated, the confusion seems to originate from using a

linear charge density for the conductor and a volumetric charge density for the insulating

shell and the question is why?. The short answer is why not!. It doesn’t matter how you

compute the charge enclosed in a given region as long as you come with the correct

result. A more detailed answer would include the fact that in the insulating shell, the

charge 2Q will be distributed throughout the shell in a uniform manner, covering the
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entire thickness of the shell. Thus, in a way, we have to use the volumetric charge density.

As for the conducting inner core, we know that the charge Q will be distributed only at

the surface defined by r = a, again uniformly. There is no volumetric density to consider

here because it is a surface charge density at best. We may define σ = Q
πa2×L and while

computing the charge enclosed for this part, we will have

qenc = area × surface density = (πr2 × ℓ)× Q
πr2 × L

(1)

which gives the same result as with the linear charge density. There is nothing profound

here.

We suggest that if you have more specific questions about this problem, please contact

the author.

II. ELECTRON BETWEEN TWO CHARGED PARTICLES

The problem is given below:

FIG. 2.

Let’s summarize what’s going on in this problem and leave the algebra to the reader.

We are asked to find the two unknowns, q1 and q2, by using the info regarding the po-

tential at the point where the electron is located and the instantaneous acceleration of the

electron. We have two equations, so it will be an easy task.

Advice: Avoid using numerical values in the analysis and, if the problem does not

tell you to evaluate a quantity at some intermediate point, insert numbers at the very

end. This will help us catch your mistakes, if any, while grading your papers. It is also

beneficial to keep track of variables and perform sanity checks in the middle of calcula-
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tions to see if you forget dividing or multiplying by something by means of, for example,

dimensional analysis. It’s good practice and take this advice seriously.

Let’s start with the potential. We may put the origin on the charge q1. The electron is

supposed to accelerate, so we want to avoid such an accelerating reference frame. Sup-

pose we align the positive x axis toward q2 from there. Then, the x-component of the

position of the particles are

x1 = 0, xe =
d
2

, x2 = d (2)

The potential at the midpoint between q1 and q2 due to said charges is

Ve =
kq1

d
2

+
kq2

d
2

= +
2k|q1|

d
− 2k|q2|

d
(3)

where we emphasized the sign of the charges. This gives a relation in terms of q1 and q2:

|q1| − |q2| =
Ved
2k

(4)

We are also given the acceleration of the electron at this position. Newton says F = meae

and we know that F = −eEe, where

E = kq1

d
2 − 0∣∣∣ d

2 − 0
∣∣∣3 + kq2

d
2 − d∣∣∣ d

2 − d
∣∣∣3 =

4k|q1|
d2 +

4k|q2|
d2 (5)

Then, we get

|ae| =
| − eE|

me
=

e
me

4k(|q1|+ |q2|)
d2 (6)

which gives

|q1|+ |q2| =
me|ae|d2

4ke
(7)

We have Eqs. (4) and (7) in |q1| and |q2|, which are now really straightforward to solve.

It’s essential that you get the idea and apply it correctly. Once you know what you are

doing, any numerical mistakes should be tolerable.

III. TWO CAPACITORS: ARE THEY IN PARALLEL OR SERIES?

The three infamous problems that have caused mass confusion are given below:
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FIG. 3.

FIG. 4.

FIG. 5.

A confusion emerges on our perception of the connection type of these capacitors. Are

they connected in parallel or in series? and how do we decide on the connection? are the two

most common questions brought upon by the students. The answer is a bit tricky but

when you think really hard about it, it will sound highly intuitive.

Think about the reason why you may not be able to easily identify or decide on the

type of connection that takes places between two conductors, for instance, for part (b)

of the first problem, i.e. Problem C-2. What causes this confusion? Would include a

resistance or a battery help you remove the confusion?
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The answer to these questions resides in the fact that when we construct a circuit using

two elements of the same type (resistance, capacitor, inductor, power supply) and using

only these, parallel and series connections lose their meaning. They become ambiguous

— well, we think they become ambiguous because at first, we don’t understand what’s

going on. The reason that we can’t really talk about parallel and series connections in the

familiar sense is that there is no reference point or circuit element that will render our

assumption true or false. Consider part (b) of the second problem or the third problem.

Would it help if we throw in a battery or a resistance to the circuit? Yes! That’s the answer.

In the presence of a power supply, we tend to imagine the direction of a current. If we

connect a resistor (say a light bulb), on the other hand, we’ll know that some capacitors

will produce a current to feed the resistor to light it up. These all sound natural. But

what’s going on with just two capacitors?

Suppose you connect two capacitors together end to end using two wires:

FIG. 6.

Notice that we didn’t say anything about the polarity of the capacitors. Now, let’s

see what’s going on here. Let’s assume the upper one is C1 and the lower one is C2.

Suppose C1 ̸= C2. The left vertical line of each capacitor are connected by a wire on the

left part of the diagram. So, we have two metal plates connected by a conducting wire.

When we connect two charged, conducting bodies, charges will flow around so that the

two objects have the same potential at their surfaces. This is what happens with these

two connected plates. Let’s call this potential VL. A similar consideration is valid for

the plates connected by the right branch. Call this potential VR. Now, each conductor

has a potential difference VL − VR. Thus, in the equilibrium, we can easily associate this

configuration with two parallel-connected capacitors. Easy, isn’t it?
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You may ask what happens if the voltage values are the same to begin with? and that’s a

perfectly valid question. Then, we’ll look at the charges. Suppose the left plate of the

upper (lower) capacitor carries an initial charge Q1 (Q2). Then, the total net charge on the

wire that connects the two plates is Qnet = Q1 + Q2. The wire on the right branch will

carry the same charge with a minus sign. Note that we still don’t talk about the polarities.

Actually, this info is hidden in the charges. Q1 and Q2 may both have the same sign or

they may have the opposite signs. That’s totally okay. After determining the net charge,

we analyze the system so that the final potential sees an equivalent capacitor, which is

made up of two parallel-connected capacitors, having a charge Qnet. The rest can be

followed from the Red Book.

Let’s solve these three problems together now without digging much into algebra. In

the first problem, in part (a), we connect one capacitor after the other but now, instead of

connecting the capacitors with a second wire, we put a battery in between. Notice how

the battery breaks the ambiguity of the connection so that we are able to conclude that

this connection is a series connection. The two capacitors will get charged up. When they

are fully charged, they will carry the same amount of charge but the external voltage will

be shared by the two capacitors. Next, in the second part, part (b), we connect them such

that a positive end talks to a positive end and a negative end talks to a negative end. This

is the configuration which we discussed just above but with Q1 = Q2 = Q. Since this is

effectively a parallel connection, we add up the capacitance values to get Ceq. Then, by

requiring the voltage values to be equal in the final state, we write down the equations

as given in the manual. The key step is to realize that this is a parallel connection. The

rest is just algebra. In part (c), it asks what happens if we connect the positive ends to

the negative ones. Well, we have the same configuration pictured above but now with

Q1 = −Q2 = Q so that the net charge vanishes. If there is no charge, then there is no

voltage. The charges on the plates will just cancel each other upon connection.

Let’s do the third problem now because the second one is a bit involved — not because

it is hard but we just have to deal with a third capacitor. Now, in this problem, we

are given the same diagram that we drew above but with opposite polarities. In this

case, the initial voltage values are the same. Note that this has nothing to do with the

determination of the connection type of these two capacitors. That is, we don’t say these

are connected just because they have the same voltage to begin with. The same logic
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as in the first problem applies here. The capacitors have different Q1 and Q2 values,

with even opposite signs, so we move on to the computation of the net charge, which is

given by Q1 − Q2, depending on the branch you are looking at — the upper one or the

lower one. It won’t matter, though. As long as you work with positive values for the

capacitance, you should be all okay. After determine the net charge on each branch, we

move on to the computation of the equivalent capacitance, which is again the sum of the

two capacitance values. Then we write down the potential and charge equations and the

rest is algebra, as shown in the method. We believe that once you convince yourselves

about the connection type, you won’t have a problem with the rest of the calculations.

Now the second problem. At first, we charge up the first capacitor using some voltage

value. Now it carries a certain amount of charge. Then, we turn the switch to the right

to cancel out the battery and to direct the current to the two capacitors in the vertical

branch. You (should) see that the two capacitors on the right are connected in series just

because we have a reference circuit element. You may get tempted to assume a series

connection between C1 and C2 and connect C3 in parallel to them but that’d be wrong. C1

is the charged one: it has a certain amount of charge, say +Q, on its top plate (because

that plate was the one that was connected to the positive end of the power supply before

we cut the battery out) and −Q on the bottom plate. However, C2 and C3 are uncharged.

Hence, the equivalent capacitor, say a single capacitor, C23, to replace C2 and C3, will

also have zero charge on its plates, so we say that C2 and C3 are compatible to each

other. After combining these two capacitors in series, we’ll know that they will carry

the same amount of charge once C1 releases and redistributes some of its charge. Again

we have the same picture depicted above but with Q1 = Q (or whatever the charge the

first capacitors holds) and Q23 = 0 initially. We’ll then watch the charges redistribute

themselves so that in the final state, C1 and C23 have the same potential. Once you know

the potential and the charge of the equivalent capacitor C23, you know how to distribute

these into its components from the first problem, Problem C-2.

The biggest source of confusion that the students have experience is that the two ca-

pacitors are connected in such a way that one’s positive end meets the other one’s nega-

tive end. This has lead many students to assume that the two capacitors must have been

connected in series. In a more populated circuit containing other types of elements, that

would be true because in such an environment, we get the sense of a flow of current
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— we know where the current splits and meets again. But, as discussed in this section,

with only two capacitors, we have to look into other details and shouldn’t make blind

assumptions.

If you still have questions about this issue of the connection type of two capacitors, pa-

tiently work out Problem C-1 in this framework again. It was a straightforward question,

but now you know that a circuit with only two capacitors can be thought of as having a

parallel connection. It may worth a while to go over this again.
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