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I. THEORY

Photoelectric effect is just the particle-particle interaction of an electron with a photon. It is a quantum mechanical
phenomenon. It emphasizes the particle nature of light.

Imagine a long glass cylindrical tube with vacuum inside. Put two metal plates at the ends from inside. Connect
these plates to the positive and negative ends of an ammeter outside. What do we measure? No current.

Then we shine light on one plate, and we measure a nonzero current, which we call photocurrent. What is going
on?

In a metal or essentially anything that behaves as a nice enough conductor or even a semi-conductor, nuclei form
a lattice and sit tight in place. Electrons are shared among neighbors and are free to travel around, which is what
we call conductivity in a nutshell. We refer to this as the electron sea. This is slightly different than an electron in a
bound state in hydrogen. For an electron in the electron sea, there is a range of allowed energies, which are different
for different materials. When we shine light on this material, each light quantum, or photon, might kick an electron
off the sea if it has sufficient energy. This interaction leaves a net positive charge behind, and what we see if this
process continues is a net accumulation of positive charge, or equivalently a nonzero electric current.

Let us focus on an electron that gets kicked off, which we refer to as a photoelectron. It is a free particle now. Even
though the process is quantum mechanical, it is not necessarily relativistic. The electron flies off with a nonrelativistic
kinetic energy:

K =
1

2
mev

2. (1)

We have an electron in the sea, it literally absorbs a photon of energy Eγ = hf , and assuming it is sufficient, the
electron flies off with some kinetic energy. The photon energy is spent to remove the electron from the sea, which we
refer to as the work function, denoted W , and give the electron its kinetic energy, K. Logic dictates that

Eγ ≥ K +W. (2)

Depending on the initial energy of the electron, there is actually a range of kinetic energies and hence speeds. For the
most energetic photoelectron, we have

Eγ = Kmax +W. (3)

We can use this relation to find the ratio of two universal constants, namely h/e. Suppose we apply potential to the
other metal plate–the one on which we do not shine light–to repel away the incoming stream of photoelectrons. If
we apply a sufficiently high voltage, this stops the most energetic photoelectrons, and we make sure that we stop
such photoelectrons once the ammeter reading drops to zero. We refer this value of potential the stopping potential,
denoted Vs.

If we have an incoming electron with energy Kmax and if it takes Vs amount of voltage to bring it to rest, then the
conservation of energy gives us

Kmax + (−e)Vs = 0, (4)

or

Kmax = eVs. (5)

Then we can write

hf = eVs +W, (6)

or, after slight rearrangement,

Vs =
h

e
f − W

e
. (7)

Given that h, e, and W are all positive, this relation represents a straight line with a positive slope, negative y-
intercept, and positive x-intercept. Since the negative values of the potential doesn’t really make sense in this case
(because we apply potential to stop the electrons), this relation says there must be a cut-off frequency, which is found
to be fc = W/h. This is the activation frequency for the photon to liberate a photoelectron.
This is the entire theory. We clearly see the effect of frequency on the stopping potential. We still need to think

what happens if we increase the light intensity? What do you expect to find out? How can you justify?



2

II. EXPERIMENT

A. Initial setup

1. Turn on the mercury lamp and wait for it to warm up for about 10 minutes.

2. Put the diffraction grating 2 m from the wall. Mark the spot and remove the grating.

3. Play with the lens to see the clearest possible image on the wall. Then put back the grating.

4. On one side of the line of sight or of the central maximum on the desk, put the sensor. The other side should
remain free of obstacles because we want the diffraction grating pattern on the wall. Focus on the wall.

5. See three lines: yellow, green, and violet. If you put a printing paper on the wall, due to its fluorescent properties
you will see two UV lines, so you have 5 lines in total. (You might see multiple dim yellow and green lines, and
they are due to impurities in the lamp.) Using the formula for diffraction grating maxima,

d sin(θ) = mλ (8)

with m = 1 and sin(θ) ≈ tan(θ) = y/L, where y is the distance from the central maximum and L = 2 m, obtain
the wavelengths. Keep track of uncertainties!

6. Using the relation fλ = c, compute the frequencies along with the propagated uncertainties.

B. Effect of light intensity on stopping potential

1. Focus on one of the UV lines. Remove all the gadgets off the sensor. Make sure that light enters the aperture.
Also check the cap behind the white piece. Don’t forget to close it again.

2. Use the intensity filter. (There are three filters on your desks: a green filter, a yellow filter, and an intensity filter.)
Align “100%” with the aperture, hit the red button behind the sensor, and the record the voltage reading after it
stabilizes after a couple of seconds. This is the stopping voltage.

3. Repeat for 80%, 60%, 40%, and 20%.

C. Effect of frequency on stoppping potential

1. Focus on the yellow line. Align it properly on the aperture, then put the yellow filter on. Then hit the red button
behind the sensor and record the voltage once it stabilizes. Decide if you need to introduce uncertainties for Vs

measurements.

2. Repeat for green with the green filter.

3. Repeat for violet and UV lines without any filter. The sensor can differentiate these lines from the ambient light.
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III. STATISTICAL ANALYSIS

Suppose you have a dataset in the form:

Frequency [Hz] Stopping potential [V]

f1 ± δf1 Vs1 ± δVs1

f2 ± δf2 Vs2 ± δVs2

f3 ± δf3 Vs3 ± δVs3

f4 ± δf4 Vs4 ± δVs4

f5 ± δf5 Vs5 ± δVs5

The model, also known as the fit model, also known as the fit function, is linear:

V̂s = b0 + b1f, (9)

where V̂s is the predicted value for the stopping potential, and b0 and b1 are the fit parameters. The former is called
the y-intercept and the latter is referred to as the slope. The goal is to obtain the best-fit values for the fit parameters,
b0 = β0 ± δβ0 and b1 = β1 ± δβ1, as well as the correlation between the fit parameters.

We note that if we perform a naive linear regression for example using MS Excel’s LINEST() function, we incorrectly
estimate the uncertainties for the fit parameters. Below, we discuss all possible cases for the given data set and present
a minimal working example (MWE) to illustrate the differences.

A. Case of δfi = 0 and δVsi = 0 for all i

Use the simple linear regression by all means and trust in δβ0 and δβ1.

Consider the example dataset:

f = {3.1, 4.0, 4.9, 6.2, 7.1};
Vs = {2.1, 4.4, 6.0, 8.4, 10.4};

We obtain

b0 = −3.93165± 1.62777, (10)

b1 = 2.01416± 0.309315, (11)

ρ = −0.961519. (12)
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B. Case of δfi = 0 and δVsi ̸= 0 for all i

When the dependent variable has uncertainties, we perform a weight fit. We define a χ2 function as

χ2 =

5∑
i=1

[Vsi − V̂s(fi)]
2

δV 2
si

=

5∑
i=1

[Vsi − (b0 + b1fi)]
2

δV 2
si

. (13)

This is just a quadratic function of b0 and b1. We compute the first partial derivatives with respect to b0 and b1, set
them equal to zero, and solve them for b0 = β0 and b1 = β1:[

∂χ2

∂b0

]
b0=β0

= 0,

[
∂χ2

∂b1

]
b1=β1

= 0. (14)

Then we compute the hessian of the χ2 function and evaluate it at b0 = β0 and b1 = β1:

F =
1

2

(
∂2χ2

∂b20

∂2χ2

∂b0∂b1
∂2χ2

∂b0∂b1

∂2χ2

∂b22

)
b0=β0,b1=β1

. (15)

This is called the Fisher information matrix. The inverse of the Fisher matrix gives the covariance matrix, V, which
looks like

V = F−1 =

(
σ2
0 ρσ0σ1

ρσ0σ1 σ2
1

)
, (16)

where σ0 and σ1 are the uncertainties in β0 and β1, respectively, and ρ is their correlation.
Consider the example dataset:

f = {3.1, 4.0, 4.9, 6.2, 7.1};
Vs = {2.1, 4.4, 6.0, 8.4, 10.4};
dVs = {0.5, 0.4, 0.4, 0.6, 0.5};

We obtain

b0 = −3.85697± 0.780734, (17)

b1 = 2.00722± 0.154176, (18)

ρ = −0.964117. (19)
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C. Case of δfi ̸= 0 and δVsi = 0 for all i

The weighted fit of the previous section will not work here because of vanishing uncertainties in the dependent
variable. The trick is to define a new model by treating Vs as the independent variable and f as the dependent one:

f̂ = c0 + c1Vs. (20)
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We repeat the analysis of the previous section by simply swapping fs by Vss and by replacing bs by cs. We obtain
the best-fit values for the fit parameters as c0 = γ0 ± δγ0 and c1 = γ1 ± δγ1. Then noting that

Vs =
f − c0
c1

= −c0
c1

+
1

c1
f, (21)

which gives us

b0 = −c0
c1

, b1 =
1

c1
, (22)

we obtain the best-fit values for b0 and b1 by letting the errors propagate through

β0 ± δβ0 = −γ0 ± δγ0
γ1 ± δγ1

, β1 =
1

γ1 ± δγ1
. (23)

Consider the example dataset:

f = {3.1, 4.0, 4.9, 6.2, 7.1};
df = {0.1, 0.2, 0.1, 0.3, 0.3};
Vs = {2.1, 4.4, 6.0, 8.4, 10.4};

We obtain

b0 = −4.33441± 0.524907, (24)

b1 = 2.10011± 0.119775, (25)

ρ = −0.967084. (26)
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D. Case of δfi ̸= 0 and δVsi ̸= 0 for all i

In this most general case, we apply the method of orthogonal distance regression, where our χ2 function is of the
form

χ2 =

5∑
i=1

(
∆f2

i

δf2
i

+
∆V 2

si

δV 2
si

)
, (27)

where each ∆fi is now an auxiliary fit parameter, and ∆Vsi = b0+ b1(fi+∆fi)−Vi. This is now a quadratic function
of seven variables (two original fit parameters b0 and b1, and five ∆fi); nevertheless, the idea is the same: set the first
partial derivatives equal to zero, obtain the best-fit values to obtain the Fisher information matrix. Once we have
the Fisher matrix, the rest is the same as in earlier sections, namely the parts where we invert the Fisher matrix to
obtain the uncertainties and the correlation.

Consider the example dataset:
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f = {3.1, 4.0, 4.9, 6.2, 7.1};
df = {0.1, 0.2, 0.1, 0.3, 0.3};
Vs = {2.1, 4.4, 6.0, 8.4, 10.4};
dVs = {0.5, 0.4, 0.4, 0.6, 0.5};

We obtain

b0 = −4.02244± 1.03016, (28)

b1 = 2.03759± 0.213709, (29)

ρ = −0.966788. (30)
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***

This document can be obtained from

https://kagsimsek.github.io/files/teaching/lab7 notes.pdf

The Mathematica notebook with the code for all these cases can be obtained from

https://kagsimsek.github.io/files/teaching/mwe stat analysis.nb

https://kagsimsek.github.io/files/teaching/lab7_notes.pdf
https://kagsimsek.github.io/files/teaching/mwe_stat_analysis.nb
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