
Phys 412-1 Quantum Mechanics

Kaan Simsek

ksimsek@u.northwestern.edu | kagsimsek.github.io

(Dated: 2022 Fall)

(Last updated: November 11, 2022)

Abstract
This document contains the TA notes for the course Phys 412-1 Quantum Mechanics in the fall

quarter of the academic year 2022-2023.

1

mailto:ksimsek@u.northwestern.edu
https://kagsimsek.github.io

CONTENTS

I. Discussion 1 (Sep 29) 3

II. Discussion 2 (Oct 6) 11

III. HW1 supplements 19

A. Problem 1 19

1. Part (a) 19

2. Part (b) 23

3. Part (c) 25

4. Part (d) 28

5. Part (e) 28

B. Problem 2 29

1. Part (a) 29

2. Part (b) 30

3. Part (c) 30

C. Problem 3 31

1. Part (a) 31

2. Part (b) 32

3. Part (c) 34

IV. Discussion 3 (Oct 13) 36

V. Discussion 4 (Oct 20) 47

VI. Discussion 5 (Oct 27) 57

VII. Discussion 6 (Nov 3) 69

VIII. HW3 supplements 80

IX. Discussion 7 (Nov 10) 109

References 117

2

I. DISCUSSION 1 (SEP 29)

What is an observable? It is an abstract operator which can be represented in a matrix

in terms of some entries using a suitable basis. Suppose we have an observable A. The

matrix representation of A is hermitian. We need to know what we are talking about

when we say a matrix is hermitian.

Hermitian matrices have the three important properties:

• They have real eigenvalues.

• Their eigenvectors are orthogonal [1].

• Their eigenvectors form a complete basis.

The last item is purely mathematical but it is physically useful.

Now suppose I want to write down the eigenvalue equation for my operator A:

A|n⟩ = an|n⟩ (1)

I’ll be very simplistic in my notation and just put the quantum number into my kets and

bras. A more proper notation is for the eigenkets is |A; n⟩; namely, you’d indicate the

operator, as well. Now, here we know that an ∈ R for all n [2]. As for the eigenkets, we

know that they are orthogonal. But let’s not worry about the magnitudes, so suppose

everything is normalized. Then, we have the orthonormality relation

⟨n|m⟩ = δnm (2)

Let’s talk about the completeness now. But to do that, I’ll introduce the projection operator,

Λn. Suppose I write down an operator like |n⟩⟨m|. What does this guy do for a living?

It is clearly not a ket vector due to the bra on the right. It is a tensor, which can be

represented by some matrix in a proper basis. Consider the operator |n⟩⟨n|. What does

this do? If I give you a generic state ket, say |ψ⟩ and tell you to act this operator on

this state, you’d get |n⟩⟨n|ψ⟩. The second factor, i.e. ⟨n|ψ⟩, is certainly a scalar. We

have a ket, |n⟩, next to it, so the operator |n⟩⟨n| most certainly produces this ket, times

some complex number. We call this number, the probability amplitude (or the transition

amplitude). It measures how much |n⟩ is contained in |ψ⟩, for lack of a better explanation.

3

This is no different than the usual projection of vectors. Suppose I have this vector v

and I want to project it onto an axis in the direction of some other vector n. Then, we

express this new, projected vector as (v · n̂)n̂, where I normalized my direction vector.

This object, ⟨n|ψ⟩ has 1:1 correspondence to the object n̂ · v.

The moral of the story is, |n⟩⟨n| projects any state onto the state |n⟩. We define our

projection operator then as

Λn := |n⟩⟨n| (3)

Let’s study some properties of this projection operator. What happens if I act ΛnΛm

(m ̸= n) on some general state |ψ⟩? Without doing explicit mathematics, we immediately

see that we get zero. The reason is, we project our initial state onto |m⟩ first, but then

we try to project this ket onto |n⟩. We cannot do that since our eigenkets are orthogonal.

Let’s prove this mathematically:

ΛnΛn|ψ⟩ = |n⟩⟨n|m⟩⟨m|ψ⟩ (4)

This is equal to zero because ⟨n|m⟩ = 0. Suppose now I act Λn on |ψ⟩ twice. What do I

get? I get |n⟩ again. Once I’m in this state, I don’t go anywhere. So we may write

ΛnΛm = Λnδnm (5)

Now let’s go back to the completeness. Suppose I have this vector v in 3D. How do I get

the components along the Cartesian axes? I take the dot product of the vector and tack in

the unit vector in that direction. So I’m actually projecting my vector onto all these axes. I

also know that the three-dimensional real space is spanned by {x̂, ŷ, ẑ} completely. There

is no vector left out. You can express any vector using these unit vectors. An identical

story takes place here. If I have a general state |ψ⟩, then, in order to be able express it

using the eigenkets of this operator A, I need to project it onto each and every one of

these eigenkets:

|ψ⟩ = |1⟩⟨1|ψ⟩+ |2⟩⟨2|ψ⟩+ · · · = ∑
n
|n⟩⟨n|ψ⟩ = ∑

n
Λn|ψ⟩ (6)

We have discovered something now. Notice that we have |ψ⟩ on both sides, namely a

vector equal to itself with some operator in front. This can mean only one thing:

∑
n

Λn = 1 (7)

4

This is called the completeness relation. Inserting a sum of eigenkets and bras between two

operators, which we’ll do every now and then, is called the resolution of identity.

∗ ∗ ∗

I like my projection operators because that’s how I (used to) compute my transitions (and

hopefully we’ll do it together in the third quarter). If I want to measure the probability

of an event taking place between some initial and final states, I immediately write down

the transition amplitude as

Tf←i = ⟨ f |Λ|i⟩ (8)

where Λ is effectively the projection operator that causes this transition. By squaring this

element, we’ll get the probability. This may seem a bit vague but it will become much

clearer when we start talking about time-dependent phenomena.

Let’s do a little exercise now in which I’ll stress the importance of these projections

operators again. Suppose I have this function f and, whatever it is, I want to evaluate it

at my observable A represented in a suitable basis. What can I do?

Whenever in doubt, expand in a power series. That’s one of my top quotes by anyone on

this planet. Fermi said that, and that’s what we are going to do here. Suppose I pretend

to expand my function f in a Taylor series but I’ll do it in a vague manner, i.e. I’ll absorb

all the factors into a constant, cj, and just focus on the expansion parameter, namely our

operator, A:

f (A) = ∑
j≥0

cj Aj (9)

Now, I want to express my operator in terms of something. That something will turn out

to be its eigenvalues and eigenkets. Suppose I take my operator A and multiply it by 1:

A = A1 = A

[
∑
n

Λn

]
= A ∑

n
|n⟩⟨n| (10)

Then I know how to act A on the ket:

A = ∑
n

an|n⟩⟨n| (11)

5

This is called the spectral decomposition of an operator in terms of its eigenvalues and

eigenkets. Let’s take the powers of this operator:

A = ∑
n

an|n⟩⟨n| = ∑
n

anΛn (12)

A2 =

[
∑
n

an|n⟩⟨n|
] [

∑
m

am|m⟩⟨m|
]
= ∑

n
∑
m

anam|n⟩ ⟨n|m⟩︸ ︷︷ ︸
δnm

⟨m| = ∑
n

a2
n|n⟩⟨n| = ∑

n
a2

nΛn

(13)

or, let’s use the properties of the projection operator:

A3 =

[
∑
n

anΛn

] [
∑
m

amΛm

] [
∑
k

akΛk

]
= ∑

n
∑
m

∑
k

anamak ΛnΛm︸ ︷︷ ︸
Λnδnm

Λk︸ ︷︷ ︸
Λnδnmδnk

= ∑
n

a3
nΛn = ∑

n
a3

nΛn

(14)

So we get the idea:

Aj = ∑
n

aj
nΛn (15)

With this, our series expansion becomes

f (A) = ∑
j≥0

cj

[
∑
n

aj
nΛn

]
= ∑

n

[
∑
j≥0

cja
j
n

]
Λn = ∑

n
f (an)Λn (16)

This way, we generalize the spectral decomposition into any functional form. Now, we

don’t need to worry about the operator itself. We just deal with the projections, which

are easier to work with.

∗ ∗ ∗

Now let’s do an example on representations and measurements. Suppose I give you an

observable A with the following properties:

⟨1|A|1⟩ = a (17)

⟨1|A|2⟩ = b (18)

⟨2|A|1⟩ = b (19)

⟨2|A|2⟩ = a (20)

6

Then, I give you a general state:

|ψ⟩ = 1√
2
(|1⟩+ i|2⟩) (21)

The question is, what are the probabilities that if I measure A on this state (say, the energy

or the spin or any other observable if you want to leave this abstract realm), I get a, b,

a + b, a− b (in separate measurements, not within the same measurement)?

∗ ∗ ∗

Measurement is nothing but taking projections. Using the projection operator and just the

very basic assumptions about a measurement, Schwinger created a measurement formalism

of quantum mechanics, which turned out to be identical to Schrödinger’s wavefunction

approach and Heisenberg’s matrix mechanics.

We start with the spectrum of this operator A. Here, spectrum is just a fancy way of

saying its eigenvalues and eigenstates. At this point, we are going to resort to matrices

because it is highly convenient.

Now, we are given the A sandwiches above. What do we do with them? They appear

to be the matrix elements of the operator A in the {|1⟩, |2⟩} basis. So we may write

A =̇

a b

b a

 (22)

where =̇ is read can be represented by. I just put a in the (1, 1) and (2, 2) entries and b in

the (1, 2) and (2, 1) entries. How did I do that? This is a step that’s usually taken without

saying but it’s crucial to be aware of that. We have tacitly assumed the representations

|1⟩ =̇

1

0

 , |2⟩ =̇

0

1

 (23)

Why? Because it’s convenient. Now, I want to obtain the eigenvalues and the eigenvec-

tors of this matrix. Let’s use Mathematica [3].

A = {

{a, b},

{b, a}

};

7

Mathematica is row-major, so we enter the components row by row as we write them on

paper. The newlines and the spacing that I’m using here are totally optional. Note the

semicolon at the end. It just suppresses the output if you are working with a Mathematica

notebook. Let’s now play with this.

EigenValues[A]

EigenVectors[A]

When you evaluate this, the first output should be like

{a - b, a + b}

and the second output is

{{-1, 1}, {1, 1}}

So the eigenvalues are

λ± = a± b (24)

The unnormalized eigenvector corresponding to the plus eigenvalue is

|+̃⟩ =̇

1

1

 (25)

and the unnormalized eigenvector corresponding to the minus eigenvalue is

|−̃⟩ =̇

−1

1

 (26)

I’m going to normalize the plus eigenket by 1/
√

2 and the minus eigenket by −1/
√

2.

There is nothing that prevents me from choosing some other factor—even a complex

one—but this is what I like. So, the normalized eigenkets are

|±⟩ =̇ 1√
2

 1

±1

 (27)

But remember these are just representations. We don’t want to work with representa-

tions because they are just tools. Let’s express the eigenkets in the basis {|1⟩, |2⟩}—even

though they look abstract, it’s these states that are our reality:

|±⟩ =̇ 1√
2

1

0

± 1√
2

0

1

 =
1√
2
|1⟩ ± 1√

2
|2⟩ = |1⟩ ± |2⟩√

2
(28)

8

With this, let’s perform a spectral decomposition of the observable A:

A = ∑
n

an|n⟩⟨n|

= (a + b)|+⟩⟨+|+ (a− b)|−⟩⟨−| (29)

where the projection operator to the plus eigenstate is given by

Λ+ = |+⟩⟨+| = |1⟩+ |2⟩√
2
⟨1|+ ⟨2|√

2
(30)

and the projection operator to the minus eigenstate is given by

Λ− = |−⟩⟨−| = |1⟩ − |2⟩√
2
⟨1| − ⟨2|√

2
(31)

Finally, let’s do some measurement. The spectral decomposition tells you what you can

get if you try to measure the observable A on any state. You can either get a + b or a− b.

There is no other possibility. In a way, you can only measure what is in your spectrum

[4]. Therefore, without doing any other calculation, we can directly conclude that the

probability of measuring A to be a or b on any state is 0.

We can get a + b and a− b, so let compute the probability amplitudes. We have

Λ+|ψ⟩ =
|1⟩+ |2⟩√

2
⟨1|+ ⟨2|√

2
|1⟩+ i|2⟩√

2
(32)

Noting that ⟨1|2⟩ = 0 and ⟨1|1⟩ = ⟨2|2⟩ = 1 (because that’s how we chose these basis

vectors), we get

Λ+|ψ⟩ = |+⟩
1 + i

2
(33)

so the probability of measuring A to be a + b is

P(a + b) =
∣∣∣∣1 + i

2

∣∣∣∣2 =
1
2

(34)

It is just a cute exercise of taking the inner product of 1’s and 2’s to show that measuring

A to be a− b has the same probability (so that the total probability is 1).

∗ ∗ ∗

At some point in this discussion session, I mentioned that you can do a lot of amazing

things on Mathematica other than just symbolic calculation. I claimed that you can even

9

compose music with it. Just for the sake of fun, here is a Mathematica notebook where

you can create a random composition, which you then may extract as a .wav or .mp3 file

using the Export command.

https://github.com/kagsimsek/random compose (35)

If you run it a couple of times, a good melody will come out eventually.

10

https://github.com/kagsimsek/random_compose

II. DISCUSSION 2 (OCT 6)

Let’s do some index manipulation. We start with the well-known mathematical objects

that carry some indices:

• Position vector, momentum vector, electric-field vector, etc.: vi

• The moment of inertia tensor, the quadrupole moment tensor, the field-strength

tensor, etc.: Tij

• The unit symmetric tensor, i.e. the Kronecker delta: δij (given by KroneckerDelta[i,

j] on Mathematica)

• The totally antisymmetric structure constants: fijk. Note that the Levi-Civita tensor

falls into this class. It’s just the structure constant of SU(2), if you want some for-

malism. Note that totally symmetric means here that if you flip any pair of indices,

your tensor will receive a minus sign. With this in mind, we can safely say that

if any of the two indices are the same, the value of such tensors is zero for that

component; i.e. ϵ112 = −ϵ112, where I flipped the 1’s, so we have ϵ112 = 0. (The

Levi-Civita tensor is a built-in tensor on Mathematica, as well. We write ϵijk as

LeviCivitaTensor[3][[i, j, k]], where 3 here means that we are in the three-

dimensional space.)

Now, we say that quantities with only one index are rank-1 tensor, those with two are

rank-2, etc. if you want even more formalism. But that’s just a language. The important

point is the ranges of these indices, which define the size of the matrices that we can form

to represent these objects. For an elementary vector, we have i running from 1 to 3 in the

good ol’ Cartesian space. But why not generalize this? We can have an infinitely large

vector space if we let i run from 1 to infinity. That’s important to keep in mind but for

what follows, we won’t really dig into that.

Let’s do some index manipulation. We start with the dot product of two vectors. Sup-

pose I have a and b with the same size, i.e. suppose they are both in Rn. Then,

a · b = a1b1 + · · · anbn =
n

∑
i=1

aibi (36)

11

Here, we have expressed the same quantity using an explicit summation over the indices.

i here—or any index that’s being summed over—is called a dummy index. With this, we

are ready to drop the summation symbol:

a · b = aibi (37)

How comfortable is that! Einstein once that his greatest contribution to physics was to

drop this summation symbol over repeated indices. By convention, we assume any two

repeated indices are meant to be summed over. If you see something like aibici, be careful.

We need to be aware of the context here, so I won’t go into that.

Now, let’s do a cross product. Suppose I have a and b in the familiar three-dimensional

space. Then, their cross product is given by the following determinant:

a∧ b = det


x̂ ŷ ẑ

a1 a2 a3

b1 b2 b3

 (38)

Note the use of the wedge product here. In most cases, it is used interchangeably by the

traditional × symbol but the latter looks like x, so I prefer the former. Let’s expand this

cross product:

a∧ b = x̂(a2b3 − a3b2) + ŷ(a3b1 − a1b3) + ẑ(a1b2 − a2b1) (39)

Suppose I want the first component of this cross product.

(a∧ b)1 = a2b3 − a3b2 (40)

We have this beautiful cyclic pattern here. Whenever we see something like this, it’s best

to use resort to the Levi-Civita tensor. Now, I just want to test this out. Let’s try the

following:

(a∧ b)1
?
= ϵ1jkajbk (sum implied) (41)

For this summation, we say that j and k runs from 1 to 3. Let’s expand this:

(a∧ b)1 = ϵ111a1b1 + ϵ112a1b2 + ϵ113a1b3 + . . . + ϵ133a3b3 (42)

We have nine terms here. But most of them are zero. We want to remember the conven-

tion that ϵ123 = ϵ231 = ϵ312 = 1 and that if you flip any indices, you’ll get −1, and that

12

if any of the indices are repeated, you get zero. So, we have only two nontrivial terms in

this summation, for which all the indices are different:

(a∧ b)1 = ϵ123a2b3 + ϵ132a3b2 (43)

The first Levi-Civita is just +1 and the second one is −1. So we have

(a∧ b)1 = a2b3 − a3b2 (44)

It seems to be working. That’s what we want, then. Notice how the fact that the cross

product is anticommutative is consistent here with the definition of the Levi-Civita ten-

sor:

(b∧ a)1 = b2a3 − b3a2 = −(a2b3 − a3b2) = −ϵ1jkajbk = −(a∧ b)1 (45)

Next, let’s contract a ∧ b with another vector. Here—and most of the time—contraction

means taking the dot product to produce a scalar. Let’s investigate the triple product. The

question is, how would you indexify a ∧ b · c? Notice that I don’t have to put some

parentheses to emphasize the multiplication order, it’s just what it is; namely, a ∧ (b · c)
is a meaningless quantity because b · c is a scalar and we can’t take the cross of of a scalar

with a vector.

We start with the dot product because it’s easier to expand, compared to the cross

product. Suppose I define u := a∧ b for a moment to write

u · c = uici (46)

I’m going to insert a Kronecker delta here:

u · c = δijuicj (47)

Why does it work? Well, let’s expand it to confirm:

u · c = δ11u1c1 + δ12u1c2 + δ13u1c3 + · · ·+ δ33u3c3 (48)

But all the terms expect for the ones that go like δ11, δ22, and δ33 drop out because of the

properties of this tensor:

u · c = δ11u1c1 + δ22u2c2 + δ33u3c3 (49)

13

But now all these delta terms are just 1:

u · c = u1c1 + u2c2 + u3c3 (50)

This is like inserting an identity matrix in between when we express these vectors in

arrays:

u · c =
(

u1 u2 u3

)
c1

c2

c3

 =
(

u1 u2 u3

)
1 0 0

0 1 0

0 0 1




c1

c2

c3

 (51)

So, we are cool on this. Let’s get back to the triple product:

u · c = δijuicj (52)

Now let’s switch back to a and b:

a∧ b · c = δij(a∧ b)icj (53)

We will now express the ith component of this cross product using the Levi-Civita but we

have to be extra careful with all the other indices lurking around. We can’t use j anywhere

else. Let’s use the next couple of letters:

a∧ b · c = δij(ϵikℓakbℓ)cj = δijϵikℓakbℓcj (54)

How many summations do we have here? Well, there is no free index, meaning there is

no index on the left-hand side of this equality, so all the indices are dummy. We have these

indices i, j, k, and ℓ, so all four of them are meant to be summed over from 1 to 3:

a∧ b · c =
3

∑
i=1

3

∑
j=1

3

∑
k=1

3

∑
ℓ=1

δijϵikℓakbℓcj (55)

Now, what does this δij do for a living? It just replaces indices. You have the option to let

i→ j or j→ i in all the terms that are multiplied by this Kronecker delta. Then you drop

the delta term. I think I’ll just let j→ i:

a∧ b · c = ϵikℓakbℓci (56)

Now, this looks hideous. We have all these indices but they are successive letters. For

some unknown reason, I find this disturbing. We note that, since these are all dummy

14

indices, meaning they will not be used anymore once we carry out the summation, I can

relabel them as I wish. N.B. this relabeling is important only when you have some free

indices around. Otherwise, you can just go crazy on them however you want. Here, I

want to have i under a, j under b, and k under c. That is, I want to let k → i, ℓ → j, and

i → k (or if you want, you can always define some intermediate dummy variables by

putting some primes on them before doing these replacements). Let’s see what we get:

a∧ b · c = ϵkijaibjck (57)

Well, now it looks better. But we have this epsilon messed up. I want to bring it to the

alphabetical order, as well—just for the sake of visual pleasure, nothing more. I want

to have ϵijk, so first, I flip k and i to have −ϵikj, where the minus sign comes from this

flipping, and then I flip k and j to get −(−ϵijk). Here, the second minus sign comes from

the second flipping. Then we get

a∧ b · c = ϵijkaibjck (58)

Notice how everything is in order here.

Now, I want to play around with these indices to prove a useful identity. Suppose I

shift my indices in a cyclic manner, i.e. I let i → j and j → k and k → i. Again, I can do

that because these are all dummy indices:

a∧ b · c = ϵjkiajbkci (59)

Let’s reorder these vector components here so that the indices are ordered alphabetically,

namely

a∧ b · c = ϵjkiciajbk (60)

Good one. Now I want to bring the indices of the epsilon to the alphabetical order, as

well: ϵjki = −ϵjik = +ϵijk. Now we have

a∧ b · c = ϵijkciajbk (61)

If we compare this to ϵijkaibjck = a ∧ b · c, we see that the right-hand side can be written

compactly as

a∧ b · c = c∧ a · b (62)

15

If you want, try showing that this is also equal to b∧ c · a.

These types of manipulations are essential when you have some objects with indices

in an expanded form (as opposed to a compact one) because you’ll want to recognize the

patterns of contractions.

Let’s do some exercises before we connect these to the Pauli matrices and all the other

good stuff. I’ll just to some basic examples and see where we get with them.

• xixi = x · x = |x|2

• xiyjδij = x · y

• (ai)r(aj)sϵrst = (ai ∧aj)t: This will turn out to be important if you want to solve the

last problem of the first homework with index manipulation. Note that I pulled a

trick on you by not saying that what ai is. It’s not the ith component of some vector

a. In reality, we have three ai vectors and it’s just one of them. Otherwise, the cross

product would be meaningless.

• Let’s make it spicier by including the derivative. There is this Laplace identity in

electromagnetic theory. Suppose you have some magnetic field, B, and you are

interested in its curl, i.e. ∇ ∧B. We want to express the magnetic field in terms of

the magnetic potential, A, which satisfies B = ∇ ∧A. Thus, we want to actually

simplify ∇ ∧ (∇ ∧A). Notice the importance of parentheses here. I can’t just omit

them because the order is important here.

Now, the question is, what is this object? In terms its rank maybe? It’s a certainly a

vector. So, we can investigate its ith component:

[∇∧ (∇∧A)]i (63)

We start with the outermost objects and expand our way inward:

[∇∧ (∇∧A)]i = ϵijk∇j(∇∧A)k (64)

(N.B. some people write ∇i = ∂i and that’s totally fine.) I’ve taken my Levi-Civita

with i as the first index, and then my first vector here, which is the derivative,

with an index that matches the second index of the Levi-Civita, and then I have

my second vector—whatever it is, it’s a vector—with an index that matches the

16

third index of the Levi-Civita. So far, so good. Let’s now expand this second cross

product. I have to be careful to choose indices different than i (which is a free

index here because it appears on both sides of the equality) and j and k. But we

are interested in the kth component of this vector, so our Levi-Civita starts with a k.

And I’m going to pick r and s as my new indices, why not:

[∇∧ (∇∧A)]i = ϵijk∇j(ϵkrs∇r As) (65)

Remember that ϵijk or ϵkrs are just 1’s and 0’s—they are just numbers. They come

out of derivative:

[∇∧ (∇∧A)]i = ϵijkϵkrs∇j∇r As (66)

We have something interesting here: two Levi-Civitas but with one common index.

Notice that I can write ϵkrs = −ϵrks = +ϵrsk, so I have

[∇∧ (∇∧A)]i = ϵijkϵrsk∇j∇r As (67)

(Confirm that you can write ϵijkϵrsk = ϵkijϵkrs because some people like to see the

common index as the first index. I don’t know why.) We have this beautiful theorem

for this contraction (N.B. the contraction is over k only. It’s still a dot product but

for only some parts of these tensors or matrices.):

ϵijkϵimn = det

δjm δkm

δjn δkn

 = δjmδkn − δkmδjn (68)

Notice how we’ve just managed to get rid of these antisymmetric tensors carrying

three indices and now we just have the Kronecker deltas [5]. The Levi-Civita takes

the cross product but the Kronecker just replaces indices. The latter has the easiest

job in the world. Let’s finish our calculation now:

[∇∧ (∇∧A)]i = (δirδjs − δjrδis)∇j∇r As

= δirδjs∇j∇r As − δjrδis∇j∇r As (69)

In the first term, using our Kroneckers, we’ll replace r by i and s by j, and in the

second term, we’ll do the other way around:

[∇∧ (∇∧A)]i = ∇j∇i Aj −∇j∇j Ai

17

= ∇i∇j Aj −∇j∇j Ai (70)

where, in the second line, I’ve just flipped the order of the derivatives as they com-

mute. Now, what’s the contraction pattern here, meaning who talks to whom? In

the first term, the second derivative talks to the A vector because they have the same

index, so we have a dot product in between. In the second term, the derivatives will

talk to each other, i.e. we’ll get the Laplacian, ∇2 = ∇ ·∇:

[∇∧ (∇∧A)]i = ∇i(∇ ·A)−∇2Ai (71)

so, in the full vector notation now, without just the ith index, we have

∇∧ (∇∧A) = ∇(∇ ·A)−∇2A (72)

• Here are some little exercises:

– Show that vivj is a tensor symmetric with respect to i and j.

– Show that the contraction of a symmetric tensor with an antisymmetric one

over their symmetric and antisymmetric indices is zero; to be more precise, i.e.

show that ϵijkvivj = 0. (This explains why v ∧ v = 0.)

– Prove that divergence of curl of a vector is zero.

– Prove that curl of a gradient of a scalar is zero.

Just to visualize, I mean, show that ∇ ·∇∧V = 0 and ∇∧∇ f = 0 using the index

manipulation.

18

III. HW1 SUPPLEMENTS

A. Problem 1

1. Part (a)

I think we can all agree that ⟨z|σ|z⟩ = n̂ is an object with three scalar, and in general

complex, components, so it’s a vector in the usual sense. But here we are looking at the

diagonal matrix elements of some hermitian operators, so all the components of n̂ have to

be real:

n̂i ∈ R ∀i = 1, 2, 3 (73)

Let’s show that it has unit norm.

• Method 1: Let’s use the sigma matrices explicitly.

• Method 2: Let’s use the sigma matrices with indices without employing the Einstein

summation convention for the sake of clarity—if the explicit summation symbols

offend you, well, it’s easier to ignore than to figure out. We can write the ith com-

ponent of this n̂ vector as

n̂i = ⟨z|σi|z⟩

=
2

∑
α=1

2

∑
β=1

z∗α(σi)αβzβ (74)

19

Let’s take two copies of it to compute its norm:

n̂ · n̂ =
3

∑
i=1

n̂in̂i

=
3

∑
i=1

[
2

∑
α=1

2

∑
β=1

z∗α(σi)αβzβ

] [
2

∑
γ=1

2

∑
δ=1

z∗γ(σi)γδzδ

]

=
3

∑
i=1

2

∑
α=1

2

∑
β=1

2

∑
γ=1

2

∑
δ=1

z∗αzβz∗γzδ(σi)αβ(σi)γδ (75)

where all the indexed quantities are just numbers now so I have the liberty to move

them around as I wish. Now I want to claim and prove an identity, namely the

completeness relation of the Pauli matrices:

Claim.

3

∑
i=1

(σi)αβ(σi)γδ = 2δαδδβγ − δαβδγδ (76)

Proof. We have an object that carries four indices, but we select these indices in

groups of two from two identical quantities. Thus, the resultant tensor should be

totally symmetric in any pair of indices, i.e. we take the following as our ansätz:

3

∑
i=1

(σi)αβ(σi)γδ = Aδαβδγδ + Bδαγδβδ + Cδαδδβγ (77)

[If, at this point, the index δ of the Kronecker delta bothers you, well, I don’t know

what to say, c’est la vie.] [Convince yourselves that there is no other way than this

ansätz.] Now, the rest is just the determination of these unknown coefficients A, B,

and C by proper contractions:

– Take γ = β and δ = α and then sum over α and β (from 1 to 2):

3

∑
i=1

2

∑
α=1

2

∑
β=1

(σi)αβ(σi)βα =
3

∑
i=1

2

∑
α=1

(σiσi)αα

=
2

∑
α=1

(
3

∑
i=1

σiσi

)
αα

= tr

(
3

∑
i=1

σiσi

)
= tr

(
σ2

1 + σ2
2 + σ2

3

)
(78)

20

Noting that σ2
i = 12×2 for all i = 1, 2, 3, we have

3

∑
i=1

2

∑
α=1

2

∑
β=1

(σi)αβ(σi)βα = tr(312×2)

= 3 tr(12×2)

= 3× 2

= 6 (79)

Let’s check the right-hand side:

2

∑
α=1

2

∑
β=1

(
Aδαβδβα + Bδαβδβα + Cδααδββ

)
= A

2

∑
α=1

δαα + B
2

∑
α=1

δαα + C

[
2

∑
α=1

δαα

]2

= 2A + 2B + 4C (80)

Then, we have our first equation:

6 = 2A + 2B + 4C (81)

– Take γ = δ and sum over γ:

3

∑
i=1

2

∑
γ=1

(σi)αβ(σi)γγ =
3

∑
i=1

(σi)αβ tr(σi) (82)

Noting that all the Pauli matrices are traceless, we get 0 here. Let’s check the

right-hand side of the ansätz:

2

∑
γ=1

(
Aδαβδγγ + Bδαγδβγ + Cδαγδβγ

)
= 2Aδαβ + Bδαβ + Cδαβ

= δαβ(2A + B + C) (83)

The Kronecker delta is not zero in general, so the coefficient must vanish:

0 = 2A + B + C (84)

– Finally, take γ = α and δ = β and then sum over α and β:

3

∑
i=1

2

∑
α=1

2

∑
β=1

(σi)αβ(σi)αβ =
3

∑
i=1

2

∑
α=1

2

∑
β=1

(σi)αβ(σ
†
i)αβ

21

=
3

∑
i=1

2

∑
α=1

2

∑
β=1

(σi)αβ(σ
∗
i)βα

=
3

∑
i=1

2

∑
α=1

(σiσ
∗
i)αα

=
3

∑
i=1

tr(σiσ
∗
i)

= tr

(
3

∑
i=1

σiσ
∗
i

)
= tr(σ1 σ∗1︸︷︷︸

σ1

+σ2 σ∗2︸︷︷︸
−σ2

+σ3 σ∗3︸︷︷︸
σ3

)

= tr(12×2 − 12×2 + 12×2)

= tr(12×2)

= 2 (85)

Now let’s check the right-hand side:
2

∑
α=1

2

∑
β=1

(
Aδαβδβα + Bδααδββ + Cδαβδβα

)
= 2A + 4B + 2C (86)

Then we get our third equation:

2 = 2A + 4B + 2C (87)

We now have three equations in three unknowns, so let’s solve them:

Thus, we obtain
3

∑
i=1

(σi)αβ(σi)γδ = −δαβδγδ + 2δαδδβγ (88)

22

qed.

With this identity, let’s go back to our calculation:

n̂ · n̂ =
3

∑
i=1

2

∑
α=1

2

∑
β=1

2

∑
γ=1

2

∑
δ=1

z∗αzβz∗γzδ(σi)αβ(σi)γδ

=
2

∑
α=1

2

∑
β=1

2

∑
γ=1

2

∑
δ=1

z∗αzβz∗γzδ

(
2δαδδβγ − δαβδγδ

)
=

2

∑
α=1

2

∑
β=1

2

∑
γ=1

2

∑
δ=1

(2δαδδβγz∗αzβz∗γzδ − δαβδγδz∗αzβz∗γzδ)

=
2

∑
α=1

2

∑
β=1

(2z∗αzβz∗βzα − z∗αzαz∗γzγ)

= 2

[
2

∑
α=1

z∗αzα

]2

−
[

2

∑
α=1

z∗αzα

]2

= 2⟨z|z⟩2 − ⟨z|z⟩2

= 2− 1

= 1 (89)

Thus, we have shown that n̂ is a three-dimensional unit vector with real scalar compo-

nents.

2. Part (b)

We are given the projection operator |z⟩⟨z|. Let’s expand it in the 2-by-2 basis, i.e. in

the basis of {1,σ} [Note that I’m switching from 12×2 to just 1, hoping that it will be clear

whether it’s a matrix or a scalar from the context.]. First, let’s observe that this operator

is hermitian:

[|z⟩⟨z|]† = (⟨z|)† (|z⟩)†

= |z⟩⟨z| (90)

Thus, we know that the expansion coefficients will all be real. Now, let’s do the expan-

sion:

|z⟩⟨z| = ζ0 +
3

∑
i=1

ζiσi (91)

23

with ζµ ∈ R for all µ = 0, 1, 2, 3. Here, the coefficients are given by some traces:

ζ0 =
1
2

tr(|z⟩⟨z|) (92)

ζi =
1
2

tr(σi|z⟩⟨z|), i = 1, 2, 3 (93)

The trace of ket-bra may look strange. Just for the sake of completeness, let’s do the

following:

Claim.

tr(Γ|z⟩⟨z|) = ⟨z|Γ|z⟩ (94)

where Γ is any operator.

Proof. Take a complete basis and write the trace as a sum over the diagonal matrix

elements:

tr(Γ|z⟩⟨z|) = ∑
n
⟨n| [Γ|z⟩⟨z|] |n⟩ (95)

where {|n⟩}may be the canonical basis, i.e. in its representation as a column vector, it has

a 1 in the nth entry and 0 everywhere else. The dimension does not matter for this proof,

but for concreteness, we can just focus on {|n⟩} = {|1⟩, |2⟩} because we are working with

2-by-2 matrices. Now let’s play around with this.

tr(Γ|z⟩⟨z|) = ∑
n
⟨n|Γ|z⟩⟨z|n⟩ (96)

Each of these two factors is just a number, so I can reorder them anyway I want:

tr(Γ|z⟩⟨z|) = ∑
n
⟨z|n⟩⟨n|Γ|z⟩

= ⟨z|
[
∑
n
|n⟩⟨n|

]
Γ|z⟩

= ⟨z|Γ|z⟩ (97)

where I’ve used the completeness of this basis, ∑n |n⟩⟨n| = 1. qed.

With this, let’s go back to the expansion coefficients:

ζ0 =
1
2

tr(|z⟩⟨z|) = 1
2
⟨z|z⟩ = 1

2
(98)

ζi =
1
2

tr(σi|z⟩⟨z|) =
1
2
⟨z|σi|z⟩ =

1
2

n̂i (99)

24

Therefore,

|z⟩⟨z| = 1
2
+

3

∑
i=1

n̂iσi

=
1
2
(1 + n̂ · σ) (100)

3. Part (c)

|z⟩⟨z| is a projection operator, so without doing any calculations, I can directly say that

its eigenvalues are 0 and 1. Why? Because I know that if I square this operator, I get the

same thing.

Let’s do this mathematically now. We have the eigenvalue equation:

|z⟩⟨z|λ⟩ = λ|λ⟩ (101)

Multiply from left by |z⟩⟨z|:

|z⟩ ⟨z|z⟩︸︷︷︸
1

⟨z|λ⟩ = λ|z⟩⟨z|λ (102)

|z⟩⟨z|λ⟩ = λ [λ|λ⟩] (103)

λ|λ⟩ = λ2|λ⟩ (104)

λ = λ2 (105)

so we must have λ = 0, 1. Let’s do the eigenkets now one by one. First, I want to assume

that my eigenkets have the form

|0, 1⟩ = c+0,1|+⟩+ c−0,1|−⟩ (106)

where I’m using the basis spanned by the eigenkets of the third Pauli matrix, σ3|±⟩ =
±|±⟩, i.e. the canonical basis in two dimensions. Note that in this basis, we can also

write

|z⟩ = z1|+⟩+ z2|−⟩ (107)

• λ = 0:

|z⟩⟨z|0⟩ = 0 (108)

25

(z1|+⟩+ z2|−⟩)(z∗1⟨+|+ z∗2⟨−|)(c+0 |+⟩+ c−0 |−⟩) = 0 (109)

(z1|+⟩+ z2|−⟩)︸ ︷︷ ︸
̸=0

(z∗1c+0 + z∗2c−0)︸ ︷︷ ︸
=0

= 0 (110)

so we have

c−0 = −
z∗1
z∗2

c+0 (111)

With this, we can write

|0⟩ = c+0

(
|+⟩ −

z∗1
z∗2
|−⟩
)

(112)

Normalize it:

⟨0|0⟩ = 1

=
∣∣c+0 ∣∣2

(
1 +
|z1|2

|z2|2

)

=
∣∣c+0 ∣∣2 1

|z2|2
(113)

so

∣∣c+0 ∣∣ = |z2| (114)

or

c+0 = |z2| eiφ (115)

Note that for a suitable phase φ, we can have c+0 = z2. That’s your liberty. At the

end of the day, we obtain

|0⟩ = |z2| eiφ
(
|+⟩ −

z∗1
z∗2
|−⟩
)

(116)

• λ = 1:

|z⟩⟨z| = |1⟩ (117)

(z1|+⟩+ z2|−⟩)(z∗1⟨+|+ z∗2⟨−|)(c+1 |+⟩+ c−1 |−⟩) = (c+1 |+⟩+ c−1 |−⟩) (118)

(z1|+⟩+ z2|−⟩)(z∗1c+1 + z∗2c−1) = (c+1 |+⟩+ c−1 |−⟩) (119)

26

Since the two basis kets are linearly independent, we can match the coefficients of

the ket |+⟩ on both sides:

z1z∗1c+1 + z1z∗2c−1 = c+1 (120)

so

c−1 =
1

z1z∗2
(1− z1z∗1) c+1

=
z2z∗2
z1z∗2

c+1

=
z2

z1
c+1 (121)

Then, we can write

|1⟩ = c+1

(
|+⟩+ z2

z1
|−⟩
)

(122)

Normalize it:

⟨1|1⟩ =
∣∣c+1 ∣∣2

(
1 +
|z2|2

|z1|2

)

=
∣∣c+1 ∣∣2 1

|z1|2
(123)

This gives us ∣∣c+1 ∣∣ = |z1| (124)

or

c+1 = |z1| eiφ′ (125)

Again, for a suitable phase φ′, we can have c+1 = z1. In general, we have the other

eigenket given by

|1⟩ = |z1| eiφ′
(
|+⟩+ z2

z1
|−⟩
)

(126)

|z⟩⟨z| is hermitian and its eigenvalues are nondegenerate. Therefore, |0⟩ and |1⟩ must be

orthogonal [Check it and show that it’s true whatever your phases are.].

Let’s perform a spectral decomposition of |z⟩⟨z| [see Eq. (11)]:

|z⟩⟨z| = ∑
λ

λ|λ⟩⟨λ|

27

= 0|0⟩⟨0|+ 1|1⟩⟨1|

= |1⟩⟨1|

=

[
|z1| eiφ′

(
|+⟩+ z2

z1
|−⟩
)] [
|z1| eiφ′

(
|+⟩+ z2

z1
|−⟩
)]†

=

[
|z1| eiφ′

(
|+⟩+ z2

z1
|−⟩
)] [
|z1| e−iφ′

(
⟨+|+ z∗2

z∗1
⟨−|
)]

= |z1|2 |+⟩⟨+|+ |z2|2 |−⟩⟨−|+ z∗1z2|−⟩⟨+|+ z1z∗2 |+⟩⟨−| (127)

which is exactly what you’d get if you simply take the outer product of the given z vector.

4. Part (d)

Now we act this projection operator on the plus/minus (or canonical) basis, though the

notation in the problem statement is a bit different:

|z⟩⟨z|+⟩ = |z1|2 |+⟩+ z∗1z2|−⟩

= z∗1(z1|+⟩+ z2|−⟩)

= z∗1 |z⟩ (128)

and

|z⟩⟨z|−⟩ = |z2|2 |−⟩+ z1z∗2 |+⟩

= z∗2(z1|+⟩+ z2|−⟩)

= z∗2 |z⟩ (129)

We have just projected these kets in the direction of the initial z ket. The coefficients

measure how much z is contained in these plus and minus kets, most roughly.

5. Part (e)

Let’s remember the definition of the vector n̂ and let |z⟩ → eiα|z⟩ and simultaneously

⟨z| → ⟨z|e−iα:

n̂ = ⟨z|σ|z⟩

→ ⟨z|e−iασeiα|z⟩ (130)

28

But these exponentials are just constant phases, so they commute with the Pauli matrices:

n̂→ ⟨z|σe−iαeiα|z⟩

= ⟨z|σ|z⟩

= n̂ (131)

B. Problem 2

We are given the following:

σ′i = n̂i · σ =
3

∑
j=1

(n̂i)jσj (132)

for i = 1, 2, 3. Notice that we have three n̂i vectors.

1. Part (a)

Let’s demonstrate the power of index notation, where I’ll keep my summation symbols

for clarity:

[σ′i , σ′j] =

[
3

∑
r=1

(n̂i)rσr,
3

∑
s=1

(n̂j)sσs

]
(133)

Here, (n̂i)j are really some numbers—it’s the jth component of the ith n̂ vector. Thus,

they can safely leave the commutator:

[σ′i , σ′j] =
3

∑
r=1

3

∑
s=1

(n̂i)r(n̂j)s[σr, σs] (134)

Now we are left with the usual commutator of two Pauli matrices:

[σ′i , σ′j] =
3

∑
r=1

3

∑
s=1

(n̂i)r(n̂j)s

[
3

∑
t=1

2iϵrstσt

]

= 2i
3

∑
r=1

3

∑
s=1

3

∑
t=1

ϵrst(n̂i)r(n̂j)sσt (135)

Compare this to Eq. (58). We have the same structure but with different indices—but

that’s totally okay because we are summing over them anyways. Now, the important

point is to be able to make the connection that a = n̂i, b = n̂j, and c = σ. Even though

we have these i and j indices, they are not our enemies, we can still live with them:

[σ′i , σ′j] = 2in̂i ∧ n̂j · σ (136)

29

2. Part (b)

Now we do the anticommutator:{
σ′i , σ′j

}
=

{
3

∑
r=1

(n̂i)rσr,
3

∑
s=1

(n̂j)sσs

}

=
3

∑
r=1

3

∑
s=1

(n̂i)r(n̂j)s {σr, σs}

=
3

∑
r=1

3

∑
s=1

(n̂i)r(n̂j)s [2δrs] (137)

Now we remember that the Kronecker delta has the easiest job on the planet, which is

just replacing indices: {
σ′i , σ′j

}
= 2

3

∑
r=1

(n̂i)r(n̂j)r

= 2n̂i · n̂j (138)

3. Part (c)

We are changing the basis from {σ} to {σ′}:
σ′1

σ′2

σ′3

 =


(n̂1)1 (n̂1)2 (n̂1)3

(n̂2)1 (n̂2)2 (n̂2)3

(n̂3)1 (n̂3)2 (n̂3)3




σ1

σ2

σ3

 (139)

It’s like going from the usual Cartesian basis vectors x to some rotated basis vectors

x′ = Rx. We don’t really care about the structure of the primed sigma matrices here. The

entire story is about these unit vectors.

Now, for these primed sigma matrices to form a basis, the transformation should be

given by a rotation matrix. If we have real unit vectors, then we have an orthogonal

transformation, or if we have complex unit vectors, we have a unitary transformation.

Whatever it is, we know that it will be a matrix with all the columns (or the row) or-

thogonal to each other. The reason is, only an orthogonal (or unitary) matrix preserves

lengths. If the inner product gives different results after a transformation, then these new

basis vectors (or matrices) are not properly defining a basis. We don’t want that.

Therefore, for {σ′} to be a proper basis, we must have n̂i · n̂j = δij.

30

C. Problem 3

We are given this unitary matrix U:

U = ei θ
2 φ̂·σ (140)

which we know how to free from the exponential function—by a series expansion:

U = ei θ
2 φ̂·σ

= ∑
k≥0

1
k!

(
i
θ

2
φ̂ · σ

)k

= ∑
k≥0

1
(2k)!

(
iθ
2

)2k
(φ̂ · σ)2k + ∑

k≥0

1
(2k + 1)!

(
iθ
2

)2k+1

(φ̂ · σ)2k+1

= ∑
k≥0

1
(2k)!

(
iθ
2

)2k
+ ∑

k≥0

1
(2k + 1)!

(
iθ
2

)2k+1

φ̂ · σ

= cos
(

θ

2

)
+ i sin

(
θ

2

)
φ̂ · σ (141)

With that, we also have

U† = cos
(

θ

2

)
− i sin

(
θ

2

)
φ̂ · σ (142)

1. Part (a)

Let me employ the Einstein summation convention now because we’ll have lots of

terms in each line. In what follows, assume all the repeated indices are summed from 1

to 3:

Ωj = UσjU†

=

[
cos

(
θ

2

)
+ i sin

(
θ

2

)
φ̂rσr

] [
cos

(
θ

2

)
− i sin

(
θ

2

)
φ̂sσs

]
= cos

(
θ

2

)2

σj − i cos
(

θ

2

)
sin
(

θ

2

)
φ̂rσjσr + i cos

(
θ

2

)
sin
(

θ

2

)
φ̂rσrσj + sin

(
θ

2

)2

φ̂r φ̂sσrσjσs

= cos
(

θ

2

)2

σj + i cos
(

θ

2

)
sin
(

θ

2

)
φ̂r [σr, σj]︸ ︷︷ ︸

2iϵrjtσt

+ sin
(

θ

2

)2

φ̂r φ̂sσr σjσs︸︷︷︸
δjs+iϵjstσt

= cos
(

θ

2

)2

σj + sin(θ)(φ̂∧ σ)j + sin
(

θ

2

)2

(φ̂j φ̂rσr + iφ̂r φ̂sϵjst σrσt︸︷︷︸
δrt+iϵrtuσu

)

31

= cos
(

θ

2

)2

σj + sin(θ)(φ̂∧ σ)j + sin
(

θ

2

)2

(φ̂jφ̂ · σ + i φ̂s φ̂tϵjst︸ ︷︷ ︸
0

− ϵjst ϵrtu︸︷︷︸
ϵurt︸ ︷︷ ︸

δjuδsr−δjrδsu

φ̂r φ̂sσu)

= cos
(

θ

2

)2

σj + sin(θ)(φ̂∧ σ)j + sin
(

θ

2

)
(φ̂jφ̂ · σ − σj + φ̂jφ̂ · σ) (143)

or

Ωj = cos(θ)σj + sin(θ)(φ̂∧ σ)j + 2 sin
(

θ

2

)2

φ̂jφ̂ · σ (144)

A lot of things have been done without saying. Questions. . . Just ask.

2. Part (b)

Expand Ωj in the usual 2-by-2 basis:

Ωj = (mj)0 + (mj)rσr (145)

where

(mj)0 =
1
2

tr(Ωj) (146)

(mj)r =
1
2

tr(σrΩj) (147)

Note that (mj)0 = 0 for all j = 1, 2, 3 because each Ωj has one and only one power of

sigma:

Ωj =

[
cos(θ)δsj + sin(θ)ϵjps φ̂p + 2 sin

(
θ

2

)2

φ̂j φ̂s

]
σs (148)

Now, let’s see what happens when we multiply this by σr and take the trace:

σrΩj = [· · ·] σrσs (149)

tr(σrΩj) = [· · ·] tr(σrσs) (150)

where the terms in the square brackets are given in (148). Let’s do the trace. Recall the

anticommutation relation:

{σr, σs} = 2δrs

32

= σrσs + σsσr (151)

so

tr(2δrs) = 2δrs tr(12×2)

= 4δrs

= tr(σrσs + σsσr)

= tr(σrσs) + tr(σsσr)

= 2 tr(σrσs) (152)

and hence

tr(σrσs) = 2δrs (153)

This gives us

tr(σrΩj) = 2 cos(θ)δrj + 2 sin(θ)ϵrjp φ̂p + 4 sin
(

θ

2

)2

φ̂r φ̂j (154)

and therefore

(mj)r = cos(θ)δrj + sin(θ)ϵrjp φ̂p + 2 sin
(

θ

2

)2

φ̂r φ̂j (155)

Now let’s construct this matrix:

33

Here, the three n̂ vectors are given by the rows due to our construction of the m matrix.

Let’s show them they are orthonormal:

Or we could just show that m−1 = mT:

3. Part (c)

The R matrix here is the transpose of the m matrix from the previous part due to

our construction. Now, since m−1 = mT, we also have R−1 = RT. This makes R most

definitely a rotation matrix because it’s orthogonal. If it’s hard to see that, just do an

example. Set, e.g., ϕ = π/2, why not:

34

This is a rotation about the x axis in the clockwise direction when viewed from the

positive x direction. Nice and easy.

35

IV. DISCUSSION 3 (OCT 13)

Why do we have this Dirac Hamiltonian? Where does it come from? Since we have

mentioned this Dirac Hamiltonian in today’s lecture, let’s very briefly mention it here.

Suppose you want to solve the Schrödinger equation in the good ol’ position basis.

What is the most general form of the Hamiltonian that you can write? We have, most

naively, a kinetic term plus a potential:

H = K + U =
p2

2m
+ V(x) (156)

where the representation of the momentum operator in the position basis is just the deriva-

tive:

p
.
=

h̄
i
∇ (157)

I’m a lazy guy, so I’ll just set h̄ = c = 1, though we don’t deal with the speed of light, yet.

Now, with this Hamiltonian, you write down the Schrödinger equation in the position

basis:

ih̄
∂ψ(t,x)

∂t
= Hψ(t,x) (158)

where I’ve indicated the h̄ explicitly for this last time. Schrödinger essentially took the

classical expression for the Hamiltonian an promoted it to be an operator. That’s how we

do quantum mechanics.

Now, consider the case of a free particle:

i
∂ψ(t,x)

∂t
= − 1

2m
∇2ψ(t,x) (159)

Now, this equation is disturbing, if you know where to look at. The complex unit may

bother you, that’s okay, but that’s how quantum mechanics works. We have a diffusion

equation and we work essentially with imaginary time (if you let t→ −it).

The keyword is relativity. What are the most common objects in relativity? Well, that’s

a really broad question but I have 4-vectors in my mind. We promote the usual position

3-vector to a 4-vector by marrying it to time:

xµ = (ct,x) (160)

36

and this will be the last time where I explicit write c. Similarly, for the momentum, we

have

pµ = (E,p) (161)

You can also promote the force 3-vector to 4d. What’s the quantity that should go into the

0th or the time component? It’s power:

Fµ = (P,F) (162)

In the most beautiful theory ever written down on this planet, namely in Einstein’s theory

of relativity, we treat time and position on an equal footing. They become just some

parameters using which you write down your fields—okay, that’s a new concept, which

I’ll not pursue here.

Now, in light of these promotions, let’s ask again. What’s that thing in the Schrödinger

equation that should bother you? It’s the fact that we have only one time derivative but

two position derivatives. You can’t do relativity with this (Schrödinger tried that). Why?

Because we don’t treat time and position on an equal footing.

So, what can we do? First, let’s ask this: What’s the energy that we should promote to

be an operator in relativity? It’s the relativistic energy:

E2 = p2 + m2 (163)

We want to be able to promote this to an operator so as to write a Hamiltonian like

H ?
=
√

p2 + m2 (164)

(Again, I’m just considering the case of a free particle for the sake of simplicity). Now, in

the position basis, the Schrödinger equation becomes

i
∂ψ

∂t
?
=
√
−∇2 + m2ψ (165)

Having a Laplacian under a square root causes lots of troubles. So what can we do about

this?

At this point, Dirac came in and said hey, I’m just going to take the square root of this

expression. He chose the following as ansätz:

H =
3

∑
j=1

αj pj + βm (166)

37

Then, he took two copies of this to get the usual relativistic energy formula:

H2 = (αj pj + βm)(αk pk + βm)

= αjαk pj pk + β2m2 + αjβpjm + βαk pkm

= αjαk pj pk + β2m2 + (αjβ + βαj)pjm (167)

Now we want to have

H2 = δjk pj pk + m2 (168)

So we see that β2 = 1 and that the last term above should be zero:

αjβ + βαj = 0 ∀j = 1, 2, 3 (no sum!) (169)

And we also the alpha factors in the first term to give δjk—but we need to symmetrize it

first: you can’t just write αjαk = δjk because we know that Kronecker delta is explicitly

symmetric.

αjαk =
1
2
{

αj, αk
}
+

1
2
[
αj, αk

]
(170)

So we see that this product of alphas contain an antisymmetric part—the commutator—

as well. Now we have:

1
2
{

αj, αk
}
= δjk (171)

Okay, let’s write the two relations we found in a simplified way:

{
αj, αk

}
= 2δjk,

{
αj, β

}
= 0 (172)

[For my particle-theorist colleagues, yes, these are the gamma matrices—not directly but

in a way.] Dirac realized that he can’t just take the alphas and the beta to be scalars

because he can’t satisfy these relations. Therefore, he said, they must be matrices. So,

that’s why we said earlier in today’s lecture that we express the Dirac Hamiltonian using

anticommuting matrices!

So, the next question any sane person would ask is, what’s the size of these matrices?

Let’s try 2-by-2 because we have the Pauli matrices that satisfy very similar anticommu-

tation relations. Can we take αj = σj and β = 1? Well, the alpha part works but the

38

beta part is problematic. With beta being the identity, you can’t just satisfy the above

anticommutations. So, what do we do? We have four 2-by-2 matrices and we can’t ex-

press them using the basis of the 2-by-2 hermitian matrices (Show that α and β should

be hermitian!). The basis is simply not sufficient to cover these matrices. Then, we go for

the next option, namely we assume these matrices to be 3-by-3. We have the 8 Gell-Mann

matrices and the identity matrix, so we have a lot more freedom to express these alpha

and beta matrices than with the Pauli matrices. But. . . There is a problem.

We have

αjβ + βαj = 0 (173)

Recalling that β2 = 1, multiply both sides from left by beta and take the trace. You’ll find

that

tr(αj) = 0 (174)

Multiply the same equation by αj, sum over j, and take the trace. You’ll get

tr(β) = 0 (175)

so we conclude that our Hamiltonian must be traceless. Now that’s important.

The eigenvalues of the Dirac Hamiltonian are, as we have also shown in today’s lec-

ture, ±
√

p2 + m2. There is this relation from linear algebra:

tr(A) = ∑
λ

λ (176)

In words, we say that the trace of any nice enough matrix is given by the sum of its

eigenvalues. Our Hamiltonian is traceless and we have the eigenvalues±λ. If these alpha

and beta matrices, hence our Hamiltonian, were 3-by-3, then there is no way to make our

Hamiltonian traceless. You can’t get zero by adding +λ and −λ even in the presence of

degeneracies. (Suppose +λ is 2-fold generate. Then we get tr(H) = λ. Suppose −λ is

2-fold degenerate. Then we get tr(H) = −λ. There is always a left-over).

This means that we should have equal numbers of these energy eigenvalues, i.e. both

+λ and −λ should be N-fold degenerate. If we have N + N = 2N eigenvalues, then

our matrix should be 2N-by-2N. This shows that we can just use 3-by-3 (or any odd-

dimensional) matrices. The smallest number is 4. This is what we have discussed in

today’s lecture—in a different language.

39

∗ ∗ ∗

I’m going to introduce the machinery of ladder operators. I’ll rely on your earlier expo-

sure to quantum mechanics in writing down some parts, but if you see these for the first

time, it should still be followable.

If we have a spin-1/2 particle, if we measure the z component of its spin, we can have

only +h̄/2 and −h̄/2. This has been given to you since modern physics courses. So let’s

either accept this or wait until we discuss angular momentum in the class. Take your

pick.

From linear algebra, we know that if we know the eigenvalues of a matrix, then we

can express it as a diagonal matrix with its eigenvalues on the diagonal entries in the

canonical basis. Here, by the canonical basis, I mean the unit vectors where we have a 1

somewhere and the rest of the entries are 0. Then we can represent the Sz operator as

Sz
.
=

+1/2 0

0 −1/2

 (177)

where I’ve now set h̄ = 1. Notice that this is just the third Pauli matrix multiplied by 1/2.

With that, we can write the spin operators as the spin times the Pauli matrices:

S =
1
2
σ (178)

Now, we have said that the eigenkets are the kets that are reprenseted by the vectors in

the canonical basis. Let’s introduce the notation |s, m⟩, where s is the spin, which is fixed

here, and m is the z component of the spin. We have

∣∣∣∣12,+
1
2

〉
.
=

1

0

 (179)

∣∣∣∣12,−1
2

〉
.
=

0

1

 (180)

The eigenvalue equation for the Sz operator is

Sz

∣∣∣∣12,±1
2

〉
= ±1

2

∣∣∣∣12,±1
2

〉
(181)

So when I say spin, I essentially mean the Pauli matrices—at least for this case.

40

Now, I’ll introduce two nonhermitian operators, S+ and S−, which can represented in

the canonical basis by

S+
.
=

0 1

0 0

 (182)

S−
.
=

0 0

1 0

 (183)

(184)

But this is just for visual pleasure. Let’s express them in terms of the eigenkets of the Sz

operator:

S± =

∣∣∣∣12,±1
2

〉〈
1
2

,∓1
2

∣∣∣∣ (185)

So they are basically projection operators. Let’s see what these guys do for a living:

S+

∣∣∣∣12,+
1
2

〉
= 0 (186)

S+

∣∣∣∣12,−1
2

〉
=

∣∣∣∣12,−1
2

〉
(187)

S−

∣∣∣∣12,+
1
2

〉
=

∣∣∣∣12,+
1
2

〉
(188)

S−

∣∣∣∣12,−1
2

〉
= 0 (189)

where I’ve used the orthonormality of the eigenkets. So essentially, S+ increases the z

component of the spin by one or annihilates the state if it’s already in the state with the

highest possible m value, and S− works in the opposite way.

Now let’s see what we get if we take the combos S+ ± S−:

S+ + S−
.
=

0 1

1 0

 = σ1 = 2Sx (190)

S+ − S−
.
=

 0 1

−1 0

 = iσ2 = 2iSy (191)

so we have

Sx =
S+ + S−

2
(192)

41

Sy =
S+ − S−

2i
(193)

(194)

Since we are taking the half of the sigma matrices to define these spin matrices, we have

this simplified relation for the commutator:

[Sx, Sy] = iSz (cyclic) (195)

By simplified, I mean there is no factor of 2.

Now I’m going to generalize these to any spin value. We always start with the z

component of the spin. The eigenvalue equation for the Sz operator is given by

Sz|m⟩ = m|m⟩ (cf. σ3|±⟩ = ±|±⟩) (196)

I don’t really care about what these m values are. I know that they form a complete basis:

s

∑
m=−s

|m⟩⟨m| = 1(2s+1)×(2s+1)

(
or ∑

m
= |m⟩⟨m| = 1 for short

)
(197)

Multiply the eigenvalue equation by ⟨m| from right and sum over mL

Sz = ∑
m

m|m⟩⟨m| (198)

which is in fact nothing but the usual spectral decomposition of this operator. Now, we

have the ladder operators:

S±|m⟩ = c±m |m± 1⟩ (199)

where c±m =
√

s(s + 1)−m(m± 1). Do the same trick of multiplying by the bra:

S± = ∑
m

c±m |m± 1⟩⟨m| (200)

so we have

Sx =
1
2 ∑

m

[
c+m |m + 1⟩⟨m|+ c−m |m− 1⟩⟨m|

]
(201)

Sy =
1
2i ∑

m

[
c+m |m + 1⟩⟨m| − c−m |m− 1⟩⟨m|

]
(202)

42

Let’s now try to visualize these operators using matrices. I’ll consider s = 1 and start

with Sz:

Sz =
1

∑
m=−1

m|m⟩⟨m| (203)

= −1| − 1⟩⟨−1|+ 0|0⟩⟨0|+ 1|1⟩⟨1| (204)

Now, we match these eigenkets {|m⟩} to the canonical basis starting with the ket with

the highest m value:

|1⟩ .
=


1

0

0

 (205)

|0⟩ .
=


0

1

0

 (206)

| − 1⟩ .
=


0

0

1

 (207)

so we have

Sz
.
=


1 0 0

0 0 0

0 0 −1

 (208)

Let’s do S+ and S−:

S+ =
1

∑
m=−1

c+m |m + 1⟩⟨m|

= c+1 |2⟩︸︷︷︸
no such state

⟨1|+ c+0 |1⟩⟨0|+ c+−1|0⟩⟨−1|

.
=


0 c+0 0

0 0 c+−1

0 0 0

 (209)

43

Note that S− = S†
+:

S−
.
=


0 0 0

c+0 0 0

0 c+−1 0

 (210)

so

Sx =
1
2


0 c+0 0

c+0 0 c+−1

0 c+−1 0

 (211)

Sy =
1
2i


0 c+0 0

−c+0 0 c+−1

0 −c+−1 0

 (212)

(213)

If you compute these numbers, you’ll get

Sx =


0 1/

√
2 0

1/
√

2 0 1/
√

2

0 1/
√

2 0

 (214)

Sy =


0 −i/

√
2 0

i/
√

2 0 −i/
√

2

0 i/
√

2 0

 (215)

Note that we still have [Sx, Sy] = iSz. Try this using the kets and bras—there is nothing

boring than multiplying matrices. This commutation relation doesn’t really care about

the particular spin value.

So now, anything can be accomplished with the ket-bra expansions given in Eqs. (198)

and (200). Study the case s = 3/2. Or not, I’m not a cop.

∗ ∗ ∗

For an earlier course, I wrote a mini Mathematica code that gives these spin matrices for

any spin value [6]. I’ll drop it here and you can use it to check your calculations.

44

(* play with the s value only *)

s = 1;

(* black box *)

dim =

2*s + 1;

Sp =

ConstantArray[0, {dim, dim}];

Sm =

ConstantArray[0, {dim, dim}];

Sz =

ConstantArray[0, {dim, dim}];

i = 1;

For[mp = s, mp >= -s, mp--, j = 1;

For[m = s, m >= -s, m--,

Sp[[i]][[j]] =

\[HBar]*Sqrt[s*(s + 1) - m*(m + 1)]*KroneckerDelta[mp, m + 1];

Sz[[i]][[j]] =

\[HBar]*m*KroneckerDelta[mp, m];

Sm[[i]][[j]] =

\[HBar]*Sqrt[s*(s + 1) - m*(m - 1)]*KroneckerDelta[mp, m - 1];

j++;

];

i++;

];

Sx = (Sp + Sm)/2;

Sy = (Sp - Sm)/(2*I);

Print["\!\(*SubscriptBox[\(S\), \(x\)]\) = ", \[HBar], Sx/\[HBar] // MatrixForm]

Print["\!\(*SubscriptBox[\(S\), \(y\)]\) = ", \[HBar], Sy/\[HBar] // MatrixForm]

45

Print["\!\(*SubscriptBox[\(S\), \(z\)]\) = ", \[HBar], Sz/\[HBar] // MatrixForm]

∗ ∗ ∗

I’m not so fond of visualization but there was a comment/question about how to visu-

alize a 3D vector that depends on 4 parameters, t and x. Here is how I would do it on

Mathematica.

n[1, ct_, x_, y_, z_] := x (* or any crazy function you can think of *)

n[2, ct_, x_, y_, z_] := y (* or any crazy function you can think of *)

n[3, ct_, x_, y_, z_] := Sin[ct] z (* or any crazy function you can think of *)

n[ct_, x_, y_, z_] := n[#, ct, x, y, z] & /@ Range[3]

So we have now a 3D vector that depends on time and position. I’ll use the command

VectorPlot3D:

VectorPlot3D[

n[1, x, y, z],

{x, -5, 5},

{y, -5, 5},

{z, -5, 5}

]

Just evaluate it and see what you get. I’ve just defined some arbitrary ranges for the

position. Notice that I’ve taken ct equal to 1 here. So, how do we visualize the evolution

of this vector in time? Use Animate:

Animate[

VectorPlot3D[

n[ct, x, y, z],

{x, -5, 5},

{y, -5, 5},

{z, -5, 5}

],

{ct, 0, 10}

]

It’s also possible to export this to a gif.

46

V. DISCUSSION 4 (OCT 20)

What are the eigenkets of the position operator? Well, we should have a relation like

X|x⟩ = x|x⟩ (216)

Note that x here is a continuous parameter. If you take the inner product of two different

eigenkets of the position operator, they will give you the Dirac delta:

⟨x|x′⟩ = δ(x− x′) (217)

The completeness relation is then given by an integral instead of a sum:∫
dx |x⟩⟨x| = 1 (218)

Now, what is the quantity ⟨x(t)|x(0)⟩? I’m aware of that we haven’t done any time

evolution yet. I’ll just throw this at you.

In a conference long ago, Dirac said that this object represents a Lagrangian. WTF,

right? But guess what happened next. One of the participants was Feynman and he

thought long about this mysterious remark. This eventually led him to the path-integral

formalism of quantum mechanics.

There is a very similar-looking object that goes like this:

⟨0|x(t)x(0)|0⟩ (219)

What does this guy do for a living? It looks nasty, first of all. Remember your Green’s

functions from elementary electrodynamics? It looks like some ik ·x in the exponent, and

the entire thing is divided by the length of this position vector. That’s okay if you don’t

recall this right now. When we compute this object within the context of simple harmonic

oscillator, we’ll see that it has the same exact form but the position replaced by the energy.

So, it’s the propagator in the energy space. Now, for my particle-theorist colleagues, if

you promote the position operator to fields, you will get the good ol’ propagator.

This was interesting so I thought I should just throw this at you and embrace the

consequences.

∗ ∗ ∗

47

I can’t describe how much I like my measurements. As I stated in the first discussion

session and as we have seen in today’s lecture, measurements are all about projections.

You take your initial state in the ket, then your final state in the bra, and make a projection

sandwich in between. This gives you the transition amplitude. If you take the square

of this guy, you’ll get the probability. Note that transition amplitudes are not physical

observables. What we—well, my experimentalist colleagues—measure in their labs are

these probabilities. That’s important to remember.

Now, I want to fry your brains and give you something to think about. Let’s start with

the two-slit interference in the classical optics. How do you write the interference pat-

tern? Well, you have an electric-field component coming from one slit, say |E|, and then

you take the one coming from the other slit with a phase difference, |E|eiδ—assuming

that we have a single, coherent source. Then you sum them up, take the absolute square,

and obtain the intensity profile. This is very much like the measurement. The electric

field here corresponds to your wave function and the intensity is the probability. You

don’t measure (or see) your electric-field strength, but rather the intensity.

Now suppose I put a small piece of circuit around one of the slits. It can be just a

simple wire with an ammeter. What happens to the interference pattern on the screen?

We see only a single bright spot now. Why? Because we are doing a measurement on

the slit. We are, in a way, selecting which channel [Yeah, I’m going to use this word a

lot] the photons go—or the electrons due to the wave-particle duality in nature. This is

equivalent to say that we block out the other channel.

This is the same phenomenon that takes place with the Stern-Gerlach apparatus—well,

almost. Using the magnetic field (like the slits), we essentially split our beam into two.

And we have the liberty to pick one of the beams that come out of the SG apparatus.

It’s not exactly like the double-slit experiment because we see only two bright spots (for a

spin-1/2 particle), where as we have a couple of them in a double-slit experiment.

Now, any sane person would ask at this point, why the heck am I talking about this?

Let’s continue with a funny story. When young Feynman was a PhD student, in an

EMT course, I think, he started asking his professor what happens if there is another slit in

the double slit experiment? His professor said, just take another copy of the electric field

with twice the phase difference and add it to the other two. He then asked what happens

if we have a fourth one. Then the professor replied in a similar fashion. I think after

48

the tenth slit, the professor got mad. But do you see where this is going? What if we

have infinitely many slits on the cardboard? Well, then we wouldn’t have the cardboard

anymore?! The heck is going on? Some time later, Feynman would conclude that the

particles you send at your cardboard go through all the slits. Then they interfere. When

you are working in a lab and send an electron beam to a measuring device, there is a finite

probability that your electrons visit the nearest galaxy—whatever it is, I’m not good at

cosmology.

This is interesting. If you try to enforce your beam to pass through a single slit, you

don’t see the interference. What you are doing is that you collapse the wavefunction to

that particular state. And by the way, it goes usually without saying but it was Dirac

who postulated that when you perform a measurement, the wavefunction collapses one

of the eigenkets of the operator with which you are doing the measurement. Anyways,

let’s consider the following experiment now.

Suppose you have an oven, or any other form of source for some beam of particles.

Suppose I have an SG-like device but I’m measuring some arbitrary observable, say A.

Since it’s a hermitian operator, we know that it has real eigenvalues:

A|a⟩ = a|a⟩, a ∈ R (220)

I don’t really care about the dimensionality now. Suppose we have 10 nondegenerate

outcomes in the spectrum, but that’s not really important. Now, I’m sending my beam

in the initial state |ψ⟩ and after it comes of this first SG-like device, out of all possible

components, I’m going to just select one of them by blocking the rest. Let’s call this

selected state |a⟩. Now, suppose I take another SG-like device but this time, for another

observable, say B. Assume for concreteness that A and B are incompatible observables,

so that |a⟩ just doesn’t go straight through this second device. In this case, we’ll have lots

of beams coming out of this second device, assuming that we have again an observable

with an extended spectrum than just having two possible outcomes. Let’s select one of

them. I mean, like we did for the double-slit experiment, let’s emphasize (or enforce) that

we want to have just a certain state coming out of this second device. Call it |b⟩—one of

the eigenstates of the B operator. Block out the rest and direct this beam to a third device,

which measure some other observable C, which we assume doesn’t commute with A or

B. Okay, things are getting spicier now, but I promise you that this is the last device I’m

49

going to consider. Now, after this third measurement, I want to select just one eigenstate

again, which I may call |c⟩. The question is, what is the probability for this process?

Let’s take a step back and focus on the transition amplitude of this process. We have

something like this, for which I’m going to consider what happens just after my beam

leaves the A machine:

Tb
c←a = ⟨c|b⟩⟨b|a⟩ = ⟨c|Pb|a⟩ (221)

Just as I promised, just evaluate the appropriate projection operator between the initial

and final states. (That’s why we write c← a, actually.) Note that the superscript indicates

the channel I’m choosing. Now, take its square to get the probability.

Suppose now I repeat this single experiment NB times, where NB is the size of the

spectrum of the B observable. But each time, I select only one channel in this B machine

and I record it down in my notebook—so as to keep track of what I’m doing. What is

that I’m doing here? Each time, in each experiment, I’m collapsing my intermediate state

to a very specific eigenstate of the B operator. At the end of the end, I want to compute

the probability of getting |c⟩ after each experiment. How do I do that? Since each time

I’m recording (selecting) the intermediate channel (just as in the double-slit experiment),

I’m collapsing my state to a single intermediate ket. But I’m repeating this a couple of

times. And these experiments are statistically independent (or uncorrelated, if you wish).

So I just add up my probabilities that I get at each of the experiments:

Pc←a = |Tb1
c←a|2 + |Tb2

c←a|2 + · · ·+ |T
bNB
c←a|2

= ∑
b
|Tb

c←a|2 (222)

where I’ve suppressed the summation limits for the sake of convenience. Now let’s ex-

pand this expression:

Pc←a = ∑
b
⟨c|Pb|a⟩∗⟨c|Pb|a⟩

= ∑
b
⟨a|b⟩⟨b|c⟩⟨c|b⟩⟨b|a⟩ (223)

I can’t simply get rid of this summation using the completeness of the eigenstates of the

B operator because there are two factors of ket-bra combinations. I can do this, instead:

Pc←a = ∑
b
|⟨b|a⟩|2|⟨b|c⟩|2 (224)

50

I think this is as far as I can go.

Now, let’s repeat the experiment (i.e. sending a beam from one side of the A machine,

letting it pass through B, and measuring a very specific eigenstate of the C machine) in

a slightly adjusted manner. Now, I will not record anything on the B device. It will be

there, but I’ll choose to be voluntarily blind to its actions. What happens now? What’s

the probability of getting this |c⟩ state from |a⟩?
This is the point where we remember the funny story involving Feynman. We just

focus on the kets |a⟩ and |c⟩ and write the transition amplitde as

Tc←a = ⟨c|a⟩ (225)

But here, if you think hard about this, we see that in fact our beam goes through all the B

channels!

Tc←a = ∑
b
⟨c|Pb|a⟩ (226)

What is the probability now?

Pc←a = |Tc←a|2

=

[
∑
b
⟨c|Pb|a⟩

]∗ [
∑
b′
⟨c|Pb′ |a⟩

]
= ∑

b,b′
⟨a|b⟩⟨b|c⟩⟨c|b′⟩⟨b′|a⟩ (227)

I think I’m bored with this, so I’ll stop messing around with these expressions. The moral

of the story is this. If you measure intermediate steps, the individual probabilities add

up. Otherwise, you’ll be totally blind to what this intermediate device does.

∗ ∗ ∗

It’s Mathematica time. Let me drop you a couple of hints that you may find useful. More

on them will be in my supplementary notes for the key to the second homework.

• There are two types of outer product. Perhaps they have distinct names but I’ll just

pass on them. We have this first one that we use to construct projections operators

from eigenkets, Pλ = |λ⟩⟨λ|, which gives you an N-by-N matrix if your dimen-

sionality is N, and there is this other one that we use to construct, e.g., the Gamma

51

matrices from the Pauli matrices, Γ = σ⊗ σ′, where σ and σ′ are some Pauli matri-

ces, If you have the second one, you’ll get a large matrix at the end, e.g. the product

Am×n ⊗ Bp×q will return a (m + p)-by-n + q matrix. Let’s show how they work on

Mathematica.

The first one is given by the function Outer. Suppose I denote my ket by the x

vector and my dimensionality is 3:

dim = 3;

x = x /@ Range[dim];

Px = Outer[Times, x, Conjugate[x]]

It’s important to take the conjugate here because we have a bra as the second factor.

The other outer product is given by the function KroneckerProduct. Suppose you

want to compute Γ = σ2 ⊗ σ0. Please don’t define the Pauli matrices by hand!

s[i_] := PauliMatrix[i]

G = KroneckerProduct[s[2], s[0]]

I use the MatrixForm (when applicable) and TraditionalForm on my outputs:

Px // MatrixForm // TraditionalForm

Now this is very important. If you have anything to simplify, do it before you

change the form of the output:

Px //

Simplify[#, Assumptions -> {(* some assumptions here *)}] //

MatrixForm //

TraditionalForm

52

otherwise, you’ll encounter bugs.

• Now we have this Px matrix but it looks ugly. And I like pretty things—I mean,

who doesn’t?! So, let’s write a command that will prettify the output.

Prettify[expr_] :=

expr /. {

x[i_] :> Subscript[x, i]

} //

Style[

#,

{

FontSize -> 20,

FontColor -> Black,

FontFamily -> "Latin Modern Roman"

}

]

Try running Prettify[Px] // MatrixForm // TraditionalForm (Try also doing

it without the TraditionalForm—you’ll see the function heads Conjugate lurking

around. This TraditionalForm function converts things to a more human-friendly

form).

• Now suppose you have this x vector with real components. How do you explain

this Mathematica?

$Assumptions =

{

x[1] \[Element] Reals,

x[2] \[Element] Reals,

x[3] \[Element] Reals

};

53

Boring, right? Suppose you have a 10-component vector like this. Nobody has time

for that. Use the pattern-recognition of Mathematica:

$Assumptions =

{

x[_] \[Element] Reals

};

Doing so, whatever your dimension is, all the x components will be assumed real.

Furthermore, suppose you want to have a normalized x.

$Assumptions =

{

x[1]^2 + x[2]^2 + x[3]^2 == 1

};

Again, long and boring. Do this instead:

$Assumptions =

{

Total[(x /@ Range[dim])^2] == 1

};

Let’s break it down. That funny symbol, i.e. /@, means mapping over a list by taking

whatever it is on the left as a function. First, Mathematica will expand Range[3] into

{1, 2, 3}. Then, it will take x and distribute it over this list, bringing each entry

into the argument of x:

x /@ Range[3] (* = {x[1], x[2], x[3]}*)

54

Notice that we square this array. In some programming languages, this may be

the square of the array, e.g. like a dot product with itself. But in Mathematica,

the power of an array is carried out entry by entry. So, (x /@ Range[3])^2 will

give you {x2
1, x2

2, x2
3}. Now, finally, we have this Total function. It just adds all the

entries of an array together. That’s it.

• Note that $Assumptions works at a global level, so as long as you don’t quit your

kernel, and if you evaluate your assumptions at the beginning before anything else,

you should be just fine.

• In the item before the previous one, I played a very dangerous game. I defined

the $Assumptions variable twice. If you do that, your most recent $Assumptions

will overwrite the ones that precede it. So, it’s a good strategy to either put all the

assumptions in a single variable, or join them as you go down the line. I mean,

either do

$Assumptions =

{

x[_] \[Element] Reals,

Total[(x /@ Range[dim])^2] == 1

};

or

$Assumptions =

{

x[_] \[Element] Reals

};

(* some other code pieces here *)

$Assumptions =

Join[

$Assumptions,

{Total[(x /@ Range[dim])^2] == 1}

55

];

Well, the third option would be a mix usage of them, which is perfectly fine. The

problem with Mathematica is that, this $Assumptions variable is not a dynamic one.

• Now, you have this Px matrix. And if you introduce your assumptions to Math-

ematica in a solid way and then evaluate the Px matrix again, you’ll see that you

don’t get rid of the complex conjugation right away. You need to simplify it. Unless

there is good reason (e.g. all the variables being numerical and in the float form),

Mathematica will just give you what you write back (Do you remember the Casio

scientific calculators? The ones that’d give you, for instance when you enter 13/6,

13/6? Yeah, like that.) So, run a Simplify on this projection matrix.

• There is a really smart trick if you don’t want to deal with the assumptions. It is

the ComplexExpand function. Essentially, it assumes that everything other than the

complex unit is real. Cool, huh? But use it with caution. Sometimes you won’t

be able to simplify the argument function, Arg. In this case, just try to break down

your code into smaller pieces and use a Simplify on the variables which you know

are real definitely.

• But still, this is just a machine doing some symbolic manipulations based on the

most general assumptions, right? There will be points at which an outside, intel-

ligent human-being should intervene. For instance, if you get the Sign function

somewhere in your eigenvectors, then try using the gauge freedom (the phase-

redefinition, basically) to see if you can extract this sign in a consistent manner

so that the diagonalizing matrix that you’d construct using your eigenvectors still

diagonalizes your initial matrix properly.

That’s all, folks!

56

Problems

145
as E
sin E eir

a arms t B E
a On Ni Ti

Of 1 X 1

I I
B Eg

BE

Tn x 4 IPet 14

In ex
L l I Pj 14

Pa y They 1
I I I Pt 14 12

41 Pet la an IP 14

41 Pit 14
Pt ex IT

y
12

41 P 14

VI. DISCUSSION 5 (OCT 27)

57

b Oz N i Gi
05 1 Xz I 1

Pat gift It BE II
B EE
Ttz e e y 12 I PI Pi 14

Iz e e e x C121Pz Pi 14

Plz e t a Taze y x t

41 Py Patl 727Gtz IBTPI 14

CH I P Pat P 14

Ptz e e e x
IT iz e e e y t

41 Pi Pi 1 12 C l I PI R N

CH I P Pi Pi 14

58

problem 1

part (a)

In[1]:= alpha = ArcCos[1 / Sqrt[3]];
beta = Pi / 4;
psi = {Cos[alpha / 2], Sin[alpha / 2] Exp[I beta]};
n = {Cos[alpha] Cos[beta], Cos[alpha] Sin[beta], -Sin[alpha]};
s = PauliMatrix /@ Range[3];
O1 = Total[n s];
I2 = IdentityMatrix[2];
P1[1] = (I2 + O1) / 2;
P1[-1] = (I2 - O1) / 2;
p[psiToO1plus] = Conjugate[psi].P1[1].psi;
p[psiToO1minus] = Conjugate[psi].P1[-1].psi;

In[12]:= p[psiToO1plus] // N
p[psiToO1minus] // N

Out[12]= 0.5 - 1.54311 × 10-17 ⅈ

Out[13]= 0.5 - 5.38561 × 10-18 ⅈ

part (b)

In[14]:= n1 = {-Sin[beta], Cos[beta], 0};
O2 = Total[n1 s];
P2[1] = (I2 + O2) / 2;
P2[-1] = (I2 - O2) / 2;
p[psiToO1minusToO2plus] = Conjugate[psi].P1[-1].P2[1].P1[-1].psi;
p[psiToO1minusToO2minus] = Conjugate[psi].P1[-1].P2[1].P1[-1].psi;

In[20]:= p[psiToO1minusToO2plus] // N
p[psiToO1minusToO2minus] // N

Out[20]= 0.25 + 2.27328 × 10-17 ⅈ

Out[21]= 0.25 + 2.27328 × 10-17 ⅈ

Printed by Wolfram Mathematica Student Edition

59

PMhhM

niMi

MM 1 Pn K E Z

m m

H a M t p M

M I p 1 O 1

H M J O I 1mn H IMn n IMn

MIM n MIMN
a H IMn y lmn

a Mt B M IMn

a pet BM2 Ipin

ITB
y a p

spectrum is nondegenerate

Pit t.tt iIEEI o
I it

60

it tt o

b a P M 24 O O

P LII
Pi III

a 13 n O O 29

PI FIEF
PE III

c a P

To x OH I PI 121

Po y To y 1

41 PI IO OH I PI 14
CHIP 147

61

problem 2

part (a)

In[1]:= M /: M^k_?(# > 2 && OddQ[#] &) = M;
M /: M^k_?(# > 1 && EvenQ[#] &) = M^2;
H = alpha M + beta M^2;

PH[alphaPlusbeta] =
H - (0)

(alpha + beta) - 0

H - (-alpha + beta)

(alpha + beta) - (-alpha + beta)
;

PH[0] =
H - (alpha + beta)

(0) - (alpha + beta)

H - (-alpha + beta)

(0) - (-alpha + beta)
;

PH[malphaPlusbeta] =
H - (alpha + beta)

(-alpha + beta) - (alpha + beta)

H - (0)

(-alpha + beta) - (0)
;

In[7]:= PH[alphaPlusbeta] // Expand // Simplify

Out[7]=
1

2
M (1 + M)

In[8]:= PH[0] // Expand // Simplify

Out[8]= 1 - M2

In[9]:= PH[malphaPlusbeta] // Expand // Simplify

Out[9]=
1

2
(-1 + M) M

part (b)

In[10]:= PH[alphaeqbeta, twoalpha] =
H - (0)

(2 alpha) - (0)
;

PH[alphaeqbeta, 0] =
H - (2 alpha)

(0) - (2 alpha)
;

PH[alphaeqmbeta, 0] =
H - (-2 alpha)

(0) - (-2 alpha)
;

PH[alphaeqmbeta, mtwoalpha] =
H - (0)

(-2 alpha) - (0)
;

Printed by Wolfram Mathematica Student Edition

62

In[14]:= PH[alphaeqbeta, twoalpha] // Simplify
PH[alphaeqbeta, 0] // Simplify
PH[alphaeqmbeta, 0] // Simplify
PH[alphaeqmbeta, mtwoalpha] // Simplify

Out[14]=
M (alpha + beta M)

2 alpha

Out[15]= 1 -
M

2
-
beta M2

2 alpha

Out[16]=
beta M2 + alpha (2 + M)

2 alpha

Out[17]= -
M (alpha + beta M)

2 alpha

part (c)

In[18]:= nj = {Sin[theta] Cos[phi], Sin[theta] Sin[phi], Cos[theta]};
Mj = {{{0, 0, 0}, {0, 0, -I}, {0, I, 0}},

{{0, 0, I}, {0, 0, 0}, {-I, 0, 0}}, {{0, -I, 0}, {I, 0, 0}, {0, 0, 0}}};
PHzero = (PH[alphaeqbeta, 0] // Expand) /. M^2 → M.M /. M → Total[nj Mj];

In[21]:= psi = {Sin[theta] Cos[phi], Sin[theta] Sin[phi], Cos[theta]};
P[psiToHzero] = Conjugate[psi].PHzero.psi;

In[23]:= P[psiToHzero] // ComplexExpand // Simplify

Out[23]= (Cos[theta] + (Cos[phi] + Sin[phi]) Sin[theta])2

2

Printed by Wolfram Mathematica Student Edition

63

PUTTI
data

Pa anticommuting and traceless 4 by 4matrices

Ta Tp 28xp
a H2 da43 Pa T p

Fa
n I VIT tr H O each EV is 2 folddegen

Pit YEI
RE EÉPI LIFE It
E VIT

b M di G D Ti i 0

H data d i T 0 0 t dy 520 Gotds5308

di to Oi dj on 00

did on Oi rjin

sym Tutisym

O

Go Ti Oj0003 Oj 00 Oj 09 0

64

i M H3 0

o 7 IMY HIMY n I un

MI Mn MIMn
1 7 PmtPI 1a
It PI PI 12

up to normalization
1 t PM Pit 133
1 PM PT 14

U Itt It t t 1 s

Ut HU diag E E E E

Ut MU diag m m m m

117 123 133 14 canonicalbasis

65

In[1]:= s[i_] := PauliMatrix[i]
ss[i_, j_] := KroneckerProduct[s[i], s[j]]
G[1] = ss[1, 1];
G[2] = ss[1, 2];
G[3] = ss[1, 3];
G[4] = ss[2, 0];
G[5] = ss[3, 0];
G1[1] = ss[0, 1];
G1[2] = ss[0, 2];
G1[3] = ss[0, 3];
I4 = IdentityMatrix[4];
H = Total[(d /@ Range[5]) (G /@ Range[5])];
M = Total[(d /@ Range[3]) (G1 /@ Range[3])];
e = Sqrt[Total[(d /@ Range[5])^2]];
m = Sqrt[Total[(d /@ Range[3])^2]];
$Assumptions = {d[_] ∈ Reals, e^2 > 0, e > 0, m^2 > 0, m > 0};

P[H, sgn_] :=
e I4 + sgn H

2 e

P[M, sgn_] :=
m I4 + sgn M

2 m
CB[i_] := Table[If[i ⩵ k, 1, 0], {k, Range[4]}];

In[20]:= EVec[h_, m_, i_] := Normalize[P[H, h].Normalize[P[M, m].CB[i]]]
U = {

EVec[1, 1, 1],
EVec[1, -1, 2],
EVec[-1, 1, 3],
EVec[-1, -1, 4]

} // Transpose;

In[22]:= DH = ConjugateTranspose[U].H.U;
DM = ConjugateTranspose[U].M.U;

In[24]:= Prettify[expr_] := expr /.
d[i_] ⧴ Subscript[d, i] //

Style[#, {FontSize → 18, FontFamily → "Latin Modern Roman"}] &

In[25]:= DH // ComplexExpand // Simplify // FullSimplify // MatrixForm // Prettify
Out[25]=

d1
2 + d2

2 + d3
2 + d4

2 + d5
2 0 0

0 d1
2 + d2

2 + d3
2 + d4

2 + d5
2 0

0 0 - d1
2 + d2

2 + d3
2 + d4

2 + d5
2

0 0 0 - d1
2

Printed by Wolfram Mathematica Student Edition

66

In[26]:= DM // ComplexExpand // Simplify // FullSimplify // MatrixForm // Prettify
Out[26]=

d1
2 + d2

2 + d3
2 0 0 0

0 - d1
2 + d2

2 + d3
2 0 0

0 0 d1
2 + d2

2 + d3
2 0

0 0 0 - d1
2 + d2

2 + d3
2

2 qm-mt-p3.nb

Printed by Wolfram Mathematica Student Edition

67

68

VII. DISCUSSION 6 (NOV 3)

Did you know it was Dirac who first derived the Heisenberg equation? This is usually

not stated. But yes, he was such a cool and humble guy, he just wanted to call it the

Heisenberg equation, the equation he derived when he was one of his famous, all-day

Sunday walks on the countryside. But he couldn’t recall the expression for the Poisson

brackets that day, so, he had to wait until the morning for the library to open. . .

∗ ∗ ∗

Let’s prove the following Baker-Campbell-Hausdorff (BCH) formula—as a matter of fact,

there is a family of BCH formulae and this is just one member.

Claim.

eiλG Ae−iλG = A + iλ[G, A] +
(iλ)2

2!
[G, [G, A]] +

(iλ)3

3!
[G, [G, [G, A]]] + · · · (228)

Proof. Define the left-hand side to be a function of λ and expand it in a Taylor series

around λ = 0.

f (λ) = eiλG Ae−iλG (229)

f (0) = A (230)

f ′(λ) = iGeiλG Ae−iλG + eiλG Ae−iλG(−iG) (231)

f ′(0) = iGA− iAG = i[G, A] (232)

f ′′(λ) = iGiGeiλG Ae−iλG + iGeiλG Ae−iλG + iGeiλG Ae−iλG(−iG) + eiλG Ae−iλG(−iG)(−iG)

(233)

f ′′(0) = i2GGA− i2GAG− i2GAG + i2AGG = i2[G, [G, A]] (234)

Continue in this fashion:

f (k)(0) = ik[G, . . . [G︸ ︷︷ ︸
k times

, A]] (235)

Taylor expansion of f :

f (λ) = ∑
k≥0

(iλ)k

k!
[G, . . . [G︸ ︷︷ ︸

k times

, A]] (236)

qed.

69

Let’s make an application of this formula. Suppose I take G = S3 and A = S1, where

S1 and S3 are the x and z components of the spin operator—but mind that I’m not telling

you what the spin value is. You’ll see it doesn’t matter.

eiλS3S1e−iλS1 = S1 + iλ[S3, S1] +
(iλ)2

2!
[S3, [S3, S1]] + · · · (237)

Now this expression may look like a beast but in reality, no, it’s the other one, the beauty.

For very specific cases, like the spin operators or the position and momentum, we see

some alternating terms here so that you can express the result in a compact manner. Let’s

start evaluating the commutators. I’ll do the first four:

[S3, S1] = ih̄S2 (238)

[S3, [S3, S1]] = −(ih̄)2S1 = h̄2S1 (239)

[S3, [S3, [S3, S1]]] = ih̄3S2 (240)

[S3, [S3, [S3, [S3, S1]]]] = h̄2S1 (241)

where I’ve made successive use of [S3, S1] = ih̄S2 and [S3, S2] = −ih̄S1. Now we see that

[S3, . . . [S3︸ ︷︷ ︸
2k times

, S1]] = h̄2kS1 (242)

[S3, . . . [S3︸ ︷︷ ︸
2k+1 times

, S1]] = ih̄2k+1S1 (243)

Then we see that

eiλS3S1e−iλS1 = ∑
k≥0

(iλ)k

k!
[S3, . . . [S3︸ ︷︷ ︸

k times

, S1]] (244)

= ∑
k≥0

(iλ)2k

(2k)!
h̄2kS1 + ∑

k≥0

(iλ)2k+1

(2k + 1)!
ih̄2k+1S2 (245)

= S1 cos(λh̄)− S2 sin(λh̄) (246)

Let λ = −ωt/h̄:

e−iωtS3/h̄S1eiωtS3/h̄ = S1 cos(ωt) + S2 sin(ωt) (247)

Looks familiar? As an exercise, show that

e−iωtS3/h̄S2eiωtS3/h̄ = S2 cos(ωt)− S1 sin(ωt) (248)

70

Let’s keep going:

e−iωtS3/h̄S3eiωtS3 = S3 (249)

Then, we see something worth looking twice:

e−iωtSz/h̄SeiωtSz/h̄ = RS (250)

where

R =


cos(ωt) sin(ωt) 0

− sin(ωt) cos(ωt) 0

0 0 1

 (251)

∗ ∗ ∗

In quantum mechanics, in addition to the Schrödinger and Heisenberg pictures, there is

another one, called the Dirac (or interaction) picture. In this framework, both states and

operators are evolving in time.

We define an intermediate state ket, say αI , via

|α(t)⟩ = U0(t)|αI(t)⟩ (252)

where U0(t) = e−iH0t/h̄ is some time-evolution operator. Now, what is this Hamiltonian,

H0?

We write down the total Hamiltonian for some problem as

H = H0 + H1 (253)

Here, H0 is the part we love so much that we’d , and we know everything that exists

to know about it—the spectrum, eigenkets, all the good stuff. For the time being, we’ll

assume that this part is time-independent. Consider, for example, a spin-1 particle un-

der some magnetic field aligned specifically along the z axis, i.e. H0 = −µB0Sz. H1, on

the other hand, can be any wild-looking Hamiltonian for our purposes. As an exam-

ple, consider a rotating magnetic field on the xy plane on top of this existing one, i.e.

H1 = −µB1[cos(ωt)Sx + sin(ωt)Sy]. The main motivation of employing this Dirac pic-

ture is that we treat this second piece of the Hamiltonian as a “perturbation”. I’m using

71

quotation marks here because there are problems that can be solved exactly, so it’s just a

name, you know.

Now, let’s write down the Schrödinger equation and play around with it:

ih̄
∂

∂t
|α(t)⟩ = H|α(t)⟩ (254)

The first order of business is to write down the Hamiltonian explicitly as the two parts

given above and next, we just use the definition of the intermediate state ket:

ih̄
∂

∂t

[
e−iH0t/h̄|αI(t)⟩

]
= H0e−iH0t/h̄|αI(t)⟩+ H1e−iH0t/h̄|αI(t)⟩ (255)

Use the chain rule on the left-hand side:

ih̄
−iH0

h̄
e−iH0t/h̄|αI(t)⟩+ ih̄e−iH0t/h̄ ∂

∂t
|αI(t)⟩ = H0e−iH0t/h̄|αI(t)⟩+ H1e−iH0t/h̄|αI(t)⟩

(256)

The first term on the left cancels the first term on the right:

ih̄e−iH0t/h̄ ∂

∂t
|αI(t)⟩ = H1e−iH0t/h̄|αI(t)⟩ (257)

Multiply both sides from left by eiH0t/h̄:

ih̄
∂

∂t
|αI(t)⟩ = eiH0t/h̄H1e−iH0t/h̄|αI(t)⟩ (258)

Let

HI(t) = eiH0t/h̄H1e−iH0t/h̄ (259)

so we have

ih̄
∂

∂t
|αI(t)⟩ = HI(t)|αI(t)⟩ (260)

This is the Schrödinger equation in the Dirac picture.

Most naively, we can assert the existence of a time-evolution operator UI(t) such that

UI(t)|αI(0)⟩ = |αI(t)⟩ (261)

With this, the Schrödinger equation is written in terms of the operators now:

ih̄
∂

∂t
UI(t) = HI(t)UI(t) (262)

72

The story doesn’t end here. We still have to answer the question how do we go from |α(0)⟩
to |α(t)⟩? That’s the million-dollar problem. Let’s observe something. If we have

|α(t)⟩ = e−iH0t/h̄|αI(t)⟩ (263)

then we see that

|α(0)⟩ = |αI(0)⟩ (264)

Now let’s bring everything together:

|α(t)⟩ = U0(t)|αI(t)⟩

= U0(t)UI(t)|αI(0)⟩

= U0(t)UI(t)|α(0)⟩ (265)

This is simply marvelous. It is just so beautiful that it makes you cry, you know, like the

sight of Grand Canyon. We managed to separate the time-evolution into two parts. First,

we carry our given, initial state to an intermediate state by performing a time translation

that’s generated by the Hamiltonian HI , which is given in terms of the perturbing part of

the total Hamiltonian. Then, we let it evolve further in time but this time with the fully

known part of the Hamiltonian.

As it also happens in life, the beautiful are mostly unachievable. If we get an inter-

mediate Hamiltonian, HI , that looks easy (in the sense that it may depend on time but

nevertheless commutes with itself at different times), then that’s great. If that’s not the

case, we employ some other machinery to get there. It’s the particle way of doing calcu-

lations, which I myself especially enjoy. We’ll see it in action below. I want to cover just

one more point before that.

Even though we mentioned only the intermediate Hamiltonian, HI , you can essentially

define an intermediate operator for any of your operators. Suppose I have some operator

V in the Schrödinger picture. Now I’m making the explicit assumption that I’m work-

ing with operators in the Schrödinger picture. Hamiltonian can depend on time and

in fact, it generates the time evolution, so in a way, it has a special place in our hearts;

nevertheless, we should be really careful with any other operator. Note that operators

in the Schrödinger picture can have time-dependence. The essential difference is this:

What causes this time-dependence? Is it like cos(ωt) tacked in to a spin operator? Yes!

73

It’s something that you can change physically—or something that changes physically.

Heisenberg operators have time dependence via the unitary time-evolution operator. If

you have an operator like Sz cos(ωt) in the Schrödinger picture, which you can, then your

operator in the Heisenberg picture would look like U(t)†Sz cos(ωt)U(t). If this is confus-

ing, well, it should be. Heisenberg operators evolve this way so as to prevent states from

evolving, if you like. Therefore, it doesn’t really matter if your operator has some ex-

plicit, crazy-looking time-dependence tacked in to it—it will always be your Schrödinger

operator. . . until you let it evolve with a unitary time-evolution operator relevant to your

problem.

Now, I can define the corresponding intermediate operator or the interaction operator by

VI(t) = eiH0t/h̄VSe−iH0t/h̄ (266)

where I think this is the only place I’ll use the subscript S to denote an operator in the

Schrödinger picture. Then look what happens if I take the time derivative of both sides:

dVI(t)
dt

= eiH0t/h̄
(

iH0

h̄
V −V

iH0

h̄

)
e−iH0t/h̄

=
i
h̄

eiH0t/h̄[H0, V]e−iH0t/h̄

=
i
h̄
[H0, eiH0t/h̄Ve−iH0t/h̄]

=
i
h̄
[H0, VI]

=
[VI , H0]

ih̄
(267)

[If your Schrödinger operator has explicit time dependence, we’d have to include a term

like ∂VI/∂t on the right-hand side. But let’s avoid that to keep things simple.] This looks

nice: the interaction operators evolve with the known part of the Hamiltonian. It just

keeps getting better, doesn’t it?

Let’s solve one problem (Sakurai Problem 5.30) to make things concrete. Suppose I

have a spin-1/2 particle under a magnetic field that has a stationary component along

the z and that has other components that rotate on the xy plane. The Hamiltonian is then

given by something like this:

H = −µB0S3 − µB1[cos(ωt)S1 + sin(ωt)S2] (268)

74

Now we make the idenfitication

H0 = −µB0S3 (269)

Why? Because we know the eigenvalues and the eigenkets of the S3 operator. This leaves

us with

H1 = −µB1[cos(ωt)S1 + sin(ωt)S2] (270)

Now if you try computing the HI operator, you see it won’t be any different from H1

because you’ll still get S1 times cosine of something plus S2 times sine of something, and

this interaction Hamiltonian will not commute with itself at different times.

Now we try something else. We’ll exploit the known spectrum of the known Hamil-

tonian. Suppose I know the eigenkets of H0 and I can write the following:

H0|n⟩ = En|n⟩ (271)

I’ll exploit the fact that these eigenkets form a complete basis, so that I can expand my

intermediate state ket as

|αI(t)⟩ = ∑
n

cn(t)|n⟩ (272)

Note that for our actual state ket, we have

|α(t)⟩ = e−iH0t/h̄|αI(t)⟩ = ∑
n

e−iEnt/h̄cn(t)|n⟩ (273)

Let’s use the expansion of the intermediate state ket in the Schrödinger equation in the

Dirac picture:

ih̄
∂

∂t
|αI(t)⟩ = HI(t)|αI(t)⟩ (274)

ih̄
∂

∂t ∑
n

cn(t)|n⟩ = eiH0t/h̄H1e−iH0t/h̄ ∑
n

cn(t)|n⟩ (275)

∑
n

ċn(t)|n⟩ = ∑
n

eiH0t/h̄ H1

ih̄
e−iH0t/h̄cn(t)|n⟩ (276)

∑
n

ċn(t)|n⟩ = ∑
n

eiH0t/h̄ H1

ih̄
e−iEnt/h̄cn(t)|n⟩ (277)

Multiply by ⟨m| from left:

∑
n

ċn(t) ⟨m|n⟩︸ ︷︷ ︸
δmn

= ∑
n
⟨m|eiH0t H1

ih̄
e−iEnt/h̄cn(t)|n⟩ (278)

75

Then,

ċm(t) = ∑
n

eiEmt/h̄⟨m|H1

ih̄
e−iEnt/h̄cn(t)|n⟩ (279)

= ∑
n

ei(Em−En)t/h̄⟨m|H1

ih̄
|n⟩cn(t) (280)

= ∑
n

eiωmnt Hmn
1

ih̄
cn(t) (281)

where I’ve defined ωmn = Em−En
h̄ , and the Hmn

1 are the matrix elements of the perturbing

Hamiltonian in the basis spanned by the eigenkets of the known Hamiltonian, H0. We’ll

now have N first-order coupled ODEs. We know how to solve this, right?

Let’s go back to our spin-1/2 particle in a rotating magnetic field. The known Hamil-

tonian is

H0 = −µB0S3 (282)

so it has eigenvalues E1 = −µB0h̄/2 and E2 = +µB0h̄/2. Its eigenkets are the eigenkets

of the third component of the spin operator, i.e. the eigenkets of the third Pauli matrix,

which are just the 2D canonical basis vectors when represented by matrices:

H0|1⟩ = E1|1⟩, H0|2⟩ = E2|2⟩ (283)

|1⟩ .
=

1

0

 , |2⟩ .
=

0

1

 (284)

The perturbing Hamiltonian can be represented by the matrix

H1 = −µB1[cos(ωt)S1 + sin(ωt)S2] (285)

.
= −µB1h̄

2

 0 e−iωt

eiωt 0

 (286)

so we see that

H11
1

ih̄
= 0 (287)

H12
1

ih̄
=

iµB1

2
e−iωt (288)

H21
1

ih̄
=

iµB1

2
eiωt (289)

76

H22
1

ih̄
= 0 (290)

Now, our two coupled first-order ODEs are given by

ċ1 = eiω11t⟨1|
H11

1
ih̄
|1⟩c1 + eiω12t⟨1|

H12
1

ih̄
|2⟩c2 (291)

ċ2 = eiω21t⟨2|
H21

1
ih̄
|1⟩c1 + eiω22t⟨2|

H22
1

ih̄
|2⟩c2 (292)

After simplification, we obtain

ċ1 =
iµB1

2
ei(ω12−ω)tc2 (293)

ċ2 =
iµB1

2
e−i(ω12−ω)tc1 (294)

where I’ve used the fact that ω21 = −ω12. Let β = µB1/2 and δ = ω12 − ω. Then let’s

rewrite these two equations using arrays:

ċ = Mc (295)

where

c =
(

c1 c2

)
(296)

and

M :=

 0 iβeiδt

iβe−iδt 0

 (297)

is the mixing matrix. Suppose there exists a matrix Q that diagonalizes M:

Q†MQ = M∗ (298)

You know that I’m using the subscript star for diagonalized stuff. With this, we can write

ċ = Mc (299)

ċ = MQQ†c (300)

Q†ċ = Q†MQQ†c (301)

Let

c∗ = Q†c (302)

77

so

ċ∗ = M∗c∗ (303)

Even though this is a matrix equation, since we have diagonalized the mixing matrix, I

can integrate it as if it were a usual scalar first-order ODE:

c∗(t) = eM∗tc∗(0) (304)

Let’s switch back to c(t):

c(t) = Qc∗(t) = QeM∗tc∗(0) = QeM∗tQ†c(0) (305)

Consider the nth component. I’ll do it with turtle steps:

cn(t) = ∑
m
(QeM∗tQ†)nmcm(0)

= ∑
m
⟨n|QeM∗tQ†|m⟩cm(0)

= ∑
m
⟨n|QeM∗tQ†|m⟩⟨m|αI(0)⟩

= ∑
m
⟨n|QeM∗tQ†|m⟩⟨m|α(0)⟩

= ⟨n|QeM∗tQ†|α(0)⟩ (306)

Then,

|αI(t)⟩ = ∑
n

cn(t)|n⟩

= ∑
n
|n⟩cn(t)

= ∑
n
|n⟩⟨n|QeM∗tQ†|α(0)⟩

= QeM∗tQ†|α(0)⟩ (307)

Finally,

|α(t)⟩ = e−iH0t/h̄|αI(t)⟩

= e−iH0t/h̄QeM∗tQ†|α(0)⟩ (308)

Therefore, we conclude that

U(t) = e−iH0t/h̄QeM∗tQ† (309)

78

As a humble suggestion, do not expand anything in your calculations if you want to do

it this way. Do it by hand. Don’t even actually diagonalize the M matrix to obtain the

Q matrix. When you have the final result in a simple form as this, then proceed with

all the computational power you have. There are some huge simplifications here. For

instance, H0 goes like Sz, so we know how to expand this—we eliminate this exponent

easily, so that we have a nice matrix to deal with. Then, we have the Q matrices, which

will be again just matrices—no exponentiation, no funny business. And finally, eM∗t is

just diag(eλ1t, eλ2t), where λ1 and λ2 are the eigenvalues of the mixing matrix M.

As you see, this is the ugly way of doing things. That’s why Schwinger was a total

genius.

I think I just got bored here, now that the rest is just fourth-grade algebra (or whenever

you were introduced the matrices). If you’ve been reading up until the end, well, all these

should be sufficient for this week before we all burn out. Go take a walk under the rain.

Isn’t this city even more beautiful when it rains. . .

79

VIII. HW3 SUPPLEMENTS

Below is the link to a Mathematica-based supplementary solutions to the third home-

work:

https://www.dropbox.com/s/dkzwj52xlencz03/2022 fall phys412-1 hw3.nb?dl=1

80

https://www.dropbox.com/s/dkzwj52xlencz03/2022_fall_phys412-1_hw3.nb?dl=1

2022 Fall Phys 412-1 Quantum Mechanics
HW3

Mathematica-based supplementary materials

The sole purpose of these notes is to show the minimum amount of work that
can be done using Mathematica to get full credits from assignments. It’s not my
intention to show new or different ways of solving the given problems compared
to the professor’s solutions; after all, we are doing the same old physics. But the
problem is, sometimes having a great source of power as that of Mathematica
can be so tempted that you’d want to do it all on Mathematica. There are
proper ways to do that, and then there are other ways to do that. It’s important
to see when it’d be a good time for you to switch to Mathematica (or any other
language for that matter) during your calculations to employ your full potential.
That being said, it’s my intention to present the shortest ways to do good stuff
on Mathematica.

Problem 1
Out[]=

Out []=

Out []=

Printed by Wolfram Mathematica Student Edition

Below is the print version of the same notebook.

81

Out[]=

Part (a)
Out[]=

Out []=

Out []=

2 2022_fall_phys412-1_hw3.nb

Printed by Wolfram Mathematica Student Edition

82

In [] := psi[0] =



Costheta2,

Sintheta2 Exp[I phi]

;

I2 =

IdentityMatrix[2];
n =

{

Cos[theta] Cos[phi],
Cos[theta] Sin[phi],
-Sin[theta]

};
s =

PauliMatrix /@ Range[3];
U[t_] := (* order matters! not s.n *)

Cos[mu B t/2] I2 + I Sin[mu B t/2] n.s
psi[t_] :=
U[t].psi[0] //

FullSimplify

2022_fall_phys412-1_hw3.nb 3

Printed by Wolfram Mathematica Student Edition

83

In [] := Prettify[expr_] :=
expr /. {

mu → μ,
theta → θ,
phi → φ,
hbar → ℏ

} //

TraditionalForm //

Style[
#,
{

FontSize → 24,
FontFamily → "Palatino"

}

] &

In [] := Row[{
tex["\\ket{\\psi(t)} \\repr "],
psi[t] // MatrixForm // Prettify

}]

Out[]=

cos θ2  cos
B μ t
2  - ⅈ sin θ2  sin

B μ t
2 

ⅇⅈ φ sin θ2  cos
B μ t
2  + ⅈ cos θ2  sin

B μ t
2 

Part (b)
Out[]=

4 2022_fall_phys412-1_hw3.nb

Printed by Wolfram Mathematica Student Edition

84

Out[]=

Out []=

In[] := P[t_, psi1_] :=
Conjugate[Conjugate[psi1].psi[t]]

Conjugate[psi1].psi[t] //

ComplexExpand //

FullSimplify
psi1 =



Costheta2,

Sintheta2 Exp[I phi]

;

psi2 =



-Sintheta2 Exp[-I phi],

Costheta2

;

2022_fall_phys412-1_hw3.nb 5

Printed by Wolfram Mathematica Student Edition

85

In [] := Table[
Row[{

tex["P(t, \\psi_" <> ToString[i] <> ") = "],
P[t, ToExpression["psi" <> ToString[i]]] // Prettify

}],
{i, Range[2]}

] //

TableForm
Out[] //TableForm=

cos2 B μ t
2 

sin2 B μ t
2 

Part (c)
Out[]=

In[] := Sav[t_] :=
hbar2 Conjugate[psi[t]].#.psi[t] & /@ s //

ComplexExpand //

FullSimplify

In order to see the spin precession, we need the averages at t = 0, as well.

6 2022_fall_phys412-1_hw3.nb

Printed by Wolfram Mathematica Student Edition

86

In [] := Table[
Grid[{

{tex["\\braket{S_" <> ToString[{x, y, z}〚i〛] <>

"}_0 = "], Sav[0]〚i〛 // Expand // Prettify},
{tex["\\braket{S_" <> ToString[{x, y, z}〚i〛] <>

"}_t = "], Sav[t]〚i〛 // Expand // Prettify}
},
Alignment → Left

],
{i, Range[3]}

] //

TableForm
Out[] //TableForm=

1
2 ℏ sin(θ) cos(φ)
1
2 ℏ sin(θ) cos(φ) cos(B μ t) -

1
2 ℏ sin(φ) sin(B μ t)

1
2 ℏ sin(θ) sin(φ)
1
2 ℏ sin(θ) sin(φ) cos(B μ t) +

1
2 ℏ cos(φ) sin(B μ t)

1
2 ℏ cos(θ)
1
2 ℏ cos(θ) cos(B μ t)

Now we can write the following:
Out[]=

2022_fall_phys412-1_hw3.nb 7

Printed by Wolfram Mathematica Student Edition

87

Out[]=

In[] := R[B_, mu_, t_, theta_] :=


Cos[B mu t], -Sin[B mu t]Sin[theta], 0,

{Sin[B mu t], Cos[B mu t], 0},
{0, 0, Cos[B mu t]}



S0[hbar_, theta_, phi_] :=
Sav[0] //

Evaluate
St[hbar_, B_, mu_, t_, theta_, phi_] :=
R[B, mu, t, theta].S0[hbar, theta, phi]

8 2022_fall_phys412-1_hw3.nb

Printed by Wolfram Mathematica Student Edition

88

In [] := Manipulate

Animate

ParametricPlot3D[
{

{Cos[phi Degree] Cos[theta Degree], Cos[theta Degree]
Sin[phi Degree], -Sin[theta Degree]} r,

St[1, 1, 1, t, theta Degree, phi Degree] r
} // Evaluate,

{r, 0, 1},
PlotStyle → {Magenta, Blue},
AxesOrigin → {0, 0, 0},
PlotRange → {{-1, 1}, {-1, 1}, {-1, 1}},
ViewPoint → (*{1.3, -2.4, 2.}*)Front,
Ticks → None,
AxesLabel → {x, y, z}

] /. Line → Arrow,
t, 0, 10 Pi, Pi50

,

{theta, 1, 180, 1},
{phi, 0, 360, 1}



2022_fall_phys412-1_hw3.nb 9

Printed by Wolfram Mathematica Student Edition

89

Out[]=

theta

phi

t

Part (d)
Out[]=

10 2022_fall_phys412-1_hw3.nb

Printed by Wolfram Mathematica Student Edition

90

Out[]=

Out []=

Any equation of this form is called a precession equation. Show that the (time-
dependent) averages we’ve found earlier satisfy this relation:

In [] := D[Sav[t], t] ⩵ mu Cross[Sav[t], B n] // Simplify
Out[]=

True

Problem 2

Part (a)

Suppose you have your laboratory oriented in a certain direction and you choose
the longitudinal axis of your machine to be the +z axis. You measure the spin of
some particle and find the spectrum of the z component of the spin to be ℏ, 0,
and -ℏ. Suppose you change the orientation of your machine and you call n the
new direction pointing along the longitudinal axis. If you measure the spectrum
of the z component of the spin, what do you get? The very same spectrum. The
moral of the story is, due to the isotropy of the space, it doesn’t matter if you
measure Sz or Sn := n ·S. You will get the same spectrum.

Now, write down the secular equation for this operator with said eigenvalues.
Out[]=

2022_fall_phys412-1_hw3.nb 11

Printed by Wolfram Mathematica Student Edition

91

Out[]=

The Cayley-Hamilton theorem tells us that this is the equation satisfied by the
matrix itself:

Out[]=

Then we observe that, while Sn
2 is independent of Sn, Sn

3 is given in terms of Sn:
Out[]=

(Try this with spin-3/2 matrices. Again, Sn will have the same eigenvalues as Sz,
i.e. 3 / 2, 1 / 2, -1 / 2, and -3 / 2. You’ll see that the second and third powers of Sn
are independent of Sn, the fourth power depends on all the three.)

Out[]=

Out []=

12 2022_fall_phys412-1_hw3.nb

Printed by Wolfram Mathematica Student Edition

92

Out[]=

and I don’t even really care what the n vector is, as long as it’s a unit vector.

Part (b)

In [] := psi[0] =

{

1,
0,
0

};
S =



2022_fall_phys412-1_hw3.nb 13

Printed by Wolfram Mathematica Student Edition

93

In [] :=

hbarSqrt[2] {

{0, 1, 0},
{1, 0, 1},
{0, 1, 0}

},
hbarSqrt[2] {

{0, -I, 0},
{I, 0, -I},
{0, I, 0}

},
hbar DiagonalMatrix[{1, 0, -1}]

;

n =

{

Sin[theta] Cos[phi],
Sin[theta] Sin[phi],
Cos[theta]

};
Sn = (* order matters! not S.n *)

n.S;
I3 =

IdentityMatrix[3];
U[t_] :=
I3 - (1 - Cos[mu B t]) Sn.Snhbar^2 + I Sin[mu B t] Snhbar

psi[t_] :=
U[t].psi[0] //

FullSimplify

14 2022_fall_phys412-1_hw3.nb

Printed by Wolfram Mathematica Student Edition

94

In [] := Prettify[expr_] :=
expr /. {

mu → μ,
theta → θ,
phi → φ,
hbar → ℏ

} //

TraditionalForm //

Style[
#,
{

FontSize → 24,
FontFamily → "Palatino"

}

] &

As an aside, confirm that Sn
3 = ℏ2 Sn:

In [] := Sn.Sn.Sn ⩵ hbar^2 Sn // Simplify
Out[]=

True

Back to the problem:
Out[]=

2022_fall_phys412-1_hw3.nb 15

Printed by Wolfram Mathematica Student Edition

95

In [] := CB[i_] :=
Table[If[i ⩵ k, 1, 0], {k, Range[3]}]

P[t_, i_] :=
Conjugate[Conjugate[CB[i]].psi[t]]

Conjugate[CB[i]].psi[t] //

ComplexExpand //

FullSimplify

In [] := Table[
Row[{

tex["P(t, " <> ToString[i] <> ") = "],
P[t, i] // Prettify

}],
{i, Range[3]}

] //

TableForm
Out[] //TableForm=

cos2(θ) sin2 B μ t
2  + cos2 B μ t

2 2

1
2 sin

2(θ) sin2 B μ t
2  2 cos(2 θ) sin2 B μ t

2  + cos(B μ t) +

sin4(θ) sin4 B μ t
2 

Confirm that ∑i=1
3 P(t, i) = 1 (Why?):

In [] := Sum[P[t, i], {i, Range[3]}] // Simplify
Out[]=

1

16 2022_fall_phys412-1_hw3.nb

Printed by Wolfram Mathematica Student Edition

96

Part (c)

In [] := Sav[t_] :=
Conjugate[psi[t]].#.psi[t] & /@ S //

ComplexExpand //

FullSimplify

In order to confirm that we see precession, show that 〈S〉t satisfies the precession
equation, S


= μ S ⋀ B:

In [] := D[Sav[t], t] ⩵ mu Cross[Sav[t], B n] // Simplify
Out[]=

True

Problem 3

Part (a)
Out[]=

Out []=

t is like an index here that destroys the symmetry of the otherwise symmetric
tensor Bi Bj, so the commutator is not zero. This is the most general case for a
time-dependent Hamiltonian. There are a couple of ways to solve this problem.
Let’s do one of them.

Method I

Let's start with the Baker-Campbell-Hausdorff formula. Actually, there is a
family of Baker-Campbell-Hausdorff formulae, and here we'll do only one mem-
ber.
Claim.

2022_fall_phys412-1_hw3.nb 17

Printed by Wolfram Mathematica Student Edition

97

Let's start with the Baker-Campbell-Hausdorff formula. Actually, there is a
family of Baker-Campbell-Hausdorff formulae, and here we'll do only one mem-
ber.
Claim.

Out[]=

Proof.
Out[]=

Continue in this fashion:
Out[]=

Taylor expansion of f :
Out[]=

qed.

Now consider G = S3 and A = S1, where S1 and S3 are the x and z components of
the spin operator---but mind that I'm not telling you what the spin value is.
You'll see that it doesn't matter.

18 2022_fall_phys412-1_hw3.nb

Printed by Wolfram Mathematica Student Edition

98

Out[]=

Out []=

Out []=

Let λ = -ω t / ℏ:
Out[]=

We are given the Hamiltonian
Out[]=

Let Q := ei ω t S3/ℏ and let’s play around:

2022_fall_phys412-1_hw3.nb 19

Printed by Wolfram Mathematica Student Edition

99

Out[]=

Claim. For any matrix M and any invertible matrix Q, we have
Out[]=

Proof. “Whenever in doubt, expand in a power series.” -E. Fermi
Out[]=

qed.

Our Q operator above is unitary (Q† = Q-1), so we can somehow make use of
this identity.

20 2022_fall_phys412-1_hw3.nb

Printed by Wolfram Mathematica Student Edition

100

Out[]=

where I’ve chosen the f function to be f (x) = e-i x δ/ℏ. T and δ have no special
meaning right now, but there will be soon.

Now the time-evolution operator. Suppose we look at a time interval from ti to

tf and we slice it into N intervals of interval size δ in such a way that when we
take the limit as N →∞ and δ → 0, the product N δ will give the total time
elapsed, i.e. tf - ti.

Out[]=

Note that only for infinitesimal time separation, we have U (T + δ, T) = e-i H (T) δ/ℏ:
Out[]=

Notice that Q(t)Q†(t ') = Q(t - t '):
Out[]=

Note that eδA eδB = eδ(A+B) + Oδ2:

2022_fall_phys412-1_hw3.nb 21

Printed by Wolfram Mathematica Student Edition

101

Out[]=

or
Out[]=

or if we set ti = 0 and tf = t, we get
Out[]=

Now we need to simplify this; otherwise, we can barely make any progress. Con-
sider the first factor:

Out[]=

Out []=

Out []=

Out []=

Consider the second factor:

22 2022_fall_phys412-1_hw3.nb

Printed by Wolfram Mathematica Student Edition

102

Out[]=

Out []=

Out []=

Out []=

Then we can write
Out[]=

Don’t bother expanding this expression.

Part (b)
Out[]=

In[] := alpha[t_] :=
-omega thbar

beta[t_] :=
Sqrt[(mu B1)^2 + (omega + mu B0)^2] thbar

2022_fall_phys412-1_hw3.nb 23

Printed by Wolfram Mathematica Student Edition

103

In [] :=

p =

{

0,
0,
1

};
q =

{

mu B1/Sqrt[(mu B1)^2 + (omega + mu B0)^2],
0,
(omega + mu B0)/Sqrt[(mu B1)^2 + (omega + mu B0)^2]

};
S = 

hbarSqrt[2] {

{0, 1, 0},
{1, 0, 1},
{0, 1, 0}

},
hbarSqrt[2] {

{0, -I, 0},
{I, 0, -I},
{0, I, 0}

},
hbar DiagonalMatrix[{1, 0, -1}]

;

Sn[n_] :=
n.S

I3 =

IdentityMatrix[3];
U[t_] :=
I3 - (1 - Cos[alpha[t]]) Sn[p].Sn[p]hbar^2 +

24 2022_fall_phys412-1_hw3.nb

Printed by Wolfram Mathematica Student Edition

104

In [] :=

I Sin[alpha[t]] Sn[p]hbar.

I3 - (1 - Cos[beta[t]]) Sn[q].Sn[q]hbar^2 +

I Sin[beta[t]] Sn[q]hbar

CB[i_] :=
Table[If[i ⩵ k, 1, 0], {k, Range[3]}]

psi[0] =

CB[1];
psi[t_] :=
U[t].psi[0]

$Assumptions =

{

B0 > 0,
B1 > 0,
mu > 0,
omega > 0,
t > 0

};
P[t_, i_] :=
Conjugate[Conjugate[CB[i]].psi[t]]

Conjugate[CB[i]].psi[t] //

ComplexExpand //

FullSimplify

2022_fall_phys412-1_hw3.nb 25

Printed by Wolfram Mathematica Student Edition

105

In [] := Prettify[expr_] :=
expr /. {

B0 → Subscript[B, 0],
B1 → Subscript[B, 1],
hbar → ℏ,
omega → ω,
mu → μ

} //

TraditionalForm //

Style[
#,
{

FontSize → 24,
FontFamily → "Palatino"

}

] &

26 2022_fall_phys412-1_hw3.nb

Printed by Wolfram Mathematica Student Edition

106

In [] := Table[
Row[{

tex["P(t," <> ToString[i] <> ") = "],
P[t, i] // Prettify

}],
{i, Range[3]}

] // TableForm
Out[] //TableForm=

2 B02+B12 μ2+4 B0 μ ω+B12 μ2 cos
t B12 μ2+(B0 μ+ω)2

ℏ +2 ω2
2

4 B12 μ2+(B0 μ+ω)2
2

B12 μ2 sin2
t B12 μ2+(B0 μ+ω)2

2 ℏ 2 B02+B12 μ2+4 B0 μ ω+B12 μ2 cos
t B12 μ2+(B0 μ+ω 2

ℏ

B12 μ2+(B0 μ+ω)2
2

B14 μ4 sin4
t B12 μ2+(B0 μ+ω)2

2 ℏ

B12 μ2+(B0 μ+ω)2
2

Confirm that ∑i=1
3 P(t, i) = 1 (Why?):

In [] := Sum[P[t, i], {i, Range[3]}] // Simplify
Out[]=

1

2022_fall_phys412-1_hw3.nb 27

Printed by Wolfram Mathematica Student Edition

107

108

IX. DISCUSSION 7 (NOV 10)

I think today we mostly focused on spin couplings, particularly the coupling of two

spin-1/2 particles (as if in a bound state). My intention was to emphasize the usage

and/or importance of Kronecker product. Let’s see if I can prepare today’s notes without

getting bored, lol.

Suppose I take two electron and by some magical means, I let them form a bound state.

(For the sake of simplicity, suppose the temperature is so low that the rotational modes

are not activated yet, i.e. ignore the orbital angular momentum.) Then, I can consider a

vector operator of the form

S = S1 +S2 (310)

where Si is the ith electron spin and S is the total spin. Now, we know that electrons are

spin-1/2 particles. This means, the z component of their spin can be ±1/2 (I’m working

with natural units). (This z axis in fact is determined by the longitudinal axis of my

experimental setup. It’s just easy to call it the z axis and embrace the consequences;

otherwise, it has no particular implications whatsoever.) We usually call these states spin

up or down, right? Now, suppose my electrons are both in the up state, so that I can

describe this bound state with the ket | ↑↑⟩.

Let’s have a deeper look at this state ket. It is actually a short-hand notation for the

combined state |12
1
2⟩1 ⊗ |

1
2

1
2⟩2, where I’m using the notation |simi⟩i for the ith electron.

Since for any given problem the electron’s spin is a constant number, we usually ignore

the first quantum number in the kets that go into this product state and even usually

write | ↑⟩1 ⊗ | ↑⟩2. There is a really special meaning attached to this Kronecker product

here.

We call this product state the decoupled state just because we treat the two electrons

as if they were free—I mean, they live in their respective kets, that’s all. There are three

other decoupled states, i.e. | ↑⟩1 ⊗ | ↓⟩2, | ↓⟩1 ⊗ | ↑⟩2, and | ↓⟩1 ⊗ | ↓⟩2. These kets

span the (2 + 2)⊗ (2 + 2) space in a partial way, meaning not every state that lives in the

4⊗ 4 space can be decomposed into the product of these 2d kets, which has already been

discussed earlier today in the lecture. Even though these decoupled kets form a 4d space,

we need decoupled operators acting on them. Let me explain what I mean.

109

There are some spin addition rules—which I’m aware we haven’t covered in the class

yet, and I’m not going to go into details, no worries—and one of them says that if you

add two spin vectors, the z components just add up, i.e. we can safely focus on the z

component of the total spin given by (310):

Sz = S1z + S2z (311)

This notation has always bugged me, and it should bug you, as well. On the left, we have

an observable that is supposed to act on the coupled state (which I’ll define shortly) and on

the right, we have two decoupled observables, meaning the S1z term doesn’t do anything

on the second electron and the S2z term doesn’t do anything on the first one. Let’s make

it more concrete. What does this equation tell you—or, how would you evaluate it:

(S1z + S2z)| ↑↑⟩ = (S1z + S2z)| ↑⟩1 ⊗ | ↑⟩2 =? (312)

The operators S1z and S2z has their separate rooms in this 4⊗ 4 apartment, each having

dimensionality 2. And we have a product state that is being acted on. . .

After staring at this expression long enough, we see that the proper way of expressing

it should involve a Kronecker product:

(S1z ⊗ 1 + 1⊗ S2z)| ↑⟩1 ⊗ | ↑⟩2 =? (313)

Now this is just beautiful. The reason is, now we see who talks to whom. In the first term

in the parentheses, S1z will act on | ↑⟩1 and the identity will hit on | ↑⟩2 and in the second

term, the identity will act on | ↑⟩1 and S2z will go crazy on | ↑⟩2. Recalling the eigenvalue

equation Sz|sm⟩ = m|sm⟩ from your earlier exposure to quantum mechanics, we see that

(S1z ⊗ 1 + 1⊗ S2z)| ↑⟩1 ⊗ | ↑⟩2 = (S1z| ↑⟩1)⊗ (1| ↑⟩2) + (1| ↑⟩1)⊗ (S2z| ↑⟩2)

= (
1
2
| ↑⟩1)⊗ (1| ↑⟩2) + (1| ↑⟩1)⊗ (

1
2
| ↑⟩2)

=
1
2
| ↑⟩1 ⊗ | ↑⟩2 +

1
2
| ↑⟩1 ⊗ | ↑⟩2

= | ↑⟩1 ⊗ | ↑⟩2

= | ↑↑⟩ (314)

indicating that this state is in fact an eigenstate of the Sz operator with eigenvalue 1, as

expected (Why? Because the mi values (i = 1, 2) add up to 1).

110

Now let’s do something else and I’ll get back to this point shortly. As I mentioned,

there is this decoupled basis, given in terms of the product kets of the two electrons, namely

decoupled basis = {| ↑↑⟩, | ↑↓⟩, | ↓↑⟩, | ↓↓⟩} (315)

and there is this other basis, called the coupled basis. Let’s construct this. But before that,

we need to discuss something important.

The question is, if you manage to create a bound state of two electrons, and if you try

to measure the total spin (not just the z component), what’d you get?

In one extreme case, the individual spin vectors may be parallel, so the spins add up,

i.e. s can be equal to s1 + s2 = 1
2 +

1
2 = 1. In the other extreme, they may be antiparallel,

totally cancelling each other, i.e. s = |s1 − s2| = |12 −
1
2 | = 0. Since the spin is quantized

in integer steps, we see that these two are the only possibilities. We write this composition

in a group-theoretical language as

1
2
⊗ 1

2
= 0⊕ 1 (316)

But we are not doing group theory here; this is just for notational purposes. In words,

it just says when you add two spin-1/2 particles together, the combined state can have a total

spin of 0 or 1. That’s it. (For my particle-theorist colleagues, note that some textbooks like

Srednicki’s use a very slightly different version of these composition identities. He like

to express the composition not as s1 ⊗ s2 but rather as (2s1 + 1)⊗ (2s2 + 1), so Srednicki

would write this as 2⊗ 2 = 1⊕ 3—I don’t know if you’d find this useful, but it’s impor-

tant to be aware of this.) Now, there is an important point here. The dimensionality of

this composition is 4 (up and down for two particles) but we see only a total spin of 0

and 1. There must be some multiplicities attached to these total spins. Again, without

doing any group theory, we can directly resolve these multiplicities (They are like the

degeneracies of the Dirac Hamiltonian, which we resolved using the trace technology).

Since for any spin value s, the m values go from −s to +s in integer steps, we see that

there is only one state with s = 0, which is |00⟩, and there are three states with s = 1, i.e.

|11⟩, |10⟩, |1− 1⟩. Now I’m using the notation |sm⟩, where s is the total spin and m is its

z component. These four states form the coupled basis:

coupled basis = {|11⟩, |10⟩, |1− 1⟩, |00⟩} (317)

111

The spin-1 states constitute a triplet and the spin-0 state is just a singlet. This is just se-

mantics. What’s more crucial is, the triplet states are symmetric and the singlet state is

antisymmetric. . . with respect to what? With respect to the exchange operator, i.e. if you

flip your electrons, your state will get a minus sign. We’ll prove this shortly.

The next question is, can we make a connection between these two bases? Yes. How?

Let’s start with an observation. If both of my electrons are in the up state, then my m =

m1 + m2 value will be one, and note that there is no other way to achieve this. Therefore,

the coupled state |11⟩ can be given only by the decoupled state | ↑↑⟩:

|11⟩ = | ↑↑⟩ (318)

(I’m not sure if you are still reading or have stopped giving an f long ago, but note that

the coupled-basis state are different from what we have seen in the lecture earlier today.

Just as a clarification. Let’s continue.) I want to generate the |10⟩ using this relation and

only this relation. I like this exercise because it makes fine illustration of the Kronecker

product.

Long ago, I’ve mentioned some ladder operators in these discussion sessions. Let’s

briefly remember them. Suppose I give you this operator:

S+
.
=

0 1

0 0

 (319)

What does this guy do for a living? Well, you can act it on a known state and see what

you get. Noting that I’ve represented this operator in the basis spanned by the eigenkets

of the operator S3, I can write

| ↑⟩ .
=

1

0

 , | ↓⟩ .
=

0

1

 (320)

Then, I see that

S+| ↑⟩
.
=

0

0

 = 0 (321)

Similarly,

S+| ↓⟩
.
=

1

0

 = | ↑⟩ (322)

112

So it increases the m value by 1. There is this cousin of this operator, given by its hermitian

conjugate, S− = S†
+:

S−
.
=

0 0

1 0

 (323)

You can show that

S−| ↑⟩ = | ↓⟩ (324)

and

S−| ↓⟩ = 0 (325)

These are the ladder, or raising and lowering, operators. Notice that, in the very same

basis, I have

Sx =
S+ + S−

2
(326)

and

Sy =
S+ − S−

2i
(327)

We see that for the case of spin 1/2, these ladder operators are normalized in a way, mean-

ing they just flip the operators without bringing in any numerical factor in front of the

state. In the general case, you may want to remember the following:

S±|sm⟩ =
√

s(s + 1)−m(m± 1)|sm± 1⟩ (328)

(Note that I’m not saying whether this is a coupled state of a certain number of particles

or just the state of a single particle—it doesn’t matter!) Let’s go back and derive |10⟩ now.

We have

|11⟩ = | ↑↑⟩ (329)

From the spin addition, we have

S± = S1± + S2± (330)

113

But again, this is a subtle notation! We should write this as

S± = S1± ⊗ 1 + 1⊗ S2± (331)

Now act this on |11⟩. Notice that S± likes to talk to the coupled state but the right-hand

side will talk to the decoupled state:

S−|11⟩ = (S1− ⊗ 1 + 1⊗ S2−)| ↑↑⟩

= (S1− ⊗ 1 + 1⊗ S2−)| ↑⟩1 ⊗ | ↑⟩2 (332)

On the left, we simply have
√

1(1 + 1)− 1(1− 1)|10⟩ =
√

2|10⟩ and on the right,

√
2|10⟩ = (S1−| ↑⟩1)⊗ (1| ↑⟩2) + (1| ↑⟩1)⊗ (S2−| ↑⟩2)

= (| ↓⟩1)⊗ (| ↑⟩2) + (| ↑⟩1)⊗ (| ↓⟩2)

= | ↓⟩1 ⊗ | ↑⟩2 + | ↑⟩1 ⊗ | ↓⟩2

= | ↓↑⟩+ | ↑↓⟩ (333)

so

|10⟩ = | ↓↑⟩+ | ↑↓⟩√
2

(334)

For the coupled state |1− 1⟩, you don’t need to perform any muscle work; just consider

the fact that the total m value is −1 and there is only one way to achieve this: put both

electrons in the down state:

|1− 1⟩ = | ↓↓⟩ (335)

Notice in these three coupled states that if you flip the arrows, you’ll get the same state.

That’s why they are called the symmetric combinations.

Now we need to take care of the singlet. Note the following. If you have a Hilbert

space spanned by {|n⟩}—it can be infinite-dimensional or just 2d, doesn’t matter—then

if your basis is orthonormal and complete, you can write

⟨n|n′⟩ = δnn′ (336)

We can generalize to Hilbert space spanned by kets that carry multiple quantum numbers—

after all, they should be complete and orthonormal to form a proper basis (the language

114

here is a bit vague, I must admit; a mathematician would certainly do a better job here).

I mean, we have the following:

⟨nmℓ . . . |n′m′ℓ′ . . .⟩ = δnn′δmm′δℓℓ′ . . . (337)

Noting that both the coupled and decoupled basis kets obey this construction, we can

directly read off |00⟩ from |10⟩—it must be the orthogonal combination:

|00⟩ = | ↓↑⟩ − | ↑↓⟩√
2

(338)

up to an overall phase, which is usually taken to be eiπ. Notice that this singlet is odd

under the exchange of the two electrons.

I’m getting bored here so let’s finish it up by doing two exercises. Maybe three, I don’t

know. We’ll see. I don’t really plan out these notes, you know.

Let’s act the S2 operator on the coupled state |11⟩. This is just an exercise, you know,

nothing profound will emerge here.

S2|11⟩ = (S1 +S2)
2| ↑↑⟩ (339)

The left-hand side is easy. There is only one operator and it really loves to talk to this

coupled state. Just to remind you (to refresh your memories of modern physics courses

at worst), we have S2|sm⟩ = s(s + 1)|sm⟩—again, it doesn’t matter if the |sm⟩ ket here

denotes a coupled state or a single-particle state. Now, the left-hand side then just gives

2|11⟩. Let’s work out the right-hand side. We have

(S1 +S2)
2 = S2

1 +S2
2 + 2S1 ·S2 (340)

This notation is highly annoying in terms of who is acting on whom—so we need to

Kroneckerize this. The dot product is especially disturbing. Let’s first expand it:

(S1 +S2)
2 = S2

1 +S2
2 + 2S1 ·S2

= S2
1 +S2

2 + 2(S1xS2x + S1yS2y + S1zS2z) (341)

Eliminate Six and Siy using the ladder operators:

(S1 +S2)
2 = S2

1 +S2
2 + S1zS2z +

1
2
(S1+S2− + S1−S2+) (342)

115

Okay, still disturbing. Let’s work on the proper notation now. We know that S2
1 will act

on the first electron’s ket and won’t do anything on the second electron’s state. S2
2 will

do it the other way around. Now we have these products, S1zS2z, S1+S2−, and S1−S2+.

Noting that the first factor will always act on the first electron here, we should write these

as

S1zS2z = (S1z ⊗ 1)(1⊗ S2z) = S1z ⊗ S2z (343)

and similarly for the other two. Thus, we have

(S1 +S2)
2 = S2

1 ⊗ 1 + 1⊗S2
2 + 2S1z ⊗ S2z +

1
2
(S1+ ⊗ S2− + S1− ⊗ S2+) (344)

Everything is crystal clear here:

(S1 +S2)
2| ↑↑⟩ =

[
S2

1 ⊗ 1 + 1⊗S2
2 + 2S1z ⊗ S2z +

1
2
(S1+ ⊗ S2− + S1− ⊗ S2+)

]
| ↑↑⟩

=



(S2
1 | ↑⟩1)⊗ (1| ↑⟩2)

+(1| ↑⟩1)⊗ (S2
2 | ↑⟩2)

+2(S1z| ↑⟩1)⊗ (S2z| ↑⟩2)
+1

2(S1+| ↑⟩1)⊗ (S2−| ↑⟩2)
+1

2(S1−| ↑⟩1)⊗ (S2+| ↑⟩2)


=

3
4
| ↑↑⟩+ 3

4
| ↑↑⟩+ 2× 1

4
| ↑↑⟩+ 0

= 2| ↑↑⟩ (345)

As our second exercise, let’s consider a Hamiltonian of the form

H = −gS1 ·S2 (346)

which may represent the spin-spin interaction of two electrons in a bound state or of the

electron and the proton inside the hydrogen atom. Let’s express this Hamiltonian in the

basis spanned by decoupled kets, i.e. ups and downs. For concreteness, I mean, if you

don’t like this much abstractness, let’s take Si =
h̄
2σ for i = 1, 2. But I’ll do this later.

We have

S1 ·S2 = S1xS2x + S1yS2y + S1zS2z

=
1
2

S1+S2− +
1
2

S1−S2+ + S1zS2z (347)

116

and after Kroneckerizing, we get

S1 ·S2 =
1
2

S1+ ⊗ S2− +
1
2

S1− ⊗ S2+ + S1z ⊗ S2z (348)

Now, we choose the decoupled kets as our basis:

decoupled basis = {| ↑↑⟩, | ↑↓⟩, | ↓↑⟩, | ↓↓⟩} (349)

and we know how to act each operator in (348) on each of these kets:

⟨↑↑ |S1 ·S2| ↑↑⟩ =


1
2⟨↑↑ |[(S1+ ⊗ S2−)(| ↑⟩1 ⊗ | ↑⟩2)]
+1

2⟨↑↑ |[(S1+ ⊗ S2−)(| ↑⟩1 ⊗ | ↑⟩2)]
+1

2⟨↑↑ |[(S1z ⊗ S2z)(| ↑⟩1 ⊗ | ↑⟩2)]

 (350)

Now act each operator on their respective kets and if you get some flipped states facing

each other at the end, e.g. ⟨↑↑ | ↓↑⟩, then realize that it gives you zero and move on. If

all the arrows match on each side of the inner product, then you get 1. I really got bored

here and I don’t have the energy to type all these. I’m not sure if you managed to come

to this point, but let me know if you have any questions. If not, have a lovely rest of the

week.

[1] This is true in the absence of degeneracies. When we have degeneracies, we say that the eigen-

vectors corresponding to the nondegenerate subset are orthogonal.

[2] Suppose we are working in an infinite-dimensional basis.

[3] To get a copy of Mathematica, go to https://www.it.northwestern.edu/software/mathematica-

fac/index.html and click Students Wolfram Activation Key Request Form site under

Activation and Download.

[4] But when you perform lots of measurement, your average may be some other value, depend-

ing on your state.

[5] The extension to the most general case is trivial, i.e. when we have no common indices:

ϵijkϵrst = det


δir δjr δkr

δis δjs δks

δit δjt δkt

 (351)

Yes, you will end up more terms than you could imagine, but all of them are deltas. Just

expand your terms and start replacing indices. That’s what this tells you.

117

https://www.it.northwestern.edu/software/mathematica-fac/index.html
https://www.it.northwestern.edu/software/mathematica-fac/index.html

[6] Now it’s important to be cautious: these are the components of the spin operator in general,

not the basis matrices for the matrix space of the relevant dimensionality.

118

	Phys 412-1 Quantum Mechanics
	Abstract
	Contents
	Discussion 1 (Sep 29)
	Discussion 2 (Oct 6)
	HW1 supplements
	Problem 1
	Part (a)
	Part (b)
	Part (c)
	Part (d)
	Part (e)

	Problem 2
	Part (a)
	Part (b)
	Part (c)

	Problem 3
	Part (a)
	Part (b)
	Part (c)

	Discussion 3 (Oct 13)
	Discussion 4 (Oct 20)
	Discussion 5 (Oct 27)
	Discussion 6 (Nov 3)
	HW3 supplements
	Discussion 7 (Nov 10)
	References

